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Abstract

In the derivation of dissipative equations of motion it is a necessity
to incorporate the global conservation laws into the approximations.
Among the constants of motion usually the Hamiltonian itself is the
most intricate one. The main purpose of this paper 15 to show that in
a quite general approximation scheme, which is based on a projection
on macro-observables followed by a perturbation expansion, the quest
for energy conservation dictates how to split. the Hamiltonian into an
unperturbed part and a perturbation. In this scheme cnergy is con-
served to each order seperately if the unperturbed Hamiltonian is the

- projected part of the full Hamiltonian. The very general considera-
tions are exemplified with Zwanzig’s projection method and with the
extended time dependent Hartree-Fock equations.
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1 Introduction

The dynamics of a system with a very large number of degrees of freedom can
often be deseribed with a restricted set of macroscopic observables. Examples can
be found in many areas of physics, ¢.¢. the movementyof'a Brownian pa.rhcle in a
suspension, collective degrees of freedom for solids or plasmas, fluid dynamics, or
the one-body observables of a many-particle system. In any case the choice of the
appropriate macroscopic chservables, which we shall denote by Ay, is guided by ex-
perimental evidence and physical intuition. The observables Ay are of macroscopic
nature in the sense that they are an average over the individual constibuents of
the system. Therefore we shall call them macro-observables and their expectation
values a;(t} macro-variables. The remaining degrees of freedom we shall refer to as
micro-variables. Their interaction with the macro-variables causes a non-unitary
time evolution for the latter, and the equations of motion become dissipative if
the micro-variables vary on 2 much faster time scale than the macro-variables:

The projection operator technique {1,2,3,4,5,6,7,8] provides the tools for a re--
-duced description of the system in terms of the macro-variables a(t). One first .
projects the statistical operator p{¢) {which is the exact sclution of the von Neu- -

mann equation) onto a reduced statistical operator R{t} which depends cnly on
the reduced knowledge abont the physical system as represented by the ax(t).
R(#) and p{t) are related by the condition that they provide the same expec-
tation values for the Ay, fe. ap(f) = Tr(Aep(t)) = T'r(AzR(#)). Then one
rewrites the dynamical equation and obtains a formally closed equation of mo-
tion for the reduced statistical operator R(Z) or equivalently a set of equations
{or the macro-variables a;(t}. These nonlinear integro-differential equations which
ars still exact are useful as a starting poind for approximations. The variety of
approximations in the collision term is confined by the conservation laws of the ex-
act equation. Especially in the context of extended time-dependent Hartree-Fock
theories [0,10,11,12,13,14,15,16,17,18,19,20,21,22] the conservation of total energy
has to be proven for the approximation used [23,24,25

In this paper we show under which conditions one ensures energy conservation -

if the collision term is treated perturbatively by partial summation. It turns out
that the quest for energy conservation imposes severe restrictions on the choice of
the perturbation expansion. '

In section 2 we sketch the projection operator technique as far as necessary
for the purpose of this paper. The perturbation expansion is defined in section 3,
and in section 4 we discuss in which sense energy should be conserved and work

out the consequences for the perturbation expansion. In section 5 the general:

considerations are applied to Zwanzig’s projection and the comnection with the
Markov approximation is discussed. Finally in section 6 we carry out explicitly
the calculation for a collisional time-dependent Hartree-Fock theory.

2 Projection Formalism

Let us denote the full statistical operator of the sysiem by p{f) and the (time
independent) macro-observables by A;, where the expectation values

a(t) = Tr(Aep(t)), k=0, 1,'2,.;., N (2.1)

are presumed to be known at time £, The A; are hermitian and have to form a
set of linearly independent operators. The macro statistical operator R is then
some coarse grained p, where all micro degrees of freedom are averaged over. One
requires for R the following properties: First R shall reproduce the mean values -
ay of the macro-ohservables

Tr(AR(t) = Tr(Awp(8)) = ay(t), (2.2)
second it shall be completely determined by these expectation values
R(E) = R(ao(t), ar(2), .-, an(t)), (2.3)
and finally it shall be normalized to cne .
Tr(R(t) = 1. e

We deal with this last condition by always including the unit operator into the set
of macro-observables, since eq. (2.4) Is equivalent to Tr(A¢R) = a, with A, being
the unit operator and its expectation value ap set equal to 1. For reasons which
will be explained later we add a fourth condition on R by requiring homogeneity
of degree one with respect to the ay :

R= 3 Far ™ - (2.5)

The mapping of p onto R which is supposed to be linear can formally be expressed
as a projection: R = Pp. Note that P is not an operator in the Hilbertspace of
quantum states but instead acts in the space of linear operators which in turn act.
in the ordinary Hilbertspace. So the usnal operators of quantum mechanics are
vechors of this higher space which is called superspace. The.linear operators acting
on superspace vectors consequently are superoperators. Throughout this work
we use curled symbols for superoperators to distinguish them from the ordinary
Hilbertspace operators. ‘

For any two vectors X and ¥ in superspace we define a scalar product by
XY} = Tr{XTY). | . (2.6)
This enables us to define the operator 2t conjugate to P:
- (PIXY)i=(X,PY). - en
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Whereas P is supposed to act on a statistical operator (cf eq. (2. 10)), P'T' should

be applied to the dual space of linear operators.
One requires the followmg plausible properties for P or P, respectively:
a) Linearity:

‘b) 'Ideinpoténcy: ‘

' PP=P. . o {(2.9)
One calls P a pro_]ector even :f it is not hernutlan

- ¢) Projection on-&: R

RB=Pp : . (2.10)

@) Since P projects on the macro statlstlcal operator one demands that Pf projects

on the ma.cro—operators

P =X e X =Y gde (2.11)
. & :

This is still not envugh to make P unique. Hence one adds a further condition
which will prove very convenient in the following. Since p, oy and B depend on
time the projector P will also depend on time. Adcht:on of requirement e) which
concerns this time dependence will make P unique,
) Projection of dp/dt-on dR/dt:
dﬂ(t) _ dR(t)

PO = _ (2.12)
In the appendix we show that this implies the homogeneity of ‘R as stated in eq.
{2.5)."We listed the homogeneity separately as a requirement on R in order to
_ distinguish.between the properties of B and those of P.
The properties (2.2) through (2.5) of R a.nd (2.8) through (2.12) of P determme

" uniquely the form of P and Ptas )

PX

E’% Tr{AX) (2.13)
2 : _

p'x

?.Tr(%ﬁ_x)&_ - . (2.1;)

- We give a proof for the uniqueness of P in the appendix. Note that 2 as well as
_PT are functionals of the macro-variables a; only. Note further that Pt transforms

-any operator into 2. linear combination of the macro-observables A;. Eq.(2.13) :

allows f6r a generalization of the idempotency property (2.9): Twofold application
of P at different times £ and ' results in (see appendix)

PP = P) O (219)

PHaX + BY) = aPTX + BPY _(2..8}

. For convenience one finally introduces the complementary projeétors Q and

ot

R L AN | .'(2.16')‘
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Let p depend on t.mne accordmg to the von Neuma.nn equa&:on :

p(t) - 2ot) : (2.18)

with the Lionvillian £ 4 . & o :
e = [HGX] R S T g )

With the pro;echon defined above one is able to derive a-closed equation of motion
for the macro statistical operator R() on the basis of the von Neumann-equation
(2.18){6]. First introduce the Greenfunction i, t'} by the equatxou )

at,g(tz)—g{t t')sz(t')zz - y(t t)-*z - (220)

whlch is an operator equahon in superspace Erom this one gets w1th the von
Neumann equat]on (2.18) and with eq. {2.12) - IR

ar {g(t ) (o(t') = R(LY)Y —*—=g(t 1O LRE)

o(t) = B(t) - j dt.'s_(t.¢'~)'?z'tt')f£2(t%) + 5, om'(omo)-- e

) Actmg o this equation with —iP{1) £ from thé left 3nd using again eq (2 18} and

{2.12) ﬁna.lly gives the desired equation for R(t]

R(t)_—;P(t)L'R(t} j dE'P(8) LG ) QUENLR(E) — iP()LG(1:0) Q(0)4(0).

(2.22)
Note that eqs. (2.21) and (2 22) are still exact. In eq. (2 21) the statastical operator
p(£) is - except.for the initial value p(0) - expressed.exclusively as 2 functional of -
the macro-expectation values, since-this is true for R ‘as-well as-for P, Q and
therefore.also for § {cf. eq. (2.20)). Consequently eq. (2.22} is a (formally) closed
exact equation of motion for R(f). The price one: ‘has to. pay is tha.t the equation
is }ughly nonlinear and in addltlon nonlocal in tlme '




Let us mention that in eq. {2.22) one can insert a Q(t) in front of §(¢,t)Q(t')
which may somefimes be useful:
§(,£)8() = 204, ) 2() , {2.23)
This is ea.sﬂy seen by iterating eq. (2.20) which gives immediately PGC = 0.
From eq. (2.22) one gets the equation of motion for the macro-variables a; by
nwltiplying with Ay and taking the trace according to eq. {2.2):
dag
dt
' - (2.24)

3. Perturbation Expansion in Superspa(:é

Up to now egs. (2.21}, {2.22) and (2.22} are exact and of little practical use. The
complicated quantum mechanical many-body problem which generaily cannot be
solved exactly is still present in eq. (2.20). The advantage of this equation together
with eq. (2:22) or (2.24} lies in the fact that.they are formally closed in R or in the
macro-variables a;, whereas-the von Neumann equation explicitly carries along all
the micro degrees of freedom. One way to approximate the Greenfunction §(2,#)
is to perform a power expansion around some unperturbed Llouvﬂlma La | 26]
which. will be spec;ﬁed later. Let us split £ into ™ 7

L=Lot)+ Ly (3.1)
with L : i
- Lo(8)X = [Hy(t), X] and L,(8)X = [H.(8), X].
Next we transform to the interaction _pictu_re__ _in superspace writing
| 5,8) = Bt ) ole, ) (3.2)

_where. g., describes ‘the tlme evolution accordmg to Qﬁu instead of QL in eq,
(2.20):

FHOD = BEOANLG,  BEO=1 Y
Then- Q; obeys the differential equation * - : : ' )
591(* £) = 5t ) {Bo(6, 1000 £, OS5GN}, L =1 (34

Formal. mtegra.tlon of eq.” {3.4) gives a corresponding integral equation wluch
when inserted into eq: (3.2), leads to a perturbation series in £1 for §:

- 7 g(z,z’)‘: (1~ / dt" Go(t, :")_Q(z";)iﬂ}(t'_')gu-_‘(c,;r'j +) go{t,s'}f (3.5)

7

e AYR()- j dt' Tr(Akﬂg(t t)Q(t'}L'R(t N- zTr(Au‘Zg(t 0)Q(0)0(0)).

Lowest order means to replace §(t,t') by Go(t,#"). This could still be unfeasible
since gu evolves with QL. Unless £, has special properties which simplify the
evolution the perturbation expansion is still too complicated. One reasonable
requirement is that the macro-observables evolve among themselves under L4

.ﬁ(]Ak = E extAr, ' -{3.6)

f.e. the A, form an algebra under £,. By virtue of egs. {2.14} and (2.11) this is
equivalent to

,Eopf = Ptﬂupf.
Hermitian conjugation of this equation gives (L, = .CE) o
P.co = PﬂoP- V (3‘7)_

.We observe that go is needed in Q-space only. Therefore we try to define a dif-
ferent superoperator Go(t, '} which equals Golt, t') in Q-space but obeys a simpler
differential equation than §y(%, t’) Startmg from the @-space part of eq. (3.3)

2 Galt, £)0() = o, ¥) Q(ENLo() 21

we can move J{i') to the right by virtue of eq. {3.7) to yield

BB = Solt, L) ().

" To get this last equation we also used the relation 9(#')Q(t") = Q(¢") which follows

immediately from eq. {2.15). We consequently define Go by

%9"("’*') = 90("_t")¥'ﬁo(i')s Gty =1. (3:8)

. This equation is much simpler than eq. {3.3) since it does not contain a projection

and further more lets the space of the macro-observables invariant because of eq.
{3.6). Replacing Golt, ') by Gol(t,t') in eqs. (3.4} and (3.5) and adding a2 Q(#') in
the last equation {remember that only the @-space part counts) finally gives

RN = GENGENROLEG Y, Gk =1 69
{again §; equals §, only in Q-space) and

i ’ ‘ }
smnew) = (1'— [ a0 QUL 65 1,1 + ) Golt,1)Q(E).
- ' o o ' (3.10)



A natural perturbation series for the ¢-space ﬁart-of G is then defined by

§9, o)
M E)QE) = Golt,)Q(E)

— f dt"‘g(n—”(f, t"_)Q{t")i,[i (t")gn(f", tr)Q(t'] (3.12}

Ii

This expansion in superspace is somewhat different from 2 usual perturba-
tion expansion: Since the resulting equation of motion for R(f) is closed, every
order contains implicitly a partial summation in all powers of £,. This is why
the approximation in superspace should be better than an expansion in ordinéry
Hilbertspace. Our expansion means that we take all contributions up to a given
power in £, and a selected class of higher "order” terms. As can be read off from
eq. (2.22} the nth order of §Q means the (r + 2)nd order in the equation for R.

4 KEnergy Conservation

Every reasonable.approximation should comply with the conservation laws; in

particular the total energy should be conserved. We first explain in which sense

-a quantity Is required to be conserved and ther deduce a severe restriction on
the chaice of Lo(t). If X is a constant of motion and z(t) its expactation value
calculated with p{t} we have :

%I{t} - %Tr-(Xp(t)) 0.

The exact statistical operator p divides into an uncorrelated part defined by Pp =
R and a correlated part R, defined by Qp. Generally both parts contribute to
the expectation value and only together ensure the conservation law. In the case
of energy e.g. thie uncorrelated energy (i.e. the energy which is calculated with
R(#)) may change in time, but this change is exactly compensated by the opposite
change of the correlation energy (i.e. Tr(HR.(f)). If we want the conservation
law to hold also in our approximation we have to define it in the same manner.
The approximated p alse splits into an uncorrelated part and a correlated part:.

PUI() = RU(E) + RIME), (4.1)
‘where BRI is defined as {cf. eq. (2.21)) '

RO = ~i [ at g7 ) Q) LRI + G 0QORE)  (42)
/ |

The superscript ") denotes the nth order in the expansion of 5@ according to eq.
{(3.12). It is important to apply the same approximation for the correlated part
R :2s for the time evolution (2.22) of the uncorrelated part B,

g

gﬂ(i:tr)g(tr)ﬂ (;-11) :

Let us first take ‘the-sim.p]e case that the conserved operater X is a linear

.combination of the macro-observables A; [4,8]. Then the correlation part vanishes

since o 7

Tr{XQp) = Tr ((21X)s) =0 _
due to eq. (2.11). Moreover the conservation holds irr%spea_tive of the approxima-
tion for §@ . Eq. {2.22) gives

| .gETr(XR(")(t}) -—i’Tr (XP[t)ﬂ (R(")tt) + 6, 0)9(0)9(0)))

|

Tr (XP(t}I.’ / 4 G (1, )0 () LR (r))

* Acting with P to the left feprcidu_ces X, again due to eq. {2.11). It remains a

trace over XL... which vanishes, since X is a constant of motion and therefore -
commutes with H. Obviously the specific approximation for G"}(¢,¢) did not
enter anywhere. As a result all conserved macro-observables are trivially conserved
within the approximation scheme. : :

Let us now turn to the more interesting case of energy conservation. Usually the
total Hamiltenian will not be a member of the seb of macro-observables. Therefore
energy conservation is not necessarily fulfilled. We will require

dEn)

d .
== 1y =g 4.3
o = gl ey =0, (4.3)

. and from that we will arrive at a condition” for £y(¢). Again we-split ot into

a correlated and an uncorrelated part according o eqs. {4.1) and (4.2). The
cortesponding. correlated and uncorrelated energies E™ and E™ are

El(1) Tr(HEMN (1)) _ - (44)

and “E((f) "= Tr{HR™(2)). o (4.8)

For the time derivatives we get from eqs. (2.22) and {2.21)

n) ‘
Ll o e (HPOL (RO + 69, 0)0(0)0(0)) )
i s (HP(tlﬂ jdt’g‘f"(a,-t')sz(t')w‘")(t'-)) )
and . ) .
_Vd_Ei't'(*?' - _a:Tr(H{g(a)ﬂRl"P(z)+i%g‘*"(t,0)9(0)e(ﬂ)}) _

~iTr (Hof dt'%gﬁ?)"(s, t’)Q{t'.}ﬂR(t‘}) ' TR
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From eq. (3.12) and eq. (3.8) we find by induction

2616, 600) = ~Lo()§ (5 £)2(0)
Using this and adding eqs. (47) and {4.6) we arrive at

dE"(1)
di

It

—iTr(HLR™(®) —iTr (H[P(H)L + Loft)] 9("](th) 2(0)0(0))

Tr (H[P(t)uﬁu(t)i / dt’é{"’(nt')e(t')w‘"'{f)) @8

The first term vanishes. For both other terms we have to require
Tr(H [P_{t)ﬁ + Loft)] .. ) =

or

[PHOH — Ho(t), H] = 0.

It is possible to generalize this condition somewbat. First we write with (3.1)

H = Hyt) + Hy(t}). Then we realize that due to eq. (2.23) we can always move a

© to the left of !} in eq. (4.8) which actually gives the condition

Q'(t) [P H — Hoft), H] = 0. : (4.9)

Because of the algebra condition (3.6) and with eq. (2.11) this is equivalent to

Q') [P(e)H - Hu(t); Hy(#)] =0. (4.10)

I and only if Hy(f) fulfills this condition energy will be conserved to each order
of the perturbation expansion. This is a severe restriction on the splitting of £
and therewith on the perturbation series. In practice one will take the simplest
solution of eq. (4.10) which is

Hy(ty = PH{t)H. _ {4.11)

This means that once one decides on the macro-observables and on the corre-

sponding statistical operator R the projection formalism tells what to take for the
unperturbed Liouvillian and what for the perturbation. Except for the more or
less academic freedom which eq. (4.10) still allows for there is no arbitiariness
left.

We mention that the algebra condition (3.6) which restricts the choice of the °

macro-observables is actually not needed for our argumentation. Without (3.6) we
use instead of Gy(¢,¢") the more unwieldy Qn(t ') which evélves in time according
to Q(t )Lo(t') as defined in eqs. {3.3) to (3.5). The result is again condition (4.10).

1

5 Energy Conservation and Zwanzig’s Projec-
tion

In this section we exemplify the foregoing ideas with Zwanaig’s projection method
Let us denote by Py a complete set of projection operdtars, ¢.e.

S Po=1, PP = PP =6yl (5.1)
3

If we regard the Py as the macro-observables we obtain the following macro sta-
tistical operator:

R(t) = 3 pe()Ps ' (5.2)
%
with ‘
7 pi(t) = Tr(p(t) Py) = Tr(R()FL).
From eqgs. (2.13} and (2.14) vie get Zwanzig’s projection operator (2] as
PX =PX =Y Tr(P.X)P,. (5.3)
& .

1t is time independent and hermitian with the scalar product (2.6). For the per-
turbation expansion we decompose the Hamiltonian into

H = Hy(t) + Hi{t) (5.4)
and demand for Hy the algebra condition [36) 7
[Ho y Pl = E culr. i (5.5)

Using the orthogonality of the Py {eq. (5.1)) we get

(8}, P = 0 (5.6)
and hence’ .

Hutt = Eh;_.(t)Pk. ' ” (5.7

If we msert t]:us general form into the cond]tlon (4.9) for the energy conservation
we obtain

0 = Q|PH- Hn(t H| = [PH— Hy(t), H
2ol = halt)} P, 1 (5.8)

il

where we introduced the eigenvalues ¢; of PH,

PH = ZTT(PLH)PL = Zqu. . {5.9) )
k k
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In general H does not commute with P;. Thus we demand (see (4.11))
€ = hk(f)
or : .

This is exactly Zwanzig’s choice of a time independent unperturbed Hamiltonian,
where the macro-observables are the prejection ‘operators onio its eigenspaces.
Herewith also the perturbation H, = H — P H is uniquely given. There is still the
nominal freedom of adding to PH » constant of motion § H

SH(t) 1= Hy(t) - PH = Y (helt) — ) P, (5.11)
k

but we shall see soon that this has no effect on the equations.
In second order perturbation and presuming that there are no injtial correla-

tions (Qp(0}) = 0} the equations of motion {2.24) for thé macro-variables assume
the form

%p,{t) = Y re(ERIR) [t 2cos ((ex — )it — ) [pa() - ). (5.12)

Here we used that [Hy(¢), P} =0 and thus Gy{t, #)P = Py. Let us now investigate
explicitly the interplay between the energy residing in the macro degrees of freedom
and the energy induced by the correlations. The correlation part of the statistical
operator (c.d. (4.2}) is given by {in the following we suppress the superscript 2
which would stand for second order perturbation expansion)

Bo=—i [ dtp(e) [olt, ) H; Py (5.13)

Even if Gy(¢, #') is the time evolution according to PH + 6 H (1) we see immediately,
since [H, 6 H{t)] = 0, that

Golt, V) H = ¥ PPy exp{—iles — en)(t ~ ), (5.14)

Im

and hence the effect of H(f) has disappeared. Thus the time evolution of pk(tj

as well as the correlation energy which is given by
: ) _
Et) = Tr{R.()H) = Y- Tr(HP.HP) [ d¥pu(t') 2sin ((ee — e)(t — £)), (5.15)
. &l u

does not depend on §H(t). The uncorrelated energy is just,

Ey(t) = Tr(R(OH) = 3 pd)Tr(PH) = Y pi(f)es. - {5.16)
. % &

13

One sees from the last two equations that in general both; By and E., are:time

“dependent, but due to the special choice of Hy = PH their sum is not, as proven:

generally in eq. (4.8). It is now an easy task to show explicitly by differentia-
tion of (5.15) and (5.16) that after reinsertion of the equations of motion for the
probabilities ps(t) the energy Ey(t) + E.(t) is conservad.’ o

If the spectrum of Hj is dense a Marcov approximation is suited. Let us define
energy bins {1} of width 2A by :

{At={EBi—A&Ley < B +A} where FEyy, =8, +24. . (5a7)
We can now coarse grain the equation of motion (5.12) as .

d
i

p() = 2; { > f‘dt'pk(znj[z Tr{HPHP;) cos ({e -e,)(tgtj')J

tefa} kelslg e{a) _
! L .
-3 jdt’p;(t’){ Y. Tr(HP.HP)cos((& — &)t — t')}] }
el keie) _

(5.18) .

where }licryy s just a short hand notation for summation over | withiq the energy
bin & € {A}. Tr(HP.HP) = [{k|H|D|? is always a positive number. ~Leét us
assume that it changes only little with I if / belongs to the energy bin {1}, Then
we can replace it by an averaged matrix element and since the spectrum of H, is
dense we may estimate

3 Tr{HP.HP) COS{(E% —&)(t ~ '

fe{ay ) .
CF 1 d‘\ Ex+a R - . .
=1 '['i'— E TT{HP]CHH) ‘2'K f dECOS((Ek —E[)( - )) -
A ieqa : Exca .- L : .

- (3‘- > Tr(fféma))'p(mzWc&t(ek -B)e-£)
S .
S (5.19)

Here d; denotes the number of states in bin{A}, and p(Ey} = dy/(2A) is'the level
density at energy E,. An analogue expression holds for the loss term in eq. (5.18).
One sees that the superposition of many cosine functions results in an integrand
which is localized in time around ¢ —t' &0 with a meémory time of the order
Tmem % 1/(24) = p(E))/d. H the probabilities vary slowly on a time scale set by
Tuein O0€ can therefore replace p(t') and p(') by pr(t) and pi(t), respectively, and
eq. (5.18) is approximated by

L -
LT a~rT T ranap) =y ) (5.0
dtre{A) " kE{{n—}} A .

te{k
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For times £ > A" the peaked function (sin(ex—e:)t)/(ex —e) allows only transitions

for ¢, — ¢ < A or in other words & and ¢ have to be in the same energy bin {A}.

Thus we replace
sin(e; — )i

— f({SN,\p(E,\) for t» Agl, &9 {iﬁ}, &g € {/\}, (5.21)
£ — & . .

and eq. (5.20) becomes

Z plty m2mp(Br) Y, Tr(HPHP)[p(t) —pu(t)) = 0 (5.22)
ey ke {x]
te i

This tells us that the total occupation probability of bin {A} does not change in
time if we assume a dense spectrum and weak coupling. The uncorrelated energy
is therefore approximately conserved

d d

En(t) =Y Y aRayn Y Hao (5.23)
A te(a} A ie{a} .

For the correlation energy we cannot perforin a Markov approximation, since the

sine function in eq. (5.15) does not lead to a peaked function as the cosine did in

eq. (5.12} under coarsé graining (¢f. (5.19)}). But the time derivative of E,

3 B = S Tr(HPHP) (e - o) [ dlplt)2eos((en—a)(t - 1) (5.24)
] 2 :

is of similar structure as eq. (5.12) and therefore well suited for the same ap-
proximation. Performing the Markov approximation on {5.24) will lead again to
energy comservation. This means that both the correlated and the uncorrelated
energy are only approximately conserved, but in such a way that their sum is time
independent if the Markov approximation is done at the proper places.

6. Energy Conservation in Mean Field Theories.

with Collision Terms

Letb us-suppose that the dynamical evolution of a fermion system is following mainly

a one-body Hamiltonian, and that residual two- -body interactions enly randomize
the motion.. For such a situation an appropriate cholce of the macro- observa.bles
is the set of all one-body operators

{alay; o, =1,2,3,..} with [aa,al]y =8us (6.1)
The matrix elements of the one-body density -
pg‘;(:) = Trip{t)alas} = Tr(R(t)a}a,) (6.2) .
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play the role of the macro-variables {see {2.1) and (2.2)). The corresponding macro
statistical operator takes the form [16,27]

Rt}

Z(t).ezp { - Zj Aaﬁ{t}“z Cl'g}
IE{(1 = na{t)ea®el (8) + mat)el (Dea(t) } (6.3)

il

where Z(t) is the partition sum. The second line represents the statistical operator
in terms of eigenstates ¢ (¢)|0} and eigenvalues n,(t) (mean occupation numbers)
of the one-body density -

AI() = 3 al]0)pl(E) 0las = Zcﬂ(t )10} (£){0]ca (£). (6.4)
ap

The corresponding projector (as defined in (2.13) is most conveniently expressed
in terms of ¢t (t) and n,{t) as {18,16] :

P(If)X - [1 _ Z Cl(t}ﬂa(t) - na{t]] Tr(X)R(t)

a l_n’(t)

o(t)c (t — OpaTt (t) ’ . .
E Z,s; (1jnu(i))n3(tﬂ) T’"(C;(*)‘?o(‘)X)R{t} (6.7-5)

The adjoint PT(t) is given by

{X(cl(t)ealt) — na(t)))
N

N Z {(X(ch(B)ea(t) — dagnal(t))) +

ch(thea (8) 6.6
5 A-n@m® (60)
where the ﬁverages { ) denote the mean values:
(X)) :=Tr{R()X) - (6.7)
The Hamiltonian consists of a one-body and.a two-body part
H= ZTnﬂﬂ ot g E Vi gs0h0}asas (6.8)

ay 8

where V,, 45 are antisymmetrized matrix elements. As discussed in section 4 we

chadse for the unperturbed Hamiltonian Hy(t) = PHt)H (see eq. (4.9)). Applica-
tion.of P1(t) as given in (6.6) results in

Hy(t) Pf(t)H Ehup(i Jalag m 326 an,,}bﬁ},? (t)p“)(f) (6.9)
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with S
higi (8) = Top + va.aéﬁhfﬂ ' -(6.10)
.
It is inferesting to note that PI(t)H turns out to be the time-dependent Hartree-
Fock Hamiltonian A% (t) minus a real number whichs takes care of the fact that
the expectation value of the Hartree-Fock Hamiltonian contains the interaction
energy twice [28]. Thus, we get the proper relation for the uncorrelated energy

Bt) = TrHR0) = Tr(HPO0(0) = TrR(0A0) = Tr(HoO RO)
= ETaﬁPJ)(t I+ Z Vov.ﬁép.[}?(t)lom (6.11)
ad ud'y&

In absence’of initial correlations the general equations of motién (2.24) assume the
form

dtpj)(t)-~2Tr( teaLR(2)) j d'Tr (afas L (¢, £)QUNLR(E))  (6.12)

where the Liouvillian corresponds to the Hamiltonian given in (6.8). If we keep
only terms up fo second order in the perturbation expansion, §{t,#) in eq. (6.11)
has to be replaced by Gy(t,#') (see eq. (3.11)). Although the evaluation of the
integral kernel is done most efficiently in the cf(t)} representation [15,18,16] we
formulate the result again in the time independent &l representation

ZANE) = < [H@,0], + [ [Cut) + Coltt))  (6a13)

where )
Calt, 1) = —ZVJkrmt (£, ') Xirm ar (1), (6.14)
Hm
Ximar(t') = Vimeaae {0 (€010 (9580 (6 oL ()
hn,nk( ) E Umf otk pfl'( )pmm"( )P )P ( )
a'k!tm’
= W AR, (6.15)
POE) = bag— o) (6.16)
and B _
V(e 8 = Gaft, 'YV, (6.17)

Fq.(6.17) means that the matrix elaments l_fogw;(t '} of the two-body interac-
tion V have to be calculated with time- -dependent single-particle states which are
evolved backwards in time from t to ¢ according to the mean-field Hamiltonian
Ho(t) given in eq.(6.9).

Vesas(t, ) = 3 UG8 )aarlUt, 1) 35 Vargr s U (8, )2, U (1, E) {6.18)
QrB"f'&'
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where .d." A R R
!.EEU(t,tr)a_g = {Hg(t]U(i,tr)}aﬁ, U(t,t)uﬂa - 6,1,3. o (619)
In a perturbation expansion one would be tempted to expect the Fesidual inter-
action (V' — Hy(t)) in the collision term. However, dyte to the presence of Q(¢")
(see eq. {6.12)) all one-body parts of £ disappear and the two- body interaction V
itself enters (', in egs. (6.14) and (6.15).

Next we calculate explicitly in second order. pertubation expansion the time
derivatives of the uncorrelated energy and the correlation energy. For the un-

correlated énergy follows immediately from eq. (6.11)} and the eqs.. of motion
{6.13) . o . o g

4 E
EEU (t) . af

E(Twzvﬂ.ﬁ p&?(t)) ohatt) = L0 2500

YR, f A {Caalt, )+ Cos(t,)*} - (6.20)
According to egs. {4.2) and (4.4) the correlation energy is given by
E.(f) = —iTr '(H [ dt* Golt, t’)Q(t")sR(z')) - {6.21)
0 C
and can be expressed in terms of Coalt, #') given in eq. (6.14) as
il ) .
Eft) = _Ef dt' Y Caalt, ) O e22)
1o G . e

(Note that the superscripts & which denote second order perfubation. have been
dropped again.) In the time derivative

E(t) - L j ¥ 316"““ oy - -_cha(t,t) B

the last term vanishes which can be venﬁed with - egs.: (6 14} (6 15) and V(t f.) =
V. With help of eqs. {6.15) through (6.19) we obtain the time derivative for
e Cho(8, ) as .

Z%ka(t: t‘) = —5 Z [Hﬂ(i) V(t t,)] Xl;nmk{t')
o . aklm
= - Z (h‘rF t)VJ-( r"l(t t) - Vﬁl {’g(t i)h}{:-(t]) le.ni"\'(f)
adkim
= 4;2 RMF(1) {C,Q[t £) + Caalt, )%} . (6.24)
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In order to get from the second to the third line we rename indices and use the
anti-hermeticity of the two-bady operator X(#') (see eq. (6.15}).
Thus, the change in the correlation energy

%Ec{t)=—z 0 ] dt' {Caalt, ) ¥ Caalt, )%} (6.25)

balances exactly the opposite change in the uncorrelated energy Eo(f) given in
eq. (6.20). The action of two-bedy eollisions transfers occupation probability to
single particle states displaced in energy which may alter Ey(2) but at the same
fime correlations are being built up which compensate for the change in Eo(t).

7 Summary

Based on the projection formalism, which may serve as the the starting point for
any derivation of dissipative equations of motion, we have investigated the conse-
quences of conservation laws. In this context a conservation law is presumed to be
fulfiled if the expectation value of the corresponding constani of motior is time
independent during the dissipative evolution of the system. The easiest way to
incorporate a conservation law is to include the constant of motion explicitly as a
- .. member into the set of macro-observables on which the projection is based. In that
case almost any approximation of the memory kernel can be accepted and further-

more correlations in the system do not contribute to the mean value. Examples .

are the total particle number, total momentum or total angular momentum.

.. The total energy is usually not a member of the macro-observables because the
Hamilionian has to couple macro-variables with the remaining degrees of freedom
in order to achieve randomization and equilibration. Therefore, onlty part of the
Hamiltonian can be 2 macro-observable while the remaining part acts as a per-
turbation. In 2 very general derivation we showed under which conditions energy
is conserved. First, the correlations (difference between the projected statistical
operator and the exact one} carry part of the energy so that only the sum of the
macro and the correlation epergy is time independent. Second, in a properly de-
fined perturbation expansion the time derivative of the correfation energy has to be
calculated with the same approximations as the time derivative of the projected
statistical operator. With these suppositions the quest for energy conservation
determines how the Hamiltonian has to be split into an unperturbed part and a
perturbation. This strong restriction in the choice of the perturbation. allows a
control on the strength of the perturbation only via the selection of the relevant
macro-observables (thermodynamic variables).

We used two examples, Zwanzig’s projection method (master equation) and
time-dependent mean field theory extended by collision terms, to illustrate expli-
citly and in a less abstract way the implications of energy conservation. We want
to emphasize, however, that the ideas worked out in the general derivation apply
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to any treatment utilizing the projection formalism in conjunction with the weak
coupling limit.

A Appendix

In the following we prove the uniqueness of the projector (2.13) under the given
conditions and derive some consequences.
To simplify the calculations let us introduce a bra-ket notation in superspace: If
| X} is a vector in superspace, the dual vector (V| is defined via the scalar product
(2.6)

(Y|X) = Tr(Y'X).
The macro-operators Ay correspond ko the vectors |A) in superspace. They are
linearly independent but generally not orthogenal to each other. Let |B;) be a set
of biorthogonal vectors to the Ay, i.e.

(Bl Ar) = bur. (A.1)

Linearity, idempotency and the condition that PT projects onto the macro-obser-
vables (2.11) lead to

P

g |B) (4] , (Az)
Pro= 31 A(Bil- S (A3)
k

The appropriate | B) are readily found. Since R depends only implicitly on time
and with eq. (2.12) one sees

dR da;. OR da.

Due to the mclependence of BR/Bak and |By;) from dak/dt (A. 4) results in
|B:) = I—} (A.5)

Together with (A.2) and (A;3) this is equivalent to egs. {2.13) and (2.14), which
closes the proof.

1t is easy to see that condition (2.11) implies that R is homogenous of degree
one in the a;. We have only to insert eq. (A.5) into eq. (2.10):

(R} = Z | Bi){ Ar| R) = Z Rxl—)

With the above notation it is also easy to prove eq. (2.15): ]
POP)X) = ZEBA(f)) A Bi(t)) (A X) = ZIBL () (A‘IX) P(6)IX),

Si[lcﬁ? (ALIBg(t'}) = TT(AM?R(E )/aa;(t’]) = Bak{t )/5&1(i ) = 6;‘{.
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