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ABgTRACT;

A 'nuﬁeri@aL o test is  made of . the Gauesian

approximation to the Fokker-Planck equation for a

Hamiltonian with" two dégrees of freedom and potentials and

Frittioﬁ.coefficients appropriate for" the description of the-

deep. inalastic’ .coltisicn - of the system ®OoR 4+ 23T/ 4%

E.lab Qi_273 Meﬁ. The exact sblution is coanstructed with tne

-Langevfﬁ‘s~§imq{atioﬁ_ methad. . The failure of the gaussian

approximation. ig discussed and exhibit separately its
éounces from (i) diffusion coefficients, the linear;zatiun

(ii) of -the pnténtials and (iii) of the friction forces.

* Partiatty supparted by FAPESP,
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. T. INTRODUCTION

The Fokker-Planek eauafion'has been shown ‘to be-

_}ELEOaﬂt for * tha description -of fluctqétions iﬁ,héavf ien

tollisions. Solutiens to it. by | conveﬁtipnél numerical

methods are “limited to phase spaces of.dimeﬁSipns smalier

than four, which obliges restricted .use _for- heavy ion

‘collisions whare ‘much larger . dimensioned phase soaces are

tequired [1,27, Qpproximatg solutions for many degréeé of -

freedom can be obfainéd by~ assuming- tha Fokker-Planck

eqhation as linear in the phase space coordinates. In_this

case, thé solution is well known to be a Gaussian

distribution with cgnveniant ordinary differential equastions

}ur the first and setdnd ﬁameﬁ{§ [31. This oroperty has

been endowad with slight modifications, to heavy ion-

collisiens to obtain a description of ~the fluctustions of
tHe'collective variab[és involéed [4-81.

A connection between Léngevin‘s and Fokke}fPlanck

eguations has been well described bQ Chandrasekhar [7]. Mare

‘recently Langevin’s simuiation has been wused in Lattice

@.C.0. calculations ([B) in which the time wvariable is '

fictitious. The aim is to reach, by convenient "viscous"
field, the static equilibrium which is the correct
probability distribution requirea " by ‘guantum field

theory [93.

The use of Langevin‘s egquations in heavv ion

cotlisions is more direct and simpler. Here the Langevin _
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time is the actual time and since one expects that the
reaction takes place in a time smaller than or of the orcer

of 5 x 10-22 s, the interest Llies in the transient phenomena

predicted.by the theory. The first application of
Langevin's simulation to D.I.C. has been done by Barbosa
Etral. [101 far calcutating both the angutér momentum
transfar and its  fluctuation in the t4sHo collision
uith 17;9b “and 1“‘56 at 1500 MeM and the reaction
sslp + 15‘56 at B30 Méu. Later, the methed was applied.

indebendentty by Hbe et- a3l. {111 to the fission decawv of

S Iﬁ this péﬁer we. caLcuLﬁte and compare ﬁif(erent
muﬁeﬁ;g.:nf the disiributisn. in gphase -"space és: (13}
Dredicfea by the GBaussian épproximaticn to the Fokker-

PLanck équatiuhr as pfﬁpnsed by Feldmeier anq Soangenberger
ESi_and (ii) predicted by Jthe  Lanéevin’ﬁ equation. We
represén& D.I}C;. by tHe gimbte.fuur dimensional phase space
model of Gross and Kalinowski {12]. In section 2 we
describe fhe detaits.of“'the th approzches. In section 3
Eﬁé resﬁLtQ .are coﬁpared énd‘ the main c¢aonclusions are

drawn.

. eg. is based on the following resuit.

2. THE PROBLER

Given Hamilton's function Hi{p,q) for the
collective degrees of freedom 1involved in D.IJC., tHe
Fokker-Planck eguation deécribing the distribution in phase -
space is:

af 3 oy, o 3 (oM f

A e 2R - ST ¢ () = D €13
at api 1 aqi 99 P 1J‘3Piap1
where F_i is the friction force and Di. the diffusion tensar,

The corresponding Langevin's equations are:

oy
(2}
p; = - % FF o+ g
wherg 21 are random white noises satisfying
<£i> =0
and
<23(t)e;(t") = 2D, o(t-t") (3).

The gaussian approximation ta the Fokker-Ptanck

Lat Wy stands for

aither p or g fw, = F. and Q

i i ned = 84 i=%....n) and let us

assume that the fokker-Planck - equation takes the following

Linear form:



z =y 27f. ' Ca
ot Ryglog - B)) = D e (a)

where

)

o’ st and Dgg are functions of time ontiv .Enﬁ
w, =d mafdt. Gne may prove by substitution that the abﬁ@e
equation haé a fundamental solution in the form aof a

gaussian distribytion [31].

f Nexpl- ?~ (m - m }(m - a ) . ’ 5y

B

wlth

oo det(oa )1"[2

and .

.2 2
Tag = AqTUTB By va ¥ “Yap

Therefare, the gaussian approximation to equétion
. {1) is obtained by expanding its coefficients up ‘te linear
térms in the netghborhood of the classical oerbit.. Thus we

obtain

3 34
A1J = [g—n(F- - )]cﬂ

3H
Aineg = EF__(F A )]
a R
Anvi,g = (ap F“)cﬂ (7
An+i,n+J = (an Bq )c£

+ A, 62 2D : (67

whare the Lleft hand side is calculated on _the  classical
orbit. PHAlso we must have
i3 i L e

From now on we —consider the specific model given

by

cEegew e

_where Lr,B) -3fé'_the  potar coordznates' descrlblng the

'reLatxve mot1on of the two ions, p and t are’ thexr canon:cal

conjugate momenta and U(r) the nuclear plus.:Epulomb_
potentist. ~ As our’ system e cons1der ﬁhg aofpr+232Th

collision at E]ab = 279 MeV ubserved bv Wchzvnski [131 and

analysed by BGross and Kalinowski T121 with a similar model.

We take the point :Hamge approximation for the Coulomb

ootential znd for the nuclear intsraction we assume (V{r) dn
MeV): | ,

. Imzéumiha ";;1%-

v(r) ' |

(10)
-3.29£2 + 26.013f - 54.10 £ < 3.05

Swith £ = (r-C,-C)/b with b = 1 fm, a = 0.903 and C,, C- the

half density nuciear radius.




We further assume the. friction force to be linear

in the.velocities:

G . {11
Fi= rij aH/apJ

and Einstein’s relation
D.,. =TT : ' : L2

where T is fha température of the svstem. We also assume
friction coefficients to be diagonal, with the tangentiat
. equat ta 14400 times the radial coefficient as used in ref.

{12]. . The radial dependence _of T(r) is of the form:

exp(~£/ay £ > 275

~1i8

1.831 x 10
j- raps = o o . 1)

8.006 x 1072 - 2,572 x 1077 'g, £ < 2.75

with a; = 0.363 and T given in units of MeV.s.fm-7. With

' suéh 2 model we are ahle to describe the orbiting phenomana
obéaryed_in this reaction, with a grazing angular momentum,

Zgl’ ) cr

using‘furm facters for both thEr potential and friction

coefficient different from reference {121 is te favor the

géussian‘approximation. We .observe that our foerm factors

give a Llimear nuclear force and friction coefficient over

most of the syrface region.

220 %, and a critical one, £ . = 80 4. The resson fae

[<-]

Making use pf equations (11) and (12) into
équatiuns {7) and (B) and changing to a_seLf—expLained ‘index -
notation, we arrive at the explicit equations for. thg

gaussian approximation:
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L RTRRS T S p'F?-'Upr' .

.Eaussiaﬁrépprokimation, eql (14)

‘Qquatich; (25 for the knﬁ ¥ FazTh system

@iJ' 36 180 ﬁ (near £ 7 and £ -30

ions_are'"22}75_fm 

”and GBB

the gaussxan

. Laanv1n s 51muLat10n _ﬁaé

Y

3. COMPARISODN GF.THE_ REEULTE

We ca{chated the flrst and second m h

MéU.dging' two va{ues _for Ehe- ‘n'tlal

gr
Langev1n s szmulat1on p f.

1n1t1at vaiue .nF the 4h;_

urblts are str1ctl}1C 
£=o'and‘xmg;;qred51t

500:10““35

scate on.

and Langev_n S e

due ‘to the f1n1te
:équivalenj to - a
CDPf.lC;Eﬁtg ;§f _g_;;f
ché“acteristic?.

A= 0 2x10“;'5 and

orbits we get 1%7°af ecror from-this

'qo;tx;;on tlme

Fourcg,_. The’ second ”ug;Qo:%ﬁ 'gjzerdf
-Eﬁe SBmDLE’:uSéd: For {héﬂ*1§00:§rbits-jwe chsidéFed we
expect errors dF.S%. *fhéﬁeféfefgtheydiscﬁepannies between




the two estimatives of U.. exhibited in Figure 1 may be due
entirely to the Langevin's simulation. We notice that the

agreement far- Oyg Was such that in figure | the two curves

coincide. Simitar resutts were observed for other moments

.Eaféuﬁéféﬂu IE is. interesting to mention that thevfdurth
.Qﬁmaﬁﬁg Esfimaiéd. by the Langevin's simulation agrées‘wiih
.fhéfﬁhédﬁfted 'by'tﬂe gaussiag uithin'7%'"qu-.upp' énd th
A;Eéf ;ﬁowsf'tﬁatjthe -distribution% in p and £ 53ve- good
‘gaussian shapes. . . o

The sitQétion_ changes camptetely for tﬁe £b=50 kil
case. .Figure z ‘ExﬁibitsrLangévin'; rasqit'For u (solid

pp

cuﬁveJ'Andf Figure 37 the gaussian one (solid " curvey. The

'Venfiﬁa£25téle' is in’ units of 4 fm-* and the horizontal’

“.scale i 10-2=g, " We obsarve the.tctéﬁly different rasutts

.bf:fﬁe . two metheds with the - gaussian approximation giving
“fbésutté.nfiude erder of magnitudé larger than thg Langeviﬁ’s
:isimdtatiﬁﬁ'EGP:t=340x1d-23§;. To understand the large error

:innéﬁﬁé ’ géuésién "approximation, we simulated Vdi{ferent
'”iﬁtéfiediéte approximations to exhibit its main.suurces: (a)
the linearization of the.potentiai forces (nucle;r, Coulamb

and. centrifugal)
, R, ( - _ _
Fplr) = Fo(F) + —ln (r-p) . : 7 _ (15)

€b) the linearization of the friction farce

aFe _ gF.
CFelrap) = F(®,8) + — (p-p)} + —(r-T) €16}
. o ap L :

Curve (a) . resulting from approximation given b

and (c}

caefficient

Dij._(-r) = -ni_j(r)_ ' . (173

the neglact of-space ‘dependence of the diffusion

12

In . simulating these different approximatisns we

used for the mean values of the variables that calculated

one stép At earlier. Fiqure _E-exhibits the results of

thasg threa approximations far “Thp treafed_nsepératetyf

v equation

(153 and curves (4} and (e)

and (1713, respectively. We notice that the main saurce. of

error comes from eguations (15) and (383,

GPP calculated ~ with the two apurukimations given by

aguations (15) and (18) together {dashaed curveJ! and all

threa together the (triangular dots).

the three together we obtain a very goad agreement with the

gaussian approximation as expected. Eauations {15) and (18}

are rasponsible  for the reproduction af the targe peak at

350 x 10-735 but fails the fast drop of opp for Large times.

This cames from the éppruximation given by equation (17).

Figure 4 exhibits F{t). The vertical scale is in fm and

horizontal scale in 10'235. Curves (a) and (h) carrespond

to  aporoximatians givan by equations (15} and (18),
resnectiyelv. The qaussian) (ad + (b} and (a) + (bl « (c)

approximations coincide within the scale of the graph {curve

We notice that with-

those given by equations (1B}

Figure'3.exhibits -



GY." Curve (L} ig the Langevin's simuiation, ecuation (2.
We‘nnserve that the mean valua =r(t) is far frem being given

by the «classical orbit (gaussian apnrnximatibn) naear icr.

-Figure 5 axhibits O pp for the Langevin's simulation (L),

gaussian approximatian (G), iangevin's simulation with
approximations given bv eas. (15) and {16) (a) and ov eg.
(168) onty (b). . We notice the very Llarge value .of “rf
prad{cted Ey the gaussian anprbximation. The vertical scale
is in fm and the horizontal scale im 10-23s, With such
targe value_ of urr one may und?rstand why approximation
given by equation (17) plays an important rote even when the

two-ions. are 30 fTm apart as observed in figure 3. s a

concluding remark we observe that the gaussian approximation
gives gooﬁ results near the grazing angular momentum but

fai{ssubstantiattﬁ néar the critical angular momentum.
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FIGURE CAPTIONS

Figure

Figure

Figure

Figura

Figure

and ogq as indicated for fg=180 fi. The selid
LQRE is Langevin's simulation and dashed line the
gaussian results. Horizontal scale represents the
time t in units aof 10-2% s; the vertiecal scale on
the left in units of .. fm-* for the o curve and
on the right in units of radians for ueg.
Tpp for £°=80 #f. The solid Lline 1is Langevin’'s
sinulation and curves {a), (b} and (c) correspond.
to intermediate approximations as explained in the
text. Horizontal scale in units of 10-23 5, verti-
cal scale for sotid curve and curve (c} is on the
Left and for curves (a) and (b) on the right, both
in units of H.fm-2 :

4 calculated with. the gaussian approximation
(solid curvel. The dashed curve is the simulation
with approximation {a} # (b} and the triangular
paints are the gaussian approximation calculated
by Langevin's simulation. Vertical scale in units
of fi.fm-* and.horizontal scale in units of 10-23g,

The mean value of the relative distance between .
the ions r(t) as a function of the time. Vertical
scale in units of fm and harizontal scale in units
of 10~2% 5 for Langevin's simulation (L2, gaussian
appraximation (G) and intermediate approximations
(a) and (b) as explained in the text.

prp for the Langevin's simulation (L}, the gaussian
approx1mat1on (B) and the two 1ntermed1ate ap-
proximations (a) and (b). Verticat and horizontat
scales the same as in figure 4.
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