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DENSITY MATRIX EXPANSION FOR A CONVOLUTED WIGNER FONCTION

M. Nielsen* and A.F.R. de Toledo Piza

Departamento de Fisica Matemdtica,
‘Institute de Fisica, Universidade de S&do Paulo,
C.P., 20516, 01498 S3o Pauvlo, S5.P., Brazil

- ABSTRACT

Using 'a coherent states phase space representation

the distribution function corresponding to many-particles
harmenic oscillator wavefunctions is obtained in explicit’
analytic expressions form. A density matrix expansion is
performed and found te produce good approximations to the

exact results.

*also at the Pontificia Universidade Catdlica de 3530 Paulo,
5.P., Brazil.
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The idea of a phase—epace'probability distribution
function in quantum mechanics has attracted a lot_of interest
since the work of Wigner(1). However, as isuhelliknown, the
Wigner function is not a true probability distribution over the
phase-space, since it is not pocintwise nonneéative in general.
In order to overcomé this apparent. difficulty, various rather
artificial smoothing procedures of Wigner ‘functicn have -been’
p(-zrforrned(2 4)

Iin parallel to the Wighet formalism -snother formulation
has been developed in terms of the overcomplete ‘gaussian wave=

(5); |p@?, where the pair

packets or coherent states basis
P-d, the label space, defines the Wave-Packet Phase Space
Repregentation (WPPSR). The representation of the density
matrix # = ||, leads to a nonnegatlve distribution ﬂxxxlon

Plp, qn , that allows for 1nterpretat10n as a probabzlxty den51ty

distribution functlon. ThlS functlon was £1rst lntroduced by
(2)

Husimi as a convoluted Wigner functlon and can be 1nterpreted

as a dynamical map in the sense of Sudarsham(5 6).

Given the density matrizx plr,r') the corresponding

WPPSR P(p,q) , is defined by'>’

quv](ﬂ) . an ‘f“‘. K (M’ ||;‘l ‘.")j.(:""} ey C (1)

where the kernel of the transformation is
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ag is a constant with dimensions M% 772 that leéds to the
sharp momentum (coordinate). representation when the limit
aa-+0-(au:*w) is taken.-. - .

We will consider the WPPSR of the one body density

matrix of a pure state of independent fermions. - In. this case,

plic,ic’), is given by ....-
.J)_(“.l u—')-iz Z k}i (-,"__)— \t{_‘.‘.(w) . R (3)

where the sum is over all occupled 51ng1e partlcle states.
Hereafter, for analytlcal 51mp11c1ty, we w111 take . the 1b to
be the sxngle—partlcle elgenfunctlons of the spherlcal H.O.
Hamlltonlan . ‘

In the oﬁé;aiméhéioﬁalﬁcaée; the:eigenfphétion is
gigén EY'“" . e e . R

» |
Viay: (mw (J"Q ni) H () /1_4 ' (4)
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where £ = (mw/h}®y and Hn(E) is a Hermite polynomial(7).

The WPPSR of eq. {3) for a particle in a state n is
A
: S«ixcl’x.‘ K(r,j;f,x)kﬂl(f]wﬂ(%) (5)

The integration in eq. (5) is easily done if we use

the generating function of the Hermite polynomials. Winen

4]
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where € is the energy parameter as introduced by Shlomo .and .

Erakashta)

6: [hit . M{u ?1 I | :. ...(-;’).

The generalization to higher dimensions is easy, .

and following (8} we have

| P Ay £ | (
P({M‘) = fle) = e —— . ‘._31.

=8 R
" d m.

for the tridimensicnal case

3 pl
- z [ i 4w qz]
mwh oG
i=1 .

The factor 4 in eq. {8) has been included because of sphrdsos@in



degeneracy and F is the Fermi level.
The result of a numerical evaluation of eq. (8} is
shown in fig. 1. While the corresponding Wigner function exhibits

(9)

strong oscillations and is negative in some regions this

function looks like a difuse Fermi function.

We want now to perform a density matrix equsion“o)
on Plg), eq. (8). Toward this we first return to eq. (1), and
perform there the change of variables, r = R~+§72 and
o= R-g/Z:

CEAVE AT A
P(‘Ml} : Siﬂ Si K("n,tﬂjlﬂ, /llﬂ /U)m SZJIR /1)

(9}
If we now write

3.%-%)

j’(lﬂ;gﬁjlw;/;) ¢ 7 jz(m,,m,,)

R, s Ry R

“"and angle-average By performing the ‘angular integration over

the direction of p  we approximate P(p,@) by

P(F‘ﬂ) ’Jtr(_ﬂ%_u_)_ Siﬂ%isi _, )QF[QK(Q(R q,)»r

: 9.)] (511}1'_) (1, .)
o i {11}

R, = ¥R‘=|ﬁ.

(10)

Following -Negele and Vautherin we make use .of the .

identity

Ao(ﬂcﬂ) = i g—o (umes) agﬂ,.(,ﬂ 'Qm("d } ) |

Y

Imsd t-c

| where 'Cqm(“i)= g,,(;ﬂ) = _i__.cfi Qﬁxal-dﬂ)! &ftn[{)' {i3)

el (2ms - @Enoi-20)]
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It was shown in ref. (10) that the first term of
this expansion alone.reproduces,the exact result for nuclear

matter. If we keep the first two terms of expansion. (14} we get -

¥ y(e)-

-]

P ' & 3 -ﬂ%i(m'ﬂf.
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where we use the local density approximations
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If we note that eg. (8) involves only powers of q2
and 92 we have a physical motivation to make the angular
integration over the ¢ direction. The results of numerical
calculations to PDME(p,q) of eg. (15) and the exact distri-
bution of eg. (8) are shown in fig. (2). It is evident from
this figure that, in this case, DME yields an excellent
approximation, unlike in the case of the Wigner distribution
function studied by Martorell and Moya de Guerra(?1).

As a further point we would like to analyze the
dependence of eg. (15) on ko . The results shown in fig. (2)
were obtained with k0 = kF(G) and fig. (3) shows Pp.. as
a function of p for q=0 and for different values of ko'
We note a strong’ dependence of Poup  O0 X, -

If we take the full expansion in eg. (14) the value
of kD ‘is, of course, irrelevant. However, as the expansion
is truncated, there is a ;ompromise between the values of k

c

that make the integral in the variable s (eq. {(14)) small for

‘ [16g, -, ] (e}
large n, and the values of kO such that -1 g T S 1
"o

which is the valid formal condition to write egq. {(11) in the

form of eg. (14) (see reﬁ. (1)),

@1_€% 2k

As p(R, ,IR,} {see egs. {13) and (14)) can
2kD 1772

provide all wvalues of the transferred momenta contained in p,

for small ko (k0< kn(0)) the range of these values will

overshoot 2k0 and the condition (18) will not be satisfied.

On the other hang@, for large kj (k; >k.(0)), there will be

important contributicns from (skD) , for large n, in the

32041
region where the gaussian in the integral of eg. (14) is still
iﬁportant. This may mean, as suggested by Martorell and Moya
de Guerra, that in processes where high momentum componenfs are
important, anrapproximation like DME may .-be hazardous.

In conciusion, we have shown that thé phase-space
distribution obtained in the formalism of the gaussian wave-
packets reveals a remarkable similarity with the diffuserFermi
function. At the same time, the DME yields an excellent
agreement with the exact distribution unlike in the case of

the Wignef distribution function,

This work was partly supported by Conselho Nacional

de Desenvolvimento Cientifico e Tecneoldgico (Brazil}.



REFERENCES

(1) E.P. Wigner, Phys. Rev. 40 (1932) 749,

{2) K. Husimi, Proc. Phys. Math. Soc. Japan 22 (1940} 264, .

(3) N.D. Cartwright, Physica 834 (1976) 210.

{(4) R.F. 0'Connell and E.P., Wigner, Phys. Lett. 85A (1981) 121,

{5) S.5. Miérahir Physica 1272 (1984) 241.

{6) R. Jagannathan, R. Simon,_E.C.G. Sudarshan and R. Vasudevan,
Phys. Lett. A120 (1987) 161.

{7) W. Magnus, F,. Oberhéttinge; and R.P. Soni, Formulas and
theorems for tﬂé special functions of math. physics,
Springer,“ﬁew York. . _ 7 ]

(8) 5. Shlomo and M. Prakash, Nucl. Phys. A357 (1981} 157,

k9) M. Prakash, 'S. Shiomo and V.M. Kolomietz, Nucl. Phys.
A370 (1981) 30.

{10} J. Negeig and D; Vautherin, Phyé. Rev. C5 (1972) 1472.

{11) J. Martorell and E. :Moya de Guerra, Ann. Phys. 158 (1984) 1.

.10,

FIGURE. CAPTIONS

Fig.. 1 -

Fig. 2 -

Fig. 3 -

The WPPSR of the .one body density matrix f£or a nucleus
with A =224 particles calculated for a spherical O.H.

potential.

Comparison between WPPSR of the one body density matrix
{(broken line} and DME ﬁdr a nucleus with A = 224
particles, calculated for a spherical H.0O. potential.

1

H

L
p and g are in units of (mwh)? and (H/mw)}

respectively.

The DME tbo the WPPSR of the one body density matrix as
1
a function of p (in units of (mmﬁ)’-) for different
i . 1
values of kU (in units of (mw/h)?}.. The broken

line shows the exact function of eg. (8).
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