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ABSTRACT

We show that the method based on the tensor coupling
of an appropriate family of isovector excitation operators to
the parent isospin multiplet can be used, to auvantage, for the
correct treatment of the isospin degree of freedom in non-
isoscalar nuclei, This method is applicable to any isovector
excitation operator and for parent states which need not to pe
of the closed subshells type. As an illustration we apply it

to the study of the Gamow-Teller transition strength in 90Zr.

*CNPq fellow.




I, INTRODUCTION

The dynamical violation of isospin invariance in
nuclei is associated with the Coulomb interaction‘between protons.,
However, since the strong nucleon-nucleon interaction conserves
isospin, this violation can be'disregafded in a first approxi-
mation. In fact, Bohr and Mottelson demonstrated that the
isospin impurities in ground states of nuclei, even the heavy
ones, where the Coulomb interaction plays a relatively importart
role, do not exceed a-few tenths of a percent‘. AsS a consequence,
the nuclear spectrum tends to split into isospin multiplets. &
well known ﬁanifestatioh of this effect is the fragmentation of
the dipole resonaﬁceg in nuclei with a neutron excess and,

consequently, non-zero ground state isospinz. This phenomenon,

though hard to detect expefimentally, is predicted to be a general

feature of isovector resonances.

Most of the theoretical investigation of the dis-
tribuﬁion of the transition strength of giant resonances is done -
by diagonalizing the hamiltonian in the subspace of 1 particle-

1 hole (1p-1h)} excitations of nuclei with a ciosed
subshells ground state, chosen for the parent state. This is
the so cailed Tamm-Dancoff approximation {TDA). However, for
N#2 nuclei and isovector excitations, the resulting states do
not have, in general, good isospin. 1In this framework, the

isospin invariance can be restored by taking inte account
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appropriate 2p-2h and 3p-3h excitations, as done in Refs. 3 and 4.

Taking advantage of the symplifying features of these
configurations, those authors first determine, in each case,
which isospin multiplets will appear. When all multiplets exist,
standard techniques of Racah algebra are used to construct the
good isospin states. In the remaining cases, the authors make
use of excitation operators which do not have good isospin,
leading to the necessity of alternative techaniques to construct
the good isospin states.

The main purpose of this paper is tc show that the
technique of Racah coupling can be used, to advantage, in all
cases., We not only show how to construct good isospin states
but we also give criteria to deéide, a priori, which excited
isospin multiplets exist in each case. We find this method
simpler and more transparent than the previous ones3’4, with the
additicnal advantage that it can be uséd for any isovector
excitation operator and for parent‘states which need not be of
closed subshells type. The same point of view was adopted by
Rowe and Ngo-Trong in the general context of their tensor
equations of motion techniques.

Qur paper is organized as follows: in section II we
pregsent the method to construct good isospin states, based on
the tensor coupling of an isovector excitation operator to the
parent isospin multiplet. As in Refs.3 and 4, ve gi#e critéii;Hu‘

to decide a priori which excited isospin multiplets exist in each
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case and show ﬁow to relate the reduced matfix'elements of an
isotensor operator between good isospin stétés fo its matrix
elemeﬁts between the doorway states, i.e., the states resulting
from the action of each component of the isovector excitation
operator on the parent state. We also present TDA-type equations
conserving isospin but effectively involving only the excitations
of the parent state.

As an illustration of the metﬁod, in section III, we
apply it to the study of the Gamow-Teller transition strength in

90Zr, taking for parent state not just the closed subshells

configuration but also the 2p-2h (11199/2)2(17291/2-1

II. THEORY

A. Construction of good isospin basis

In order to keep the discussion in the most general
terms possible, we shall assume about the parent state |P;Tb1b)
only that it has good isospin T0 = %—(N-Z) and, furthermore,

is a state with maximum alignment in isospin, that is,
T+iP;T0T0) = 0 ' (n

where T, is the isospin raising operator. By successive

applications of the isospin lowering operator T_ on the

2 s
) configuration.
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parent state, followéd by normalization, we can construct the
whole set of analog states IP;TOMTb} . WLth th.= TD,TO~1,... =Ty
which form the parent iscspin multiplet. We are interested in
the excited states resulting from an isovector excitation of
this multiplet, represented by a certain famiiy of excitation
operators 01m , with m. = +1, 0 and —f,'which form an isospin
T . U

standard tensor of rank 1.

The doorway states, o”;p;TOTo) . O D]P;TUTG) and
01”1]P;T01b) . are the main components of the excited states

of interest. However, they are not sutficient, in general, to

build states with good isospin. 1In fact, those are given by

[T M) =\z (U Tom, Bpom [TH O |BsT M) (2)
s
m

T

where (1T m_ M.-m_|TM.} are Clebsch-Gordon {C.G.) coefficients.
The iscspin T ©of the excited states can in general take the

values T = T0+T, T

depending on the structure of the parent state and/or the

0 and TO—T. It may, however, happen,

nature of the excitation considered, that, some of these
isospin values do not occur, in which case the corresponding
states defined in Eq. (2) are identical to zero. The eguation,

however, has general validity and can be inverted, by making
use of the orthonormality properties of the C.G. coefficients,

to give




o]m-|_p-_;T0MT Y = E (1 Tq By MT-|TMT +mT)IT.MT +_mT) . (3)
T g 0. T - 0 0 [¢]

Before proceeding, we write down, for future use,
the explicit Form of Egs. (2) and (3) for the states of interest.

These are:

[Ta#1,Ta+1) = Oy BTy T) & o : (4}
. ) T B
- 0 . - 1 ]
ITg+1. Ty = /T OBy s Ty=1 + qﬁololp'ToTo) '
{5)

T
= /_1_ , 1y - /S0
A TaTe) ,/:TO+1,°11jP'itho-‘> Y T+ OpolPiTyTy) +  (8)

Ty (3T,-T) ~
Y Ttergey C1alPiTere-2)
_ iT,
+ — . -
Y TEFTIaT,31) Ol PiTg. Tg-1)

1
+ — . .
C V/((T0+1)(2T0+]) O4lesTyTy -, - (7)

1

|Tg*1,2y-1)

.8.

Ty
Tge To=D = T (Tg*1) 041 1PiTy0 Tg=2)

T4~1 .
- — 010|P;‘1‘0,T0-—1>
#TO(TOH) :
1 o |P:T, T
T ¥1 i-1177%0 %0

0

and

= 1 + —
!T0“1,T0—1> = /'To(z—TOH'—)' 011|P,T0,.T0 2)
2T0—l ’ '
Y/ Egrargry CrolPiTe T

/2’1‘0—.1 : o
01_1|P;T0T0) .

¥ 2T0+1

for the excited basis states with good isospin,

c>”|1>;'r0 TO) |T0+1,‘1‘0+1) .

= I +1, 75 ; %o
VTt Tt T~ T+ ITg To?

©y0lPiTyTy)

angd

(9

{10)

(11)



.O P".I' T = /—-—-------——---— :'1 ; - s
1-11R3iTy Tg) (T 11 (2T +1) |To+1s Ty=1)

: ' /2T -
TV T ITgs Tg=1) + 2T, T |Tg=10 Tg=1> (12)

for the doorway states, and

Oy BTy Tg=1)

T, ; | -
T+l ITg*ts T T T 17T -

(13)
5 h P
P;T., - = —_— -
10[PiTgs Tg=1) Y TE 1 (2T 1) [T+t To-1)

T0-1 ! > 2T0"1 S
- ——=— T , T -1} -~ ———— T.~-1, T, -1 14
VTO(TO+1) 6" "0 ] T0(2T0+1) | o' o Y o (14)

and

T (2T,-1) o
Ol T T = mmirtar, ey Tt Ton

0

2T0T-1

/1
R~ S ]T,T—l) + — |T —1,'1‘—1) .
TO(T0+1) o' g _T0(2P0+1} 0 0

{(15)

for the remaining basis states. These equations show clearly
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that the doorway states do not, in general, have good isospin
and, in order to construct pure iscspin states, we need to
expand the set of basis states to include,” besides the doorway
states, the ;uxlllary states 011}P:T0,Tb—1) ,_0]0|P;Tb,1b—3}

0

and 011|P:T0.T -2). '

We want to establish now simple criteria to decide
which values of the isospin T of the excited multiplets do .
effectively occur in each pessible case. We note first of all
that, if the doorway state 01_]|P;Tbib) were zero, then all
the three excited iseospin multiplets would be zero, as follows
from Eg. {12}, if one remembérs thét theﬁﬁhreé states on the
right hand side of this eguation are orthogonal to each other.
This would imply that all the basis states given in Eqs. (10}
to {15), including the doorway states, would also be zero and
we would have no excited state of the kind at all, We shall,

therefore, assume that
01_1!P;TOTQ) # 0 . . _ .{16)

There are, then, three separate-casés tO'cansider(3h

rst ;
1—== case: T 01_1IP,TbTb) =0

+
It fellows immediately from this eguation that the

0
the two operators acting on the parent state in the above

doorway state 01_1|P:Tb1b) ‘has T = T, -1.. Furthermore, commting
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equation one sees that it is.equivaleht to
. o= 17
04015 Ty T, 0o ., : co (17)

where use has been made of Eq. (1). This in turn implies, through

Eg. {11), that the excited multiplets with T'=Tb+1 and T=T

are zero. Thus, the only possible isospin value is T‘=Tb—1

and the corfesponding state, constructed in the usual way as

0

indicated in Eq. (2), is given, from Eg. (12), by

. 27 +1
[Ty-1.T,= = / =2— o __Ip;T.T) (18)
o~ 1Ty 2T, -1 ©1-11Fi T T .

~ In the present case, therefore, the isovector
excitation can only reach states in the nuclide (N-1, Z+1),
where N and 2 are, gespectively, thé neutron and proton
numbers in the parent nuclide. The subspace of excited states
of the kind considered here is cne-dimensional, the state vectors
given in Egs. (10}, (11) and (13} are zeroc and those given in
Eés. (12), (14) and (15) form'an.overcomplete basis, being
related to each other as follows:
1

Ty

. Ip. N o : 1 o . :
Oyl BsTy  Ty=2) /———TOQTO_” O, qlPrzyTyy . (20)

om|p;T0,T0-1> 01_1|P;T0T0) _ t19)

and

12,

2

. d : . -
22S case: T, O, _4|Pi Ty T 50 and T O, [P T T) =0

+

The first condition is equivalent to

. (21)
Oyl P: TOTU) F 0 i _
The second one implies that the above state has T==T0 , and is
equivalent to
. p = 22)
O”|P, To'lo) o . {

This means, in view of Egq. (10), that _]T0+1, T0+1) is zero.
Conseguently the multiplet with T = T0+1 does not appear in

this case and the excitation cannot reach states in the nuclide
(B+1, 2-1), Since [T0+I, T0> must also be zero, Eg, (5) .
shows that there is the following linear dependence between

the basis vectors for the nuclide (N,3):

.- - - — _1 - |
0”|P,T0,T0 N = /;I,-E OlOIP,TOT‘)) . (23)
Furthermore, Eq. (11) gives directly

T.+1
. Lo 0 _ _
ITO T0> = TO O'IOIP' T0 TO) -, (24}

guaranteeing the occurrence of the multiplet with T==T0 in

view of Eg, (21). Making use, now, of the fact’ that the state
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vector ‘given in Eq. (7) is zero one gets

. . - -l... 4 . . e .
Oy1IPi Ty  Tg=2) = -~ 2Ty~ Oyl P Tgr Tg=1

1 : ' ' o '
= ErEmyy CralFi T Ty (25)

0

showing that the basis for the nuclide (N-—!,‘ 2+1) is overcomplete,
Since the meltiplet with T=T0 has been shcm_m__ to oceur in the
present case, the state |T0, TU-‘I) is necessarily non-zero and,
introducing Eq. (25} into Eg. (8}, one gets for it

‘I‘0+1 v TO-H

[Ty Tg-1> = _To— Omlp" Ty T0—1> - T 0,_,lp; Ty Tg? {26)
which, as it should, is the analog of the state {24). There
is, however, no guarantee that the multiplet of isospin To-l
will also occur. The condition for this to be the case is, as
¢an be seen in Bg. (12), that the projector onto the subspace
_of isospin T, -1 applied to 01_1|P; T, 'Po) gives a non-zero
state. This is equivalent, as can be seen from Egs. (11} and
(12), to saying that 01_1[P; T, T0> should not be merely the
anaiog-of O.‘OIP; T‘0 To) . Assuming that this supplementary
cc-mdition holds, [To-l, TO-I) will be non-zero and, introducing

Eq, (25) into Eg. (9) one gets

- J14. -
' ' 2T041 :
ITe=1r Tg=D = =/ ENCTSD O1olPs Tgr Tg~T
‘I'0+‘1 . 2TU+‘I . ] S e . .
+ T, "—2'1'0-1 O, IP_; Ty 1‘0) . | $27)

In summary we conclude that in the present case the

multiplet with T = T0+t does not occur, the excited multiplet

with T=T0 necessarily occurs and the one with T = T0-1 will

occur provided the above mentioned supplementary condition is satisfied.

rd . . 2 L ome
3= case: T, 0, |P:iT Ty #0 and " T1O |P: Ty Tyd #-0
The above conditions are equivalént to
OpplPs Ty Tg> # 0 P -1

and

0”|p,-'ro-r0) £ 0, _ - B &3:D)

meaning, together with (16}, that all three doorway states are
non-zero. Condition (29) guarantees, in view of Eq. {4, that.
the multiplet with T - T+t will_apg:ear i;a this case,.an'd.w;e
will ‘have an excited state.in the nuclide’ {N+1, Z-1) . Coming

to the nuclide (WN,2), the state -|T0+1,-TO) . given-in Eq.- {5},

is necessarily non-zero. -As in the previcus case ohe heeds an
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extra condition to guarantee the occurrence of the other multiplet.
Thus, state iT TO) will be non-zero only if the projection oE
O1OEP;'POT0) oneo the subspace of isospin T, is non-zero.
similarly to the previous case this is equivalent to the
statement that OIOIP 'rOTO) should not be merely the analog
of 0“|P,'POT0>. Finally, gettlng to the nuclide (N-1, Z+1),
the states |T0+1,T0—1) and  lT0’T0d1> are non—zero,esswﬂng
for the latter that the supplementary condition above is
satisfied. Again, to guarantee the occurrence of the T=Tg -1
multiplet one has to impose the same supplementary condition
as iﬁ\the gﬂg case. Now, however, -as can be seep from Egs. (10)
}to (12} tﬁie‘ﬁéane that 01*1|P;T01b) cannot be written-as
a linear combination of the analog of O]0|P; Ty Tﬂ) ‘and the
double-analog of O, 38 T, TO> . .
The above scheme for the determination of the non-
vanishing excited isospin multiplets resulting from a given
isovector excitation and parent etate, satisfying Eqs. (1) and

{16), is summarized in Table 1.

B. Norms and matrix elements

"The states we have been dealing with are not

necessarily normalized. Their norms, however, ¢an all be

wrltten in terms of those of the .three dcorway states, whose

squares we. shall denote by E(m } in the following, i.e.,

.16.
+
2 ; ; . 30)
Em ) = {(PiTyT, |o1mto1mTiP.T0T0> {

To see this, we start by noticing that the Wigner-
Eckart theorem assures us that we can write the following

expressions for the overlaps of the states defined in Eq. (2):

(e My | T MpD Ty . {31)

Sy O '

TT MTMT
We, then, hake use of this result to compute the norms of the
states defined in Egs. (10) te (12) and invert the resulting

equations to get, for the normalization constants,

n{Ty+1) = E(1} (32}
' Ty*1
n(TD) = - TE E{1) + T E{0) {(33)
and .
: : 2T +1 ZTOH
N{T,-1) = m—ram—r E(1) = s E(0)} + z— E(~1)
o Ty (2T, 1) T (2T -1) 2T T
(34}

Since the norm of any state of interest c¢an be written in terms
of the normalization constants n{T), they can also be written

in terms of E(mT).

We turn our attention now to the calculation of the

reduced matrix element of an isotensor operator W

, of
tmt

isospin rank t, between the parent and the good isospin basis

states defined in Eg. (2). Making use of standard procedures

of Racah algebra one gets



@l lle; T =

- . t4+9-1 -
= Y3TFT ); - VEORT WUIET, Ty 0T (Br ol (S x W) M T

{35)
where W(itTOTO,BT) is a Racah recoupling coefficient, 61m
T
is the tensor adjoint operator defined by
1+4m
= - T +
Om = =) o, L) (36)
T T
and the cross (x) indicates tensor coupling, i.e.,
By x W g * ) (tm. mg-m_|omg) D, o om - (37)
m k3 a Tt
T
One has, furtlermore,
& '1'01[.(01 x Wt)elp; Ty
2T +1
= T, 8T, O[T, T,T 0|T 7 Z - e m, m, |80) {p;T,T IO'Ithtm 12: Ty )
(38}

which, inserted into Eq. (35) leads to ﬁhe result

@liwe; 7

18,
= (=) / z P (‘tTo,tTo,m B Ty T, |o tht_|P;T0T0) o 139)
M
where

‘T+0+m_-T,

- _ 0
me- 1,7 m, ) .=;( ) /——(2T (307 .

_ : (t-m m [GG) _ o _
W(ltTOTO,OT) ?;fg;—EE;?rT (40)
0" 0 0

The above equat1ons are equivalent to .the analogous
ones obtained in Refs. (4) and (5)., In particular, the transfor-
mation coefficients defined in Eq.'{40)_are identical to the ones
introduced in Ref. (4). However, wé-give iﬁ the next section a
simple technique to obtain their numerical values without having
to perform the tedious calculations indicated in that eguation.

An important ﬁoint to ‘notice in Egs. {30) t& (34)
and (39) is that, even though the correct treatment of isospin
requires, in general, the extension of the basis to include,
besides the doorway states, the auxiliary states given in Egs.
(13) to (15}, all calculations (norms and matrix elements) can
be performed in a way that ihvolves only the parent . and the
doorway states. This is of great practical value because, in
a specific calculation in which the doorway states'inlevéd at
most n particle-n hole configurations, the auxiliary basis

states would invelve, in general, up to (n+2) particle—(n+2)
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hole configurations (cf. Egs. (13) to (15}), which} waere it not
for the peoint just mentioned, would considerably increase the
compuﬁational task. This point has already been made in Refs,.
{4} and (5) in the special case cf parent states with closed
subshells and excitation operators of particle-hole type. What
we have shown here is that this result depends only con the fact
that the parent state has good isospin and on the isotensor

nature of the excitation operator.

C. TDA egquations

In a TDA type calculation, the excited states of
interest can be reached through several excitation operators,

Orm (), which in general can have different isotensor ranks,
T

For imnstance, in a 1 particle -1 hole calculation, isovector
and isoscalar operators would appear. From the point of view of
isospin, the isoscalar case is trivial. On the other hand, other
isotensor ranks can be treated ;imilarly to the isovector case.
With these remarks in mind, we shall include explicitly,in the
following, isovector excitations only, since in our paper the
emphasis is on the technigue for constructing good isospin
states. However, this might be appropriate in a realistic
situation depending on the value of the final isospin.

We writg, then, for thé egcited basis with good

isospin

.20,
a; THY = Z(‘lTomTMT-mTITMT)OimT(G)]P; Ty ¥p-md . (41)
i
T
in analegy to Eg. (2). The rest of the preceding discussion

can be applied to each excitation separately.
In the Tamm-Dancoff approximation, the excited

states, labelled by n,
|n;TM9 = Z}Ha;nTHa;TMQ . . S (42}
i o

and the corresponding excitation energies E(nT) are determined
by diagonalizing the {isoscalar) nuclear hamiltonian H in the
subspace spanned by the excited basis given in Eg. (41}, that
is, by solving the TDA equation

Z {a;T|H|e" ;1> X{a'; nT} = E{nT) Z {@;Tja' ;T X{(a';nT)

o' ar

{43)

The summation over & should run only over the transitions which
can lead to the given isospin, T , according to thg discussion
of section A. We are as;uming that the excited baéis states are

orthogonal to the parent isospin multiplét and are not coupled

.to it by the nuclear hamiltonian.

The reduced matrix elements appearing above are in

turn given by



.21.

o 1+Td-T C
fitlla’sT = ) {asTfo, (et |psTy) =

_ - o ] + . '
vV2T+1 ZPT(!TO, 1Ty m ) {P; Ty To|°1mT(°" 01mT(a')lP, T, T0>
m
T

(44}
and

147 -T
@rrjale ;T = (=) @iTlio (e s T =

= . * -.. . l' + I -
V2T+1 z Prl1T4: ITO,mT)<P, TOTOEOImt(u} HO]mT(a.‘)lP, Ty T0> .
m‘I.'
{45)

where, in both cases, we have made use of Eqg. (39}).

As a byproduct we notice that, comparing Bg. (44)
for aza' with Egs. (32} to (34), one can read off the explicit
expressions for the transformation ceoefficients. Those are

listed in Table 2.

III. APPLICATION

As an illustration of our method we are going to

discuss the unperturbed Gamow-Teller transitions in 9OZr.

In an unperturbed calculation each many-particle

configuracion is an eéigenstate of the unperturbed Hamiltonian.

222,

Therefore; in this case, it is mééningful to,include'only those
configurations which cérry Gémow—Teller streﬁgth.

The Gamow-Teller transition operator transforms  as
a tensor of rank 1 both with respect to fotatiohs in position—-

spin as in isospin spaces, and is given by

1m0‘ A A . . . . P
N Y 2T € S U S S (469
T o 1
k=1
where &, (k) and’ Elm {k) are the standard spherical

I+ T
comporients of the Pauli spin-matrices and the isospin operators,

respectively, for the kEh nucleon, Alternatively, one has,

in second guantized form,

r

LMy 1 1 L
. . i 1. 5 s
6T, Z 8, o S g VIS FTIZ_FTT WG 18 35530 |ag % by
1 rs 'rs ' ~im
rs . . T
(47}

where the cross indicates, here, tensor coupling with respec£

to both position-spin (upper indices) and isospin (lower

indices). The operator
a: = a+ n L Sm ) (48)"
G Bty 1y
creates a neutron (q, = +%) or proton (g, = ?%) in state r

and b; is related to the destruction operator by
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. 1 .
bt T (_)'5+qs+-35+ms a
L R o ~9 g b Iy

so. that it have the transformation properties of a standard

tensor in position-spin and isospin spaces.

(49) -

it is clear from Eq. {47} that the appropriate set

of excitation operators for this problem is

Oimt(s-+r:1mo)

Tm .
CRCI

1mT
.which can also be written in the form
Tm 1m
() - Gt
s fvur T Uns
11
m ' im im
o - 2 [[et) ™ et
10 ‘/‘2— S . nxr s
and
Tm im
[a o)’ [a+ )
s) 14 mr Cvs

where we have explicitly performed the tensor coupling with

(50}

(51}

{52}

(531

respect to isospin. The operators labelled by m (protons) or

v (neutrons) appearing on the right hand side of these equations

are directly related to the ones defined in Egs. {48) and (49},

.24,

except that they are tenscrs in position-spin space only.
The experimental evidence indicates that the ground

state of 9°Zr is well represented by a linear combination of

the closed subshells configuration, |P;0> (Fig. la), and the

1,2 ;
)+ |P;2p-2h} (Fig. tb},

. : 2 -
2p-2h configuration (nlgg/z) (ﬂ2m/2
with comparable probabilitiess. Choosing the former as the

vacuum, the latter is given, with the correct normalization,by’

' 00 00
1 (. + + +
|P;2p-2h) = 5 [a ® a ] [b x b 2] | P;0)
2 U990 gy P12 "Ry, _

(541}

Of course, both configurations have am =0+ and T_=M_ =5,

0 T0

8ince this is an unperturbed calculation, we will cons}der
separately the acticon of the excitation operators on each one of
these two configurations, taken as parent states, and determine,
for each case, the possible isospin values according to the
discussion of Section II.A. We will also give explicit expressions
for the doorway states, ‘

For the transitions based on |P;0) the results of
this discussion are summarized ip Table 3 and we shall give no
further detail here, since in this case, our nethaiis equivalent

to the one of references 3 and 4(7). The non-zero doorway states

Tm m

t + 1M

are: 3, x by |P:0y , a+ x b?- U}P;® and
%2 Pan),, G2 Y972, _,

m

t + . .

Fg % bg |P: 0y . A pictorial representation of these
7/2 9/2 10
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states is shown in Fig. 2.’

For the transitions based on |P;2p-2h) , we notice
first of all that the relevant ones, i.e., those whose excitation
operators satisfy (16} , are: (&) Zp]/2 > Zp]/z;(llJ 199]2-1gg/2;
(111)2p3/2e 291/2; (1v)1gg/2-,!g7/2. We proceed to discuss each

one of them in detail.

i) Transition 291/2 - 291/2

It is easily seen from Fig. 1b that

Hn
e
[a* x bl ] |P;2p-2ny = 0 (55)

p p
172 1/2 10

since this J=1 excitation is possible neither for neutrons
(2p1/2 level is totally filled)} nor for protons (2p1/2 level is
empty). Therefore it belongs to the 1553 cage of Section II.A
and the only possible isospin multiplet is the one with

’ m

+
T = Tb—1 =4. The only non-zero doorway state is |a X b+ ° |B;2p-2ny ,
: - P p
1/2 1/2} 14

which is pictorially represented in Fig. 3a., Its norm, vE(-1) ,
can be directly computed from the above expression and that of
the good isospin state, +M(4}, can be obtained from Eq. (34).
‘The results are summarized in Table 4.
(ii) Transition ng/2 - lgg/2

Similarly to the previous case one has

-26.

. lmc ) e -
. al o [P:2p-3h) =0 , (561
L%y2 92 . :

since two protons in the same level cannot have J=1 . The

transition belongs to the 1ESt case and only the T=41 multiplet
- m
. t a
occurs. The only non-zero doorway state is la b b* |P;2p-2h) v

99/2- 992,
which is represented in Fig. 3b. | Its norm, which must be directly

computed, and that of the good isospin state, obtained from

Eq. (34}, are given in Table 4.

(iii) Transition 293/2 - Zpr

We notice, first of all, that,

‘ 1 | - S
() - B
al  xnp ] Ip;2p-20) = 0 (57)
Piz Bi),

since the 2p, . level is completely filled with meutrons

(Fig. b}, On the other -hard, 'the doorway state with mT= 0 is

different from zero, since the neutron transition is possible,

We are dealing therefore with-a-transition belo'ngj.ng''I'.::a'the'2-Ilg

case studied in Section II.A., - The supplementary condition is

satisfied, since the ‘doorway state with - m.o=-1 1is clearly seen

to be different from the analog of the one with mT='0. There-

fore, the iscspin multiplets are the ones with* T=T.,=% and

¢

Tm
o
T=Ty-1=4. The non-zero doorway states (a+ x Bl J | Pz2p-2hy
m ' Pz Fa),
and jal  x b |P;2p-2t) are shown in Figs. 3c and 3d, respec-
Piiz P, _
tively. &All norms of interest are given in Tablé 4.
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{iv) Transition 1‘5[9/2 -+ TgZQ

In this case the doorway sfate with‘ m_ =+1 1is non-
zero, since there are pfotbhs ih thé gg/2 level and no neutrons
in. tl';e 97/2- level {Fié._ll;). Thé transition beldngs, therefore,
.to the 355 case of Section II.A. The supplémentary conditions
are fulfilled, since: i) the doorway state with m_ =0 is
obviously different from the analog of the one with ‘m_=+1 and
ii} as can be easily seen, the doorway state with mT = -1 cannot
be written as a linear combination of the double analog of the
deorway state with m. = +1 and the analog cof the one with m_ =0.
As a consequence, the three isospin mul?}plets, i.e.{ those with
+ o

T=4,5 and 6, appear. The doorway states |a x b ¢ |P;2p-2hy
972 99s2)4,

1m

m .
u + o + Gl ,
a x b [P;2p-2t)  and . |a x b [P;2p-2) are shown

%772 99s2)40 %772 Y99s2)44
in Figs. 3e-3g. Norms are given in Table . 4.

To end this section we. discuss ;he computation of
the unperturbed_distribution_bf Gamow-Teller strength based on
each of the two parent_goqfiguxations in 90Zr.mentioned above.
Quite generally, the transition strength from the parent state

|P;Ty Ty} to the final state !f;TO,TbtmT), in the residual
nucleus,,isrdefined_as

. o o T o
B (E1T) = |<f.TfT0+mTI¥GT]mTEIP:TGTO>I , (58)

where the matrix element is reduced with.respect to angular -

.28,

momentum only. We are considering the case of a parent nucleus

wiﬁh angular momentum J g. Otherwise, for unpolarized

0"
targets, the above expression should be divided by ;J0+1. The

total transition strength is then given by

Su = ) Sa (M) . (59)
fr T '

It can be easily shown that it satisfies the following non-

" enerygy-weighted sum rule

Sy~ 8., = 3Nz . (60)

This is exact and should hold even in an approximate calculation

as long as the model space for the residual nucleus contains all

the doorway states as in the present case, More especifically,
it must contain the state resulting from the action of the Gamow-
Teller operator, Eq. {47), on the parent state. Since our
interest here iz merely to illustrate cur method we shall not
worry about the well~known problem of the quenching of the
Gamow-Teller strength. -

In an unperturbed calculation we take as final
states of the residual nucleus their good isospin states obtained
as diécussed in Section II.A. That is, we write for each

transition s-r
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1

— |s+r; T, T0+m1> ' . S (61}
¥nis+r;7T) ‘

1€: 1 TyHm ) =

where the state vector con the right is constructed as shown in

Eg. (41} and the factor in front of it takes care of normalizatien,

One gets, for the unperturbed transition strengths,

(0) Loy s 1 .
Sy sersT) = 8 8, 323 41023 +IWz 1L T
T r s r s

2
. (1?0mTTD-[T,TO+mT) nis+r; T) . (62)

The results of this calculation, taking the closed
subshells and the 2p-2h configurations in 902r as parent states,
are'lisﬁed in Tables 5 and 6, respectively. One can'check that
the sum-rule, Eg. (60), is satisfied in both cases. For a

" parent state of the general form
[P} = a|P;0y + biP;2p-2h) . (63)

the unperturbed transition strengths would be given by the

averages of the corresponding results for each of the two

parent-cenfigurations with weights ]_a|2 and fb!z

IV, SUMMARY AND CONCLUSIONS

We applied the method based on the tenser coupling

.30,

s . . N
of the excitation operators to the parent isospin multlplet( )

to the study of isovector excitations in N#2 nuclei., This
approach is completel? general, since no restriction is made on
the nature either of the parent state or of the excitation
operator. We have shown that this method applies even when sOme
of the possible excited isospin multiplets do not occur,  What -
happens in such cases is that some of thHe ‘states Om jP{TdM§6),
Eq. (3), are either linearly dependent or have zero norm. (See’
discussion of the 155t gng 2Rd cases-ih Section II.A). Héwever, '
the good isospin states are correctly given by Eg. (2) ifr all’
cases. We give general criteria, which dépend only on the
properties of the doorway states withl respéct to isospin, that
make it possible to decide, 'in each specific case, which excited
isospin multiplets will effectively appeat; We' alsc show how o

express the relevant matrix elemehts .of:operators df physical

interest in terms of excitations of thé parent: state only,:and::

give explicit expressions for the gecmetrical coefficients

needed for the computation of these matrix elements,

Other methods for the treatment of isovector
excitations, which adopt a different point of view, have already
(3,43

appeared in the literature However, they can be used only

for parent states with closed subshells and excitation operators
of particle-hole type, in which case the results are identical
(7

to ours . Nonetheless, despite the general character of our

method, we find it conceptually more transparent and computationally
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simpler to use.
In the interest of clarity, we limited our considerations

here to isovector excitations, However, the ‘treatment of the
isospin.degree of freedom for iscscalar excitations is trivial,
as is clear from our. discussicn. - Therefore, excitations which
are a mixture of isovector and isoscalar components would present
no problem toc the application of our method. It is also clear
how.to generalize it to include isotensor excitations of higher
order, which would be of releyance, for instance, to the study
of A-hole excitations{3)._

~ As a simple illqstration of the power of our method
we gpplieq it_to the discussion of the Gamow-Teller transition
90Zr

strength in ¢ including in the parent state a configuration

which is not of the closed subshells type.

This paper- is based on.a master thesis submitted by

DPM-to, the University. of 330 Paulo in 1986,
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""FIGURE CAPTIONS

Fig. 1‘— Configurations for the ground of 902r . Particles are
represented by crosses (x) and holes by open circles
(o). A bar connecting two particles or two holes
indicates that the pair is coupled to J =0 . Fof
each such pair a normalization factor equal to 1/4/2

is understood.

Fig, 2 - Doérway states for {he Gamow-Teller and related
transitions based on the closéd subshells parent
configuration, |P;0$. The single particle levels are
the same as those of Fig., 1. Each figure corresponds
to-a state written down in second guantized ﬁorm with
particle and hole creation operators appearing in the
same order as the corresponding crosses and open circles
are read from the figure, i.e., from left to right and

from top to bottom,

Fig. 3 - Doorway states for the Gamow-Teller and related
transitions based on the 2 particle-2 hole parent
configuration }P; 2p~2h). The single particle levels

and conventions are the same as those of Figs. 1

and 2.
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is the parent state.

|2
Existing
excited
igospin
multiplets

T0-1

To

T0+1

To

T0-1

Equivalent
conditions
omlp) = 0
Ol # 0
0,lB =0
0,i® # 0
OpqIB) #0

0

cases 01_1|P> # 0, where

Defining
conditions

T,OpIP =0
T+01_1|P> #0

T+01—1|P> #0
2o, [P £ 0
y 01

2
T,0141®

Case
1rst
3rd

Table t - Scheme for determination of existing excited isospin multiplets.




Table 2 -

Table 3 - Classification of Gamow-Teller transitions in

90

ir

- based on |P:0) according to isospin structure following

the discussion of Section II.A.

Alsc tabulated are

the squared norms of the doorway states, E(mT) , and

of the good isospin states, n{T).

" vValues of £m)

Values of n{T)

values of the transformation coefficients
PT(1T0:1T0:mT}.
m
T
+1 0 -1
T
T +1. 1 0 0
. o T, +1 .
0 To To
. 1 2T0+1 2T0+1
0 TO(ZI‘O—]) TO-(2T0-1 ) 2'1‘0—1

Transition m T Case
il +1 4 5 6

11 rst

113_9/2 -+ 1g9/2 1 0 0 5 0 o] 1—

1 11 3 nd

972 = 1972 ! 2 0 T0 5 0 =




Table 4 - Classification of Gamow~Teller transitions in 902: . } -
based on |P; 2p~2h) according to isospin structure Table 5 = Unperturbed distribution of strength for Gamow-Teller
following the discussion of Section II.A. Alsc and related transitions starting from |P;0) configu-
: 90 .
tabulated are the sguared norms of the doorway states, . ration of ir .,
E(m,t) ; and of the good isospin states, n(T) .
- : Transition Sr(nO) (s> ; T}
T . T
Values of £(m ) Values of n{T) (s+r) '
L : m. o= -1 om=0 m_o= 41
Transition mT T Case . I T X
-1 0 +1 4 5 - 6 ' 55
9s2 > 19902 4 5 B }
20, + 20y 59 1 0 0 1—91 0 0 st
‘ 1990 > 19972 4 8 - ~
4 44 rst 8 40
199/2 - ‘Igg/2 3 0 0 i 0 0 1 5 3 5 -
1 11 nd :
2 - 2 1 = 1] oy = [¢] 2—
a2 7 “Pip 2 o 5 Total strength 15 2 0
3 1 27 17 1 rd
99,2~ 199, ! 5 5 25 25 5 =




Table 6 — Unpertur,bed distribution of. strength for Gamow-Teller
and related transitions starting from |P; 2p-2n)

configuration of 9021- . -
T C e (0)
ransition Sm (s=+x;:T)
T T .
{s+1r) : :
mT=-1 mT=0 mT=+T
2 - 2 4 Lk - -
Pis2 P12 3
44 :
Y990 * Y9 || 4 kR N -
. ' } 12
Py Wy |4 5 - -
> E 3 -
432
V99,2 = 199, 4 55 - -
5 136 1386 _
135° 27
5 & 8 i16
. 297 27 9
) 151 20 .16
T_otal strength 5 -3 5
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