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ABSTRACT

We preéent a procedure to cobtain the BRST charge for
the representations of the Virassoro algebra. For cg 1 the
BRST charge has in general terms containing products of more
than three ghosts. It is nilpotent for any allowed value of

the central charge and conformal weight of the representation.

*partially supported by CNEg.

L2,

Two dimensional conformal-symmetry has many imixesth@
properties due to the fact that it is realized as an infinite

dimensional algebra, the Virassoro algebra.' 1ts representations

(1,2}

have been studied and classified and several applications

to twoe dimensional statistical systems (at their crﬂjcﬂ.pohms“3),

(4) (5)

field theory and strings have been performed. The super-

symmetric extensions have also been found(G}.

In two dimensions a ¢onformal transformation can be
viewed as a general coordinate transfermation with analytic
parameters. Conformal field theories in two dimensions can
therefore be considered as field theoriés with a lécal -invariarce.

The gquantization of such theories has been performed

(4)

at the operator level and it was found that the local fields

which form the operator algebra can be classified aécording to
the irreducible representations of the Virassoro algebratd).
Since conformal symmetry is a local symmetry we can

consider the BRST guantization procedure(T’S).

At the guantum
level,- however, the Virassoroc algebra acquires a central extension
due to the appearance of a Schwinger term. In gauge theories
such terms signal the presence of anomalies and@ conditions mdst
be fouhd such that these Schwinger terms are removed from the
algebra in order to have a consistent theory. On the other hand,
in conformal theories the Schwinger term is harmless and in fact

it is responsible for the rich structure found in these theories.

Because of that we cannot apply the straightforward recipe to

-




.3.

construct the BRST charge(S}

, Since it starts with the Hamiltonian
formulation of the corresponding classical theory and in the
classical conformal theory the Schwinger term is, of course,

absent.

We then start from the beginning, with the guantum

theory and consider the physical state conditions as the analogue

of the classical constraints in order to build the BRST charge.

An . important point is that the classical constraints must be

first class, or in our case, the physical state gonditions must

. form a closed algebra. As we will see this does not happen for
the unitary representations of the Virassoro algebra with cg 1.
Consider a state of conformal weight A »0. It must

satisfy

n
(o)
-

L_.H{A) n>0

{1}

.L0|A} FAF:)

where L, - are the Virassoro operators satisfying the algebra

. C(2)

1 = (p- <
WELnfLm] = (n m)Lp+m * 12 %+m,0

For convenience we rewrite eg.(1} as

]
n
[
]
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The space of states (the Verma module) is generated by the
successive applications of ‘L_, to the state | Ay
f=nip -nyp eue s g & =L L ... L | 8%

Py "Ny

(4)

Let us gonsider first the case c > 1. The physical
state_conditions are given by (1) or (3) and it . is easily

verified that they havé a closed algebra
{(3)

In this case a nilpotent BRST charge is easily constructed by

(8)

following the standard procedure , with the constraint

algebra substituted by (5). Introducihg the ghosts € m’ Eﬁ r
m»0, satisfying {c_ ,c } = 6n~m,0 , EE|A> = (Afc_m =0 we
have
o0 o0
- T 1 -
Q = E € _m Lm 3 Z (n-m) €_n S m Sman (6)
m=0 nm,n=0

Motice that the indices n and m are always positive and no
normal ordering is_necessary. The condition Q|A) =0 gives
back the physical state conditions (3).

Up to now we have considered only the conformal
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transformations &sscciated to one of the analytic conformal
parameters, say the cne which depends on =z . The conformal
transformations associated to the cother variable z* are generated
by L; ; which has the same algebra as Ln (2) and commutes with

Lnﬂ The state with conformal weights & and A* satisfies

B la,8% = LA A% = o0 - .(7)

To build the complete BRST charge we need another pair of ghosts

* T : : X A1 L s - *
¢l rCy satisfying {cX ,cn} = 6n—m,0 o cp |8y (A|c_m 0

and anticommuting with the ghosts introduced earlier on. We

can now define a hermitian operation {which is a complex conju-

gation plus the usual hermitian operatiocn)

t - * T = * .t - %
(L) = LI {c_n) =ep (cn} = el
* 4T = ey T = W
tel)) e, o tep) c_, . (8)
such that the BRST charge
o 1 o0
= 7 * TR -1 _ = =" * ok
Q= [ oy In * s M) " 3 X (e, C o Smen T Sonen Sn SR
m=0 n, =0

(2)

is nilpetent and hermitian. Now Q|&,A%) = {A,A*|Q = 0 yields

the physical state conditions (7).

For cg 1 it is well known(i'Z)

that the representations

.6,

of the Virassoro algebra are reducible for arbitrary values of
¢ and A . To obtain an irreducible representation we must

facter out the reducible submodules of the original Verma

(4)

module and this can be accomplished by imposing the vanishing

(2)

of Kac's determinant The roots of Kac's determinant can be

labelled by two positive integers n and m and the correspending

values of the conformal weight are given by(1)

Atn,m) %ﬁ% + % {na, + mcz__)2

_ (10) .
o, _ ¥1-c t ¥25-¢ .
+ . T

The reducible submoduleé are composed of'zéro norm states so
that we impose the vanishing of these states in the physical
Secﬁor. This means that they must have a closed algebra with
the original physical state conditions {3J. Thé conformal weight

of the zero norm states is given by A )-+m.n . As an example

{(n,m

let us consider the level 2 representation. We have to look
for a linear combination of states of the form {4), with weight
A+2 , such that it has a closed algebra with En. Writing the

operator x_, = L_2~FaLE} then we find

(£ L1 = (n-m) L -

(i1}

= {an{n+2) +n+2} 6n>1 Loptaaml) s L,L . +.26n,0 X9




if
-3 _ 2A(5-8A)
R Fmen 0 ° T Ty - (12)

Of course, this is eguivalent to solving Kac's determinant and

the relation between ¢ and A in (12) corresponds to ths cases

n=1, m=2 and n=2 , m=1 in {TO}.A Now, the algebra (11) hés
structure constants which are field dependent since the second
term in the commutator of in and X4 depepds on L_,. The
construction of the classical BRST charge for a system with a
constraint algebra which has field dependent structure cnnsunﬁs
has been performed in ref.{9). We can extend the results of
ref.(9) to the case where we have an algebra with commutators

instead of Poisson brackets, and we find, as in the classical

case, that there are higher powers of ghosts in the BRST
{(10)

Introducing the ghosts C_, Sy for Ln and

d,,a_, for X_p» with {d,,d_)} = 1, d,[8) = <A|-a“_2 = 0 "and

charge

with the d ghosts anticommuting with the ¢ ghosts, we find

©0
1
n{™~8
H
o

o
1 _
nCp v X4 -5 z T
m=

n=0 n,m=9

o0
+ 2a E (n+1) e_ ¢ L_, @, ~2¢c,d,d, +
n=1

n=-1 7-1 2 0 72 72
bl
+ + )
Ej {an(n+1) {n+2}] €.n Snop d2
n=2
o
- +1) {m+ c c - ‘

a z (n+1) (m+1) ®n Com p-1 Smoq Yy . (13)

n,m=1

The cubic terms come from the structure constants of the algebra
{11) and the last term from the fact that cone of the above

menticned structure constants depends on L_ this last term is

1;
essential to prove that (13) is nilpotent. Now ¢[A) = 0 gives
(3) as well as X_,[4) = 0. To make (13) hermitian we adopt the
same procedure as in the ¢ > 1 case. Notice that Q2 =0 does
not fix any particular valus of ¢ or A; we need only the
relation between them given by eq.(12).

In the general case, with a zero norm vector X oyl
at level N, we can have in the commutator of .in .with X—N
structure constants with at most N-1 powers. of L, - This
means that the highest ghost power in @ will be 2N+1. 1In
the jargon of ref.(9) the theory is of rank N.

We now consider the case in which there are more
than one zero horm state. This happens if e /o, = -p/q with
p and q positive iﬁtegers. For these values of < and A we
have the unitary representations of the Virassoro alqebra(11)
and in fact an iafinite number of zero norm states. *n our

former example, if we take p=3 and g=4 we find c=1/2 and

82,1y 7 85,5y = Big,e) = +--
= A =2 = A = 1 t14)
(1,3 (4,7} (7,11) 7 -

The corresponding zero norm states will be generated by



X X X X These new cperators

—720 e Xoge Xpge Xogqe een

however do not have a closed algebra since for example [X

-2' "-25'
5 X_g]
would generate a new zero norm-state at level 5 X_5 which is

not allowed by (14). This means that we have a second class
algebra and some of degrees of freedom represented by L_ﬁ are

- not physical. We can them retain one of the X's as a physicél
state condition and the others will be imposed strongly so that

X_=0 can be used to write L_ in terms of the other gensrators

N
and in this way be eliminated from the theory. In our example,
if we keep X_2 as a physical state condition the BRST charge
is still given by (13) with c¢=A=1/2 and with Ly L 550
L-ZS"" being-combinations of the other operators. A&after
the elimination of these opefators the Virassore algebra becomes
highly non-linear. -
It is worth mentioning that this construction of the
BRST charge solves an apparent puzzle. As it is well known in
string thecry the requirement that the BRST charge is nilpotent
can be used to find the critical dimension and the Regge slope

(12}

of the string A naive BRST quantization of conformal

theories taking into account the full Virasscoro algebra will
always yield the values c=26 and A= 1(13} while it is
known that all other representations with c#26 and A#1 can
be consistently guantized. As we have shown the correct BRST

treatment of conformal theories needs only the physical state

conditions and not the full Virassoro algebra.

210,

This. work was developed during the author stay at

Departamento de Fisica, Universidade de Brasilia.
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