UNIVERSIDADE DE SÃO PAULO # PUBLICAÇÕES INSTITUTO DE FÍSICA CAIXA POSTAL 20516 O1498 - SÃO PAULO - SP BRASIL IFUSP/P-666 STATISTICAL DECAY OF THE E1 GIANT RESONANCE N. Teruya, H. Dias and E. Wolynec Instituto de Física, Universidade de São Paulo # ABSTRACT Available experimental data on neutron decay spectra from the El giant resonances in ²⁰⁸pb and ²⁰⁹Bi are compared with the predicted spectra for statistical decay. The calculations are performed using the Hauser-Feshback formalism with the experimental levels of the residual nuclei. The particle-vibrator model is used to assign spins and parities to experimental levels when those are unknow and also to predict the levels where there is not enough experimental information. # Introduction In previous work (1,2) it has been shown that neutron spectra from a statistical decay of Giant Resonances cannot be represented by the widely used expression. $$N(E_n) \propto E_n \exp(-E_n/T)$$ (1) Barrier Control Control where E is the neutron energy and T the nuclear temperature, because the approximations necessary to obtain this expression are too unrealistic. A Hauser-Feshbach calculation using experimental levels of the residual nucleus is the correct approach. It has also been shown that the use of a level density is inadequate to reproduce the observed nuclear level density, with its variety of spins and parities and that when the experimental levels are not completely known from experiment, or spins and parities are not assigned, it is more reliable to use a nuclear model which reproduces well the known levels. A discussion was carried out in ref. 2) about the influence of different parametrizations of the optical potencial needed to evaluate the transmission coefficients. It was shown that different parametrizations, based on fitting of experimental data, yield nearly undistinguishable results and that the global optical potencial of Rappaport et al. (3) is adequate. It has been shown $^{(2)}$ that the decay of the E0 giant resonance in $^{208}{\rm Pb}$ is dominantly statistical, because the observed neutron decay spectrum is in excellent agreement with the spectrum predicted. This result was already predicted by de Haro et al. (4,5) performing continuum RPA calculations both in a lp-lh and 2p-2h basis. The lp-lh gave a width of 100 keV for the E0 GR corresponding to a direct decay branch of less than 5 percent, which is in agreement with the present analysis, since such small decay branch cannot be excluded. The inclusion of 2p-2h configurations in the calculations leads to a width of about 2.6 MeV, in good agreement with the experimental value (6) of 2,6 ± 0.3 MeV. In the case of the isovector El dipole giant resonance the lp-lh continuum RPA calculation of de Haro et al. (5) gives a width of 1.2 MeV. Since the experimental (7) width for the El giant resonance in 208 pb is 4 MeV, direct decay should be important. In this paper we analyse the available experimental data for the El giant resonance in $^{208}{\rm Pb}^{(8,9)}$ and $^{209}{\rm Bi}^{(10)}$. # II. Statistical Decay The Hauser-Feshback formalism $^{(11,12)}$ assumes that the nucleus is excited at an energy $\mathbf{E}_{\mathbf{x}}$ by some process. The energy $\mathbf{E}_{\mathbf{x}}$ is then thermalized and subsequently dissipated through particle emission. The partial cross sections σ_{i} ; for the various decay channels are governed by penetrabilities. When the only relevant channel is the emission of one neutron, the partial cross sections are: $$\sigma_{\underline{i}}(E_{\underline{x}},U_{\underline{i}}) = \frac{\sigma_{\underline{f}}(E_{\underline{x}}) \sum_{\underline{s}\underline{1}} T_{\underline{s}\underline{1}}^{\underline{i}}(E_{\underline{n}_{\underline{i}}})}{T^{\underline{k}}(E_{\underline{n}_{\underline{k}}})}$$ $$(2)$$ where $\mathcal{C}_{\mathbf{f}}(\mathbf{E}_{\mathbf{x}})$ is the formation cross section that excites the nucleus to the energy $\mathbf{E}_{\mathbf{x}}$; $\mathbf{T}_{\mathbf{st}}(\mathbf{E}_{\mathbf{n_i}})$ is the transmission coefficient for the ith decay, emitting a neutron of energy $\mathbf{E}_{\mathbf{n_i}}$ and leaving the residual nucleus at the excitation energy $\mathbf{U}_{\mathbf{i}}$; $\mathbf{E}_{\mathbf{n_i}} = \mathbf{E}_{\mathbf{x}} - \mathbf{E}_{\mathbf{t}} - \mathbf{U}_{\mathbf{i}}$; $\mathbf{E}_{\mathbf{t}}$ is the threshold energy for neutron emission; s and 1 are spin and angular momentum of the ejected particle; and k is the number of accessible levels in the residual nucleus. # a) 208_{Pb} A high resolution spectra for the decay of the El giant resonance is shown in ref. 8). The measurement was performed with tagged photons of energy 10.6 MeV. The result is presented in the form of a time of flight spectrum, but it is easy to convert it into a neutron energy spectrum, because the times corresponding to the energies of neutrons decaying to ground and first two excited states are given. At the excitation energy of 10.6 MeV in $^{208}{\rm Pb}$ we have also the isoscalar E2 giant resonance. However, real photons excite very weakly this mode. At 10.6 MeV photon energy the photonuclear cross section in this nucleus is ~ 225 mb $^{(8)}$, while the E2 peak cross section, assuming it has a width of 3 MeV and exhausts one energy weighted sum rule, would have 7 mb. Thus, we can assume that the decay spectra refers purely to the decay of the El giant resonance. For $E_x=10.6$ MeV in $^{208}{\rm Pb}$, the maximum excitation energy allowed in $^{207}{\rm Pb}$ is 3.2 MeV. Up to this excitation energy all levels have been measured and their spins and parities assigned $^{(13)}$. Thus it is straightforward to calculate the expected statistical decay using Eq. (2). The transmission coefficients were evaluated using the global optical potential of Rappaport et al. $^{(3)}$ Fig. 1 shows the experimental data from ref. 8) (data points) along with the result of our calculation, performed assuming a resolution of Γ = 350 keV for neutron detection, representing each neutron line by a Gaussian with 350 keV FWHM. The agreement between measured and calculated spectrum is excellent, leading to the conclusion that the decay is dominantly statistical. For 208 Pb there is also an older measurement performed using photons of energy E $_{\gamma}$ = 13.27 MeV $^{(9)}$. For this excitation energy the maximum allowed energy in 207 Pb is 5.87 MeV. The experimental levels are given in ref. 13), but there are many levels without spins and/or parities assigned. In order to assign spins and parities to these levels we have used the particle-vibrator model as described in detail in ref. 2). Fig. 2 shows the data points from ref. 9) and the result of our calculations. The calculated spectrum is normalized to the integrated number of experimental counts. The measured spectrum seems to have a problem with the energy scale because the peaks do not coincide with the position of low lying states in 207Pb. In Fig. 3 the same calculated spectrum of Fig. 2 is shown, but it is shifted by 0.3 MeV. Now the peaks of the experimental spectrum are in better agreement with the position of the calculated peaks corresponding to low lying states. Since the neutron energies of the experimental spectrum are obtained by time of fligth, it is not correct to make a linear displacement of the energy scale, because the relationship between measured time of fligth and neutron energy is not linear. This displacement was carried out just to ilustrate the problem. This casts doubts about the accuracy of the experimental result. Assuming that the efficiency for neutron detection is correct and that there is only a problem with the energy scale, we would conclude that there is indication of non statistical decay, at this excitation energy, for the El giant resonance. It could be that at lower excitation energy, such as in the data of Fig. 1, the decay is dominantly statistical and as the excitation energy increases some direct decay occurs. Neverthless, it should be remarked that for the E0 giant resonance in this nucleus the decay is dominantly statistical at this higher excitation energy (~ 13.5 MeV). It would be interesting to have experimental data for decay of the El giant resonance in 208 Pb with the accuracy of that shown in Fig. 1, but at higher excitation energies. de . # b) ²⁰⁹Bi For this nucleus the experimental data is from ref. 10), which shows the neutron decay spectrum obtained with photons of incident energy 13.85 MeV. Since the ground state of Bi is (9/2), the El state can have angular momentum and parity, $J_{E1}^{\pi} = (7/2)^{+}$, $(9/2)^{+}$ and $(11/2)^{+}$. The threshold for neutron emission in this nucleus is $E_{\perp} = 7.43$ MeV, thus 208 Bi can be left at excitation energies in the range 0 - 6.42 MeV. Up to 4 MeV excitation energy in ²⁰⁸Bi there are 118 levels (14,15), from which 56 have unknown spins and parities. Above 4 MeV there are few levels measured and we have to use a model to predict them, as well to assign spins and parities to the 56 levels bellow 4 MeV. We have used the particle-vibrator model with single particle (hole) shown in Fig. 4. The vibrator states (R, E_p) from ²⁰⁸Pb were coupled to particle and hole states $(\overset{\downarrow}{\mathtt{J}}_{\mathtt{p}},~\mathtt{E}_{\mathtt{p}})$ and $(\overset{\downarrow}{\mathtt{j}}_{\mathtt{n}},~\mathtt{E}_{\mathtt{n}})$, respectively, to generate states $(\overset{\downarrow}{\mathtt{I}}_{\mathtt{i}},^{\prime},~\mathtt{E}_{\mathtt{i}})$ in 208_{Bi:} $$\vec{I}_i = \vec{j}_p + \vec{j}_n + \vec{R}$$ With $$E_i = E_p + E_n + E_R \le 6.4 \text{ MeV}$$ For $E_{\hat{i}}$ < 4 MeV we have coupled the states j_p and j_n shown in Fig. 4 to the vibrator state $(\vec{R}=0^+,\vec{E}_R=0.0$ MeV) and obtained good agreement with experimental energy levels. Table I compares the distribution of measured energy levels to those obtained in our calculation. For $E_1>4$ MeV we have coupled the states shown in Fig. 4 to vibrator states $(\vec{R}=0^+,E_R=0.0$ MeV) and $(\vec{R}=3^-,E_R=2.614$ MeV). The resulting level distribution is shown in Table II. In this case we cannot compare the results of our calculation with experimental data, because there are very few levels measured. However the agreement obtained for $E_1\leqslant 4$ MeV yields some confidence for the energy above. Using the known experimental levels plus the levels predicted by our particle-vibrator calculation we have calculated statistical decay spectra for the three possible values of J_{E1}^{π} . As shown in Fig. 5 the differences in the spectra corresponding to $J_{E1}^{\pi} = (7/2)^+$, $(9/2)^+$ and $(11/2)^+$ are smaller than the uncertainties of the data points (see Fig. 6). Thus in order to compare the results of our calculation with the experimental spectrum we will assume $J_{E1}^{\pi} = (7/2)^+$. Fig. 6 shows the predicted statistical decay spectrum for an energy resolution of 800 keV and the experimental results of ref. 10). The calculated spectrum was normalized to the experiment by imposing the same number of integrated counts from ${\rm E}_{\rm n}$ = 1.75 MeV to the end of the spectrum. The agreement between the calculated and measured spectrum is poor, thus it is not possible to drive conclusions about the statistical nature of the decay and/or the existence of direct components. It is surprizing that the calculation predicts a broad peak around ${\rm E}_{\rm n}$ = 4.5 MeV, which is not observed in the experimental data. Since this peak corresponds to excitation energies around 2 MeV in the residual nucleus, where the energy levels are well known from experiment $^{(14,15)}$, the discrepancy cannot be attributed to an eventual inadequacy of our particle-vibrator calculation to predict the energy levels, spins and parities. The discrepancy between the experimental point at $\mathbf{E}_{\mathbf{n}}=1.75$ MeV and the calculation is not important, since the neutron detection efficiency drops fast at this energy $^{(10)}$ and it is possible that the uncertainty of this point is much larger than the statistical error. Undoubtly the reliability of our calculation is smaller for 209 Bi, as compared to 208 Pb, due to the lack of detailled measurements of energy levels in 208 Bi above 4 MeV. Eventhough we find no explanation for discrepancy between measured and calculated spectrum around $E_n=4$ MeV. Eventually this discrepancy could be caused by an uncertainty in the efficiency of neutron detection as a function of neutron energy. ### Conclusions We have compared existing experimental data on the decay of giant El resonance with calculated spectra for statistical decay. Using more recent data for 208 Pb at an excitation energy of 10.6 MeV we show that the decay of the El giant resonance is dominantly statistical. There is an excellent agreement between measured and calculated spectra. However for ²⁰⁸Pb at a higher excitation energy (13.27 MeV) and also for ²⁰⁹Bi the agreement between measured and calculated spectra is poor. There are evidences of uncertainties in the experimental data, which was taken nearly 20 years ago, which prevent a definite conclusion. These data could be indicating that the decay is statistical at lower excitation energies and as the energy increases direct decay occurs. However the E0 giant resonance decay is dominantly statistical at an excitation energy of ~ 13.5 MeV. More experimental data, with the accuracy of that shown in Fig. 1 are needed to exploit the possibility of the onset of direct decay of the El giant resonance at excitation energies around 13.5 MeV. # Acknowledgements The author acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo, Financiadora de Estudos e Projetos e Conselho Nacional do Desenvolvimento Científico e Tecnológico. # Figure Captions - Fig. 1 Experimental neutron decay spectrum for ²⁰⁸Pb ⁽⁸⁾. The predicted spectrum for statistical decay. - Fig. 2 = Experimental neutron decay spectrum for ²⁰⁸Pb⁽⁹⁾. The curve is the predicted spectrum for statistical decay. - Fig. 3 The same calculated spectrum shown in Fig. 2 with the calculated points shifted in energy by 0.3 MeV (see text). - Fig. 4 Experimental single particle spacings in MeV in the lead region $^{(16)}$ used for the particle-vibrador model. - Fig. 5 Calculated statistical decay neutron spectra for 209 Bi assuming $J_{R1}^{\pi} = (7/2)^{+}$, $(9/2)^{+}$ and $(11/2)^{+}$. - Fig. 6 Experimental neutron decay spectrum for ²⁰⁹Bi⁽¹⁰⁾. The curve is the calculated spectrum for statistical decay. The experimental | Energy
range
(MeV) | Number | Energy Number of levels range (MeV) | Numb
Wit | er of | Number of levels
With SPIN < 4 | Numbe | r of lev
SPIN, | Number of levels with
SPIN > 4 | Number of
experimental
levels without | Distrik
With po
parity | butior | Distribution of levels
with positive/negative
parity | vels | |--------------------------|--------|-------------------------------------|-------------|-------|-----------------------------------|-------|-------------------|-----------------------------------|---|------------------------------|--------|--|------| | | _ | | | | | | | | spin assignement | Positive | ive | Negative | ive | | | Exp. | H | Exp. | | T T-Exp. | Exp. | Ħ | T-Exp. | | Exp. | EH | Exp. | Ħ | | 0,0-1,0 | π | 14 | m | 7 | , t | .80 | 10 | 2 | 0 | .11 | 14 | .0 | 0 | | 1,0-2,0 | 30 | 22 | 7 | 7. | | 15 | 15 | 0 | 60 | . m | 10 | 13 | 12 | | 2,0-3,0 | 30 | 28 | | 9 | 7 | on | 22 | 13 | 14 | 12 | 10 | 4 | 18 | | 3,0-4,0 | 47 | 85 | 7 | 27 | 20 | 9 | 31 | 25 | 34 | G) | 50 | 4 | 8 | | TOTAL | 118 | 122 | 24 | 44 | 20 | 38 | 78 | 40 | 95 | 41 | 84 | 21 | 38 | | | - | | | | | | | | | | | | | Table II - Number of states obtained for ²⁰⁹Bi from a particlevibrator calculation by coupling the particle hole states to the states 0⁺ and 3⁻ of the ²⁰⁸Pb core. | Energy range (MeV) | Numbe | r of states | |--------------------|----------------------|-------------| | | p-h x 0 ⁺ | p-h x 3 | | 4,0 - 5,0 | 26 | 213 | | 5,0 6,0 | 24 | 231 | | TOTAL | 50 | 444 | # References - 1) H. Dias and E. Wolynec, Phys. Rev. C30, 1164 (1984). - 2) H. Dias, N. Teruya and E. Wolynec, Phys. Rev. C33, 1955 (1986). - 3) J. Rappaport, V. Kulkarni, and R.W. Finlay, Nucl. Phys. A330, 15 (1979). - 4) R. de Haro, S. Krewald and J. Speth, Nucl. Phys. <u>A388</u>, 265 (1982). - 5) R. de Haro, Ph.D. thesis, University of Bonn (1982) unpublished. - 6) H.P. Morsch, P. Decowski, M. Rogge, P. Turek, L. Zemlo, S.A. Martin, G.P.A. Berg, W. Hurliman, J. Meissburger and J.G.M. Romer, Phys. Rev. C28, 169 (1983). - 7) B.L. Berman and S.C. Fultz, Rev. Mod. Phys. 47, 713 (1975). - 8) Z.W. Bell, L.S. Cardman, and P. Axel, Phys. Rev. <u>C25</u>, 791 (1982). - 9) J.R. Calarco, Ph.D. Thesis University of Illinois (1969) and S.S. Hanna in Giant Multipole Resonances Topical Conference, Oak Ridge, 1980, edited by F.E. Bertrand (Harwood, New York, 1980). - 10) F.T. Kuchnir, P. Axel, L. Crigee, D.M. Drake, A.O. Hanson and D.C. Sutton, Phys. Rev. 161, 1236 (1967). - 11) H. Feshback, Nuclear Spectroscopy, Part B, edited by F. Ajzenberg-Selove (Academic, New York, 1960). - 12) E. Vogt, Adv. Nucl. Phys. 1, 261 (1968). - 13) M.R. Schmorak, Nucl. Data Sheets 43, 383 (1984). - 14) Table of Isotopes, 7th edition, ed. by C.M. Lederer and V.S. Shyrley, John Wiley & Sons, Inc. - 15) M.J. Spisak and W.W. Dachnick, Phys. Rev. C29, 2088 (1984). - 16) P.D. Barnes, E.R. Flynn, G.J. Igo and D.D. Armstrong, Phys. Rev. <u>C1</u>, 228 (1970). transperse grand productive tradem and contract are referred to the first of the contract of the contract of t The contract of and the first of the state The state of Russ feelest area of a fee with a a filt or a color of the color of a o esto diparente la Cultura porte en la companya de co (III) pri produce ja drago jednetom programa je produce je prijednosti. **PROTONS NEUTRONS** 3P_{3/2} . 21_{5/2} . 2f7/2 F16 4