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Abstract ‘s

General expressions for the friction and diffusion coefficients for
high energy proton-nucleus cellisions are derived from an exact collisional
description of the proton ~dynamics. :Anaiytica] expressions for both
coefficients in nuclear matter are given. For low momentum transfers the
Pauli blocking inhibites the friction and diffusion processes and this
corresponds to the more realistic situations for proten incident energies
~ 1 GeV. Results are compared with the ones derfved within the context of
Glauber Theoryl) where Pauli blocking effects are mot considered and the

friction coefficient vanishes automatically.

+  Work supported by CNPq. )
++ Work partially supported by FAPESP, CNPq and GSI Darmstadt.
+4+ Perdianent address : Cento Atomico Bariloche, Comision Nacional de

fnergTaIAfomfca:'8400 5.C. de Bariloche, R Negro (Argentine).

1. Introduction

A" kinetic description- of -inelastic high energy. broten nucleus
collisions { ~1 GeV incident -energy) has béen given 1) within the centext
of Glauber Theoryz). The one nucleen inciusive cross section .is-shewn to
be related to the space integral of a function which déﬁends-ﬁn spaée and
momentim variables of the nucleon to be detected. A Beltémann-ﬁype equation
for this function is derived as well as the“diffusiﬁn ceefficient for the
proton. One of the open questions in ref 1) concerns the connection between

the above mentioned function and -the Wigner funcétion. Another impertant

‘pr0b1em is due to the fact that energy conservation is not takem .inte

account in Glauber's Theery. Therefore the frictioen coefficient 1is
automatically zero. Also Pauli blocking effécts are neglected.

It is the aim of the present paper to -Fill in -these gaps. Qe derive
a kinetic equation for the proton's Wigner function within the context of
a projection forma!ism3) and work out the necessary approximations which
lead to a Boltzmann-type eguation. The usual -momentum expansion .of -the
Boltzmann “equation leads -directly to- very simplie -expressions - for. the
friction and diffusion coefficients. “Analytical expressions for these
coefficients are derived for-nuclear matter in a.model proposed by Bertsch
and Scholten®). In the limit of high momentum transfer (g » 2 pr)} we.show
that the diffusion coefficient'coincfdes with that of refl}. Corrections
to the kinetic coefficients due to Pauli blocking are explicitely
cons%aeréd Eoth for tow mementum trdnsfegs'(q'< 2 ppj.-where they are shown
to bé'impdrtant, and for the opposite limit, where they vanish.

The question of overall energy conservation has been very often raised
in the context of collisional 'déscriptions especially in . extended

Hartree-Fock theories. The present formulation deals with two interacting
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subsystems (the proton and the nucleus). The proton's effective dymamics
is approximated and therefore it is not.atall obvious that the total enérgy
is still conserved. We show explicitely that our approximations do not

violate energy conservation.

In section 2 we derive the Boltzmann equation from the exact kinetic

equation- for- the proton's effective dynamics and discuss the necessary

approximations - in the context of high energy collisions. General

expressions for . the kinetic -coefficients -are given. In 'section 3 we

calculate friction and diffusion coefficients for nuclear matter. Summary'

and.conclusions are given in. section 4.

2. From the exact effective proton dynamics to the '

Boltzmann equation : Transport coefficients

Since we are considering high energy collisions we shall treat the
incoming proton and the target as two independent subsystems of a many body
system. We are thereby neglecting anti-symmetri;qtion bétween the incident
particle - and. the nucleus,. which 1is a good. approximation for such
collisions. Futhermore if we callp the proton. density matrix and R the
nucleus density matrix, the exact- coupled equations which govern their

effective dynamics can be written as 3) : (# = 1)

t ' :
i3 = [Hp Pl (i onu8) - 4 trN_Udt' Alg 6 {t,t') ALy R (t')ﬁ(t')} _
. - . [+] . .

: (2.1 a)

. ' . T t . .
iR-= [hy, R]+ [enrop, R] - 'trp{_[ dt* ALy G{t,t') ALy B (¢')P (t')}
° {2.1 b)
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In the above equations Hp and Hy are the free hamiltonians of the proton

and the nucleus respective]y.(ﬁ'>p and <H'>y are defined as

<My o= tr (W) _ (2.2 a)

<H>N = tr Ry ' o _ (2.2 b)

where H' is the interaction hamiltonian. The symbol a Lt stands for
sle. = [Ha. ] - [eH'>p..] - [y, ]

and G(t,t'} is a many body Green's function which propagates the correlatad
state to its right.from time t' to time t. Its formal definition is given
in ref3), . 7
The next approximation consists in neglecting all averaged interactioﬁ
terms {mean field contributions), assuming their effect on the effective
dynamics to be small as compared to the other terms (e.q. kinetic energy).
At this point we still have a highly non linear non mafkovian system of
coupled equations. The next simplifying assumption amounts to considering
only the lowest order correlation corrections in the collision term. In

this case the equations decouple :

L o t - o

18 = [Hp, 5] -4 trN_{[ de' [H', 6ot,t') [H', 53 (") Ro}]} (2.3 a)
G

A = * -

i% = [Hy.R]~ 1 trp{jedt‘ [H', Golt,t') [, 5 R_,(t')]}}_. (2.3 b)

. .
where Tp and Ry are the initial densities, and Go(t,t') propagates the

corvelated state to its right with the free dynamics of both subsystems.
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These equatfons are not exact any longer. Despite of this fact the total
energy is conserved (see Appendix}. The equations are now decoupled and
we can treat the effective dynamics of the proton separately. Eq. (2.3 a)

can be rewritten as follows

. t
Pan = = 1Em - 50000 - 5 .Ldt' Kmn,ij (t = t') pyj(t") (2.4)

where
Kmn,‘ij(t‘t') = sz.
<prlo [H'IpKN, > <piN, [H'Ip§ Ng.> 8pj exp [T (Eg-Ey - gt ep) (t-t')]

+ <ppg [H' [ponNg> <pjNolH' IpKN, > 8im exp [i {Eg-Eqtex-=i) (t-t')]
- <pjNolH' oy :
J_0| P> <pNglH'| pi No> Gkn exp [i {Eg-Eg+ejmeq) (t-t') ]

- <ppi gtH' | pilNg> <pjgiH' Ipklg> Sy exp [i (Ey- Eg -ej +5) (t-t")] (2.5)

where <piNsIH'|pgN, >  stands. for the -coupling matrix. element between
unperturbed proton {pj} and nuclear (Nj) states. The phases contain
unperturbed energies of the proton (small Tetters) and nucleus {capital
letters). The memory integral in eq. (2.4} represents an effect of quantum
correlations. It is possible to treat the memory by means of a laplace
transform since we have now a linear equation. But in order to get to the
Boltzmann equation we have to make the Markov approximation and assume that

the time dependence' of pT-J-(t') is much slower than that in the integral

w B

Kernell Kgn,ij(t-t'). With this approximation, ej(t')= o 43(t) and

Kon,ij = frkzz{ﬁ (E,~ Eo ™ =n +%)<puNo H" Ipily> <oy [H' IpiNg> 6

+ 8(E, -Eg- ex+ £q) <pjNa H" ipkNg > <pxlgH'lonNg> Sip

- S(Ec~B-ege o) <pglolH' Ipgh > <piNelH'IpiNgy &0

- 8{Eg-Ep = En* Ti) <ppNgIH' [piNg> >piNolH' IpkN, > ‘sknl (2.6}
. 4

In order to get to the Boltzmann equation, we write eq. (2.4) in Wigner
representation, neglect the moméntum spreading of the -proton density ‘and -
assume that the proton - nucleus interaction is of short range' in coordinate

space. We then get

5W(bsR.!t) - B i Dw (D;B_:t) =
e m 3R -

. ' 2 2 o,
- -zagfdpratppathon-BL - B ) | pw Il piNo3I? uinRot)

r2m ﬂdm 2 (p1) 6 (hug~ b2 - P12y | < pyl, IH'] p Ng> 12 o {pi.R,t)
- M Zm 2m Bas ad Radiad
' (2.7}

where huwy = E, - Eg andﬂ(ﬂ_) is the level density of the proton with
momen tum B On the right hand side of eq. (2.7) one eésﬂy recognizes the
loss and gain terms of a Boltzmann-type equation. This is the main resuit

of this section.
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If one considers that the proton's Wigner function is peaked around
pL = p, i.e., that the spreading in momenta is small, it is then reasonable
to expand the second term on the r.h.s. of eq. {2.7) around p.

We get, up to second order :

. 2
F’w(Paﬂst) = ‘E“ _3__ pw(EsBst) =Il pN(E’ st) +E Dij a - -_pw(_aaﬂ:t)

n 3g 3p ij apiapj
(2.8)
with
2
L= -%fdsp de, “;F; p - p1) (2.9 a)
1 1 d&nﬂ
_1 e e ey
%ij = % %fﬂ E,,Idﬁ 1,_930_(“-9‘1-)1{“ D)J (2.9 b)

where v is the proton's incoming velocity and V the normalized volume of -

the proton's wave function.

3. Calculation of the kinetic coefficients for Nuclear Matter

In this section we briefly introduce the . approximations for the
momentum transfers within the spirit of high energy collisions and present
the model we use for d? g

dfd E
Finally we give amalytical expressions for the transport coefficients in

nuclear matter.

3.1, The Hodel

We express the longitudinal (along the beam axis) and transverse
components of the transferred momentum (g = p - _E:) in terms of the-
quantities Sp = |p| - {p'| and cos 8= R-D '

ipt Ip' 1, ,
Since we are interested in high energy collisions where the transferred:’
momentum s small compared to the fincident one, we- consider these

quantities to be small, so that we can write :

q =p - p' coso=sp +123- o (_3'1 a).
Qy = - p' cos @ .- p ¢cos P _(3.’1 b)
qy = - p' sin¥ =-pasin'® (3.1 ¢)"

? befrg the corresponding azimuthal angTe. On the basis of nuéleon~nuc1eon

elastic 'scatteﬂ'ng it is easy to see that the magnitudes sp and pal are

of the same order.

Following ref 4) we express the double differeatial cross-section in

the form

2. =
dc g Neff%% fun S(asE) .(3'2)

The first factor Neff is the effective number of target particles
calculated geometrically as in Glauber Theory. for one step reactions. It

should also .take into account the Toss of flux in the one-step channel due
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to compound nucleus processes. The second factor %E is the nucleon-
d
nucleon cross-section at the corresponding laboratory energy and angle.
In the range of energies considered, it can be written as :
ﬁ -p? g2 .
o gy =% e 32 = doe 42 (3.3

where oy is a constant and A =400 MeV/.. The response function § {q,E) will
be calculated in the Fermi gas model. It has different expressions,

according to the magnitude of q (see ref4),5)). For g & 2 pr

if0L2mEg 29 pF - 92 {3.4a)

S(q.E) =3m_ 1 [pp2 . (92262 - mE)2/p2 a2]=52
pe

App3 .
it 2qpr-q2¢2mEg 2q pp + g (3.4 b)
for q »'2 pp
S(q:E) =52 ifq2-2qpr<2mES 2+ 2qpF (3.4¢)
3.2. Results

Inserting. egqs. (3.2}, (3.3} and (3.4} into (2.9 a) and (2.9 b) we

obtain to lowest in &p and p 82 :
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' 4 :
I},=2"Vpeffﬂo{lp<e3>+§EE<94>-1L<eﬁ>+p<e3>0}
2 & pr PF3
(3.5 a)
BT o - (3.5 b)
Dyy = 0 (3.5 ¢)

_ ' 5
Dyx = Dyy * 2 7 V paff 00{% %34 08y - L P° 665+ 1pZcpdre )
' F

64 pg3 4.
{3.5 d)
Dy = D)’If Dyy “ 0 ’ ' _ {3.5 e:}
where oaff = Nef/V s the effective density and
ZPF -pe 32 . . .
<on = I /Pde gh e‘Bg {3.6.a}).
[o] .
- T o2 o2 N
<ome - J 4o on &7 (3.6 b)
¢/

The coefficients in egs (3.5 b) and (3.5e) vanish due to axial symmetry
while the Tongitudinal diffusion in (3.5 ¢) is of higher order in &p and
In the low momentum transfer 1imit, eqs (3.5 a} and {3.5 d) redﬁce

to {LMT) :

rLMT=voeffc1;m A2{1+9ﬁ’_ﬂ_'15""-’ a3 } (3.7 2)

2 8 2 16 (2p7)3
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2 /o a3
DLMT = pLMT = v ccofl a*f9 /7 A . 16/% & } (3.7 b)
x yy eff “un 37 2pr 68 (2pF)3

while in the high transfer regime they read (HMT} :

PHMT = ypore Ty 1 o2 (3.8 a)
P
DHMT = DHMT = 1y pocr of, 42 (3.8 b)
XX ¥y & -
where
UT = de_U 3.9
NN ) INN {3.9)

Although the Pauli principle is taken into account in the present
model it does not affect the kinetic coefficients in the high momen tum
transfer regime {egs. (3.8 a) and {3.8 b) ). In this case the diffusion
coefficient coincides with the one obtained in G]a_uber Theoryl). In the
Tow momentum transfer regime the Pauli blecking is effective. For example
if we compare the dominant contribution in TEMT and THMY {eqs (3.7 a)
and {3.8 a) )} we observe that there is a reduction of the friction
coefficient by a factor of two. Furthermore in the first case we find other

correction terms which depend on the Fermi momentum and are absent in the

HMT domain. Similar considerations also hold for the diffusion coefficient:

it is also strongly affected by Pauli blocking.
In order to compare the relative importance of friction and diffusion
processes, we estimate the ration between . typical times associatedr ﬁ'ith

fyand Dyy. We get :

Tr )LMT ) 9/ A.
thx_ ' . .(3‘10) .

- 11 =

and

'Z r, HMT

_(:Dxx_

-l=-||—-

(3.11)

We note that in both cases the momentum loss process requires shorter
times, especially in the LMT regime where _&. <<1, In the HMT regime it

2pf
is independent of the mean transferred momentum &.

4, Conclusions

Stafting from the exact equations for the effective dynamics of a high
energy proton interacting with a nucleus we derfve a transport eguation ‘
for the Wigner function of the proton density. We obtain simpie general
expressions for the kinetic coefficients and analytical expressions are
given for nuclear matter. The available result for the diffusion
coefficient calculated from Glauber Theory is vreproduced fr the high
momentum transfer regime {q > 2 pp). In the Tow momentum transfer regime
(g < 2 pp) the Pauli blocking dinhibites the friction and diffusion
processes strongly, Typical values of the momentum transfer in suchl

collisions fall im this range.

One of the authors (M.C.N.) is indebted to Jiorg Hifner for
enlightening discussions and thanks the G.S5.I. Darmstadt for the kind
hospitality. M.E.S. wishes to acknowledge the warm hospitality of. thé

University of S5, Paulo and the Max Planck Institut in Heidelberg.
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Appendix

In this appendix we show that the approximations which lead to egs
(2.3) do not violate the conservation of total energy. For that purpose
we briefly recall the necessary steps in the derivation of the effective
dynamics of subsystems pand R (see vef3) for details). The total demsity
of the many body sytem {in this case proton and nucleus) is written as 3)

F=fp+p ‘ (A.1)
where F' corresponds to the correlated part of the density and T%Sto the

uncorrelated part. In the same approximation used to derive eq (2.3), F

cdn be written as 3) :
~ . t oA A .
B zf dt' Go (t.t') [H's Rop+ Rppl (A.2)
0

The total energy is given by (from eq (A.1})

E=tr (HF) = tr (HRZ) + tr (HWE) (A.3)
The first term on the r.h.s. of eq (A.3) corresponds to the uncorrelated
part of the energy and the second term to the correlation energy. We will
show in what follows that the energy lost from the uncorrelated part due
to the interaction is stored in the correlated part so that the total
energy remains constant. In order to see this we consider

3—55 tr{H (RyB+RBy) 3+ tr{H F' (A.4)
The first term on the r.h.s can be evaluated using the equations of motion

for R and o (the egs (2.3) ) and a straightforward calculation yields

tr (KR P +RPp) 1= - tr tHy D (R ) + 0 (R5p) 1 (A.5)

- 134

where

o~

.
0 R ) = [aw [4, Go(tat) {4877 ] (A.8)
a

Inserting egq (A.2) in the second term of the r.h.s of eq (A.4) we get,
after some algebra
tr (HF') = tr (Hy O (Ro5 ) # Hy O (R 0) } (A7)

and therefore dE =g
dt
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