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ABSTRACT

We analyse the infiuenee of the Analytic Stochastic
Regularization method in gauge s&mmetry, evaluating the 1-loop
photon propégator correction for spinor QED. Conseguences in

the non-abelian case are discussed,

*This work was partially supported by CNPg.

.and QCD at the one loop order

1. INTRODUCTION

Some years ago, Parisi and Wu(T)”developed a new,

‘original mathod to guantize Euclidean Field Theories in the

‘continuum, the so-called "Stochastic Quantization Method® (SOM) .

One of the most striking contributions offered by SQM was a

non-perturbative regularization scheme, which in various aspects

makes contact with Speer's method(z)

)(3,?1

- the Analytic Stochastic
Regularization (ASR . The evidences were that the method

could respect all physical-symmetries-involved in a given field

.theory, as the gauge symmetry or supersymmetry, but we have been

tempted ko see more closely this 1n{luence In recent papers,
the method has been used to evaluate gauge synﬂetry breaklng in Scalar QED )
(5,8) 15. D=:4 . We have been able
to extend this analysis to theoties eoﬁtaining fermion fields
ofrspin i/z(T)! 1ige Spinor QCD. Some unsuspected canceilations
in these'calculatiens bring us with ; fortunate finding - at
least to lowest order ASR seems tb_preserve supersymmetry.

In the first section,.we outline the basies of SQM

in the original sense of (1) and the necessary changes for the

inclusion of fermions. In the following section the ASR scheme

is quickly reviewed. -The third section is devoted to Spinor QED
and cefresponding "Feynman rules".- We calculate the 1-loop
correction to the photon propagator and verify transversality.

Our conclusions are depicted in the last section.
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2. A SURVEY OF STOCHASTIC QUANTIZATION METHOD

The physical motivation of the SOM is the well-known
formal analcgy between Euclidean Field Theory and Classical
“Statistical Mechanics. If we write the Buclidean N-point. Green
function, one can asscciate the functional measure

~SI91/8 (2.1)

to the equilibrium Boltzmann distributiﬁn of a Statistical
EYSFemf Parisi énd Wu(}) considered this system as performing
'afstochéstié process. l

In order to study this evolution, they supplement
.tﬁe ciassical field with an additional parameter, hére called
-“ficticious time" t. Moreover,Athe stochastic dynamics may be

-described by Langevin eguation. For the simple case of a boson

field with Euclidean action 8S[¢é}, we shall write:

3d(x,t) _ 58(¢]

. - " Telx,t] + n(x,t) (2.2)

nix,t}) is thé'(white) noise field, whose correlation functions

. are given by:

(nix,t}y = 0 ' . {2.3a)

_(.ni(x,_t).nj(_x'_,t'))- = 28 S(x-x')8(t-t')  (2.3b)

It is not difficult to prove that the N-point

. correlation functions, in the stationary limit (egual and very

big ficticiocus times), reduce to the conventional Euclidean

. 8
Green Functions. There are several proofs( )

about the eguivalence,

of 5QM to the other methods, ta all orders of perturbation.

. The perturbaﬁive appreoach to Stochastic Quantization

consists in:

a) a choice of initial e¢onditions for the above Langevin.eguation
so-that'he can reﬁrite it in an integral form;

b) solving the resultant integral eguation by i;erative procedurés{
in éawers of the coupling.constaﬁt;

¢) makihyg a convenient graphical association, we assign full
lines tc the Green functions {propagators) and crosses to
the noises. Vertices aré linked to coupling constants as
in usgal field theories; -

d} N-point correlation functions are easily obtained by joiniqg
the graphical iterative expansion of the above step. Crosses
are fused in accord with their white noise property, and we
need to consider ali possible contractions. The graphs so

drawn are called stochastic diagrams;

e) in stochastic diagrams, the lines containing fused crosses

describe composite {"crossed") propagators.
Let us exemplify things directly with fermionié
‘theories, although some remarks must be needed for sake of

correctness. Stochastic Quantization of fermions is not a-
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straightforward matter, heocause £here is no classic analog Eof
anticommuting guantities, like fermions - this fact leads to the
non-positivity of operators and ill-defined probability distri-
hutions for the field system.(in the sense of the corresponding
‘Fokker—Planck equafion). The most accepted prescription for
.dealing with fermions is to introduce kernels in the Langevin

equations to guarantee positiveness of the operators(g):

3¢i(x,t)

_ _ | 4D 5s(¢]
5T = J a’y Kij(x,y) + ni(x,t) . {2.4)

§d.(y,t
¢3(_Y }
"The noise correlations are also modified, giving
o \ [ - t ) :
(ni(x;t)nj(x RARDEE 2Ky j{x,xt) 8(ETEt) . (2.5)
Notice that higher point functions are obtained from those by’
a proéess very similar to the Wick decomposition.

The Langevin equation for free fermions, whose

Euclidean action is
sle, 9] = - 1i I alx Voo (F + 1My vix) {2.6)
is readily obtained with the use of the fermionic kernel

F s a,
Kij(x,y) = (lﬂx-+M)ij 87 {(x~y) (2.7}

.6,

giving a "bosonised" expression;

me

= lemdyy s _ (2.8)
and its conjugate ceunterpart. % and ¥ are Grassman (anti-
commuting)} noises, cobeying the correlations (2.5). Wwith an
adequafe choice of initial conditions for tﬁe above equaticn, we write
its integral expression, with the help of the Greens functign

(in the momentum space), “

.-—' = ...22 _|'.._I .
Gplkit-t )ij 6ij exp[ (K"4+M7 ) (-t )] o{t-t") - (2.9)

as
S bptet) = J dt Gplkit=t)y, S.(k,t"} . o a0y

* Graphically, we depict this object as a dashed line.
The conveolution ¢f this function {also called “"uncrossed
propagater™) with the fermionic kernel (2.7) yields a "fexmionic"

Green function, represented as a full line:

Tyglkatmtt) = (R exP[" (kzmz)'(t'—t')] ole=t™) . (2.1h"
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3. ANALYTIC STOCHASTIC REGULARYZATION

The stochastic process described by Langevin
equation (2.2) is typically Markovian, due to the white noise

(3} had the idea of

Eproperty {2.3).- Breit, Gupta and Zaks
smearing the ficticious time delta function in (2.3) using a
,;egﬁlator function, parameter dependent. Obviously, when this

parameter approaches to zero we recover the unfegularized

-noises. Henceforth:

) ng e, £D) s Ryl ) £ (et (3.1)
and
gim £_(t-t') = 2'8(t-t') . ' 3.2)

e+0
This is characteristic of a non-Markovian process, and the

noise is non-white.

Following_Alfaro{;), we use the particular regulator

fuhction:
E (e = ele]®T! _ _ . (3.3

- and get its Fourier transform:

fe(w) = J %% fe(t) exp(-iwt) = 2 f€|w|_€ (3.4)

with

Hh
¥

eT(c) sin 5 (1-€) . {3.5)"
-These new correlations enable us to compute - the
two-point fermion_correlation function, whose lowest order
contribution gives the so-called "crossed propagator":

gyttt = (gl e) Yyl en) ) (3.6}

Using (3.1), (2.10) and its corresponding conjugate we obtain

_ t £ _
Byslkst,er) = 2 J ac" J atm Gig(k,t—t")Glj(—k,t?—t"')f.E(t"—__t'“)
B
| {K-m} e -ix(k2+m2)(t—t') -
_ i3 J ax e =] (3.7)
€ (k24m2y1¥E ) @ 1+x%
—s

where we use {2.9) and (3.3).

An outstanéing feature of the ASR method is that
one is led to meromorphic amplitudes for stochastic aiagrams
constructed upon the rules here exposed. In this case, ultra-
violet divergences show up as simple poles iﬁ the e parameter,
(2}

as-in Speer's conventional methed

" In order to compute stochastic amplitudes associated

with gauge theories we need a similar expression for the crossed



propagator of the gauge field, We may find, using the "Feynman

gauge", a very familiar expression, given by(a):
+o 9
5. . a e—ixk (t-t'} |x|~e
D, tkit,t7) = & ———i%;g 7? 5 (3.8)
3 (k2) 1+x

—o

Notice also that the uncrossed propagator, in the

same gauge, has the simple. form:

Tk e g1t = _2_| — 1 V
Gij(k,t ') = Sij exp[ kK (t-t )] alt-t'} {3.9)

commonly used are the graphical conventions, for the fermionic

and gauge propagators {crossed and uncrossed) given in fig. I.

6, (kit-t') = w
.D”.(k:t'.t'} = lf\.fwv}(\fVW\]
‘Grj(k:t-t') = [T
Mttt = i J,
Apylkit,t') = i_"_"&"““j

fig.1

.10,

4. VACUUM POLARIZATION TENSOR IN SPINOR ELECTRODYNAMICS

We are now ready to consider a non—trivial_field_
theofy, like four-dimensional Spinor QEb, whose Euclidean
\act;on is
sta,¥] = | a%x[ir 5 CiTA-ieR+im v] . (4.
P . . 4.]_1\, Hy ) : . - o -
..These three fields pbssess Langevin equations;_straightfbrwaﬁdly'

obtained as

By lxet) = —_[(E-iM).(EHiM)] _ j'(x,t) £ (x,) (4.2)
R % A T R

- " - ) .. T s T = .

V. {x,t} = - Ix,t) [(ﬁ‘—lM) {Br+iM)} ] + #.(x,t) (4.3}
. i X : ji‘ b3 B )
__-Au(x,t) = =3, Fuv-+ e‘!’Yu‘l’ + nu(x,t) (4.4)

where we have
Hu '= —aﬁ - ieAu - , (4.5}.

and T stands for matrix-transposition,-ﬁThe-commuting {n)
and anticommuting {$) noises satisfy regularized correlations

{3.1).

We are mainly interested in calculate the 1-loop
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photon propagator correction, in the frémework of ASR. In this

order, the relevant diagrams to be evalunated are depicted in
V flgure 2. In order to establlsh whether the ASR preserves gauge
1nvar1ance, it is necessary to verlfy,transversallty of this
'ob-ject,- at least fo.r its divergent part. As the one loop ultraviolet
divergences-oécur as ﬁoles in €, the approximation lx|_€,: f
suffiées for the crossed propagator expressions 'The vertices
of this stochastlcally quantized theory are the same type as
that appearlng in conventlonal quantized ones, in the Euclldean
space.

Using the standard rules for dlagrammatlc calcu-

(8)

lations in SQM we find for the contribution (G-1):

t!

' 2 [ a"k
{G-1) = 2e dté dti (p - t') G (p;t-té)
(2n) .
- -
X Tr {Yuﬂ(pﬂ(;t;,té)YuA(k;t',té)] . o {4.6)
£ <* a’k
(G-1) = 5 3
2p (27)

Tr[Yu(—ﬁ-JﬂM) ¥, (-K+M}]

x . {4.7})
[ep+k)2 +m2]1FE (12492) 1FE (202,03 02) :

If we take in account the diagrams (G-2) and (G-3)

one can find, téking the trace on the integrand, as usual in

.12,

loop computations with fermions (details of the algebra are

found in the appendix): .

: t th.

2 . . a'x . o

{6-2)+(G-3} = 4e" at’, at) ——(2 3 Gu-p(p;t—t])

)
‘x—D (p t, t ) Tr[y A{k+p; t t ) Yy T'{k; t tz)] (4.8}
iz 2 { .4

(e-2) +(6-3) = —= } 4K
2% | (2m)

t2 2 L
. “auv(M +k“+k.p) + Zkukv + pvku + pukv .
X = — Tr — ) . (4,9)
[(k+p)2 +M2)"® (p24x24k pan?)

These integrals are very difficult to evaluate in a
clesed form, Althdugh we may obtéin exact results in two
dimehsions; it seems more interesting to use an expansion,
taking off tﬁe divérgent and perhaps finite terms of the
expressipns. Thé cornerstone of our method is the amaliticity of
the polarization tensor for large values of the mass.

Hehce, one rescales the loop momentum Xk -+ Mk and-
expand the problematic integrand in deers of p/M until the

order that furnishes divergent pieces, i.e., isclates the simple

poles. Further terms in this expansion are finite.

The above integrals, calculated by this way, read
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(see appendix):

5 .
(G-1) = <— '- {a.10)
32pTiT e
78 p P :
(G-21 + (G-23) = LA MY . S {4.11)

48 p2112€ 12 nz(pz)z-e

For the polarization tensor itself, we have (divergent piece){

2
1Mp~ 4§ o P '
(p) = uv L : {4.12)

(div)
T Z
961 e | 127" €

uv

which is non-transverse due to double crossed diagram (G-1),

which is half the necessary value - 2(G-1)+ (G-2) + (G-3} is
transverse - in the sense of dimensional regularization with
analytically continued dimension D = 4-2e, The other two

diagrams are egual to the corresponding dimensionally
regularized ones. This is also true for 3 and 4 point functions

in QCD, at one loop order.

5. CONCLUSICNS

These results are in apparent contradiction with those

obtained by Gavela and Huffel(10)

by using a different type of
(1) .

requlator They showed the maintenance of gauge invariance,

T4,

a result already expected from the naive observation that

Stochgstic Regularization, due teo ficticious time delta fuhction

=smearing, do not break any physical {space-time or internal)

éymmetry of the theory. We think there is an over—Sﬁmﬂifianﬁon

‘in this reasoning, because ASR gives ‘a non-gauge invariant

" counterterm for the gauge Ffield.

Rowever, an exciting observation seems to restore the

faiﬁbfulness of the method in a completely different context. .

{5,6)

Based in previcus works + where the ASR was used for scalar

électroaynamics and QCD} we found that the (G-1) contribution
(4.10) is minus twice the corresponding bosonic value. This
would ipdicate that ASR is a reasonable method to regularize

supersymmetric theories’, because the problematic bosonic and

. fermionic contributions cancels in some supermultiplets.

In a recent paper(7)

s we consider Spinor QCP and
-ﬁropose the usefﬁlness of the method for two classes of super-
symmetric modéls,.pamely:

. - Theicoupling of a gange field with a supersymmetric
matter multiplet (two bosonic charged fields and one Dirac

field};

~ The case of W=1 Sﬁpersymmetric Yang-Mills theory

" with one Majorana fermion in the adjoint representation. The

sc¢far-matter contribution is given by the non-abelian self-

interaction with a combinatorial factor of two.
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We have to draw also an important conclusicn, from APPENDIX

the detail of the computation. In one loop diagram with one

: . . . R . In this appendix, we show the intermediate steps
cross, the result is the same as in dimensional regularization,

. necessary to find the stochastic amplitudes associated with the
As we verified, all results are the same in the non-abelian : :

_ . ‘ : ‘diagrams (G-2) + (G-3) . There are four topologically equivalent
case. That is why the conclusions above were drawn in this :

" @diagrams need to be considered. In order to- integrate over the
case.

: . ficticious internal times, we make
We expect for-the futwre a more rigorous proof of

these matters, i.e., that there is no breaking of gauge imﬁ&ianoe ) . -
. . L. t, « t, < t) = £t = finite ficticious time ;
and :supersymmetry induced:by ASR prescription. - ) 1.7 72 1 o

-.because we start our Langeyin'process with € = -,
Using the "Feynman rules" (3.10), we rewrite (4.8}
as (e=1):
t t 400

1 . 2 .
o S22 o a dx -lx‘IE (t'—tz) )
(G=2) + (G-3) = 4?5 I dt& J dty J a4 x J _te - -

32 | 7 3

2

T 2
+
o 1%

o2 ety 2,020
ep(t ) (.k 7Y (e5-t])

o0 s 2,20 0
J ax, Ex,[k+p) fM Tiey-t))
X

Tr[‘ru(—k—z$+M) Y, (-K+M) ]

* Tre . (a.1)

2)1+e

(p [ (k+p)2 + M2}

The trace in the above expression is verv easv to

compute using the Euclidean Clifford algebra



{}u -YV} = - 26uv {a.2)

énd a simple algebra gives (4.9) as well.
Due to_a symmetry among the diagrams, we may-fake
k -+ -k-p and procegd as prescribed. Expanding in powers of

the external momenta we have:

(G-2} + (G-3) =

' 2 . (e p]
a2 2 -8 K" +k + = k =
_ 4f594 a’x pv(1+ Tk P )+ 2k K, .[MJv n [M . k,
(p2)% | (2m? (k241)2%€
P pY)? ) (e
W(8) < (R) wx(B) (B) _—
® [1 - - - — P e ' {A.3)

K2+ 1 (x2+1)°

which gives nothing less than twelve integrals to be evaluated,

with the help of the simple formula:

'{b/2+n){m-n+D/2+ ¢}

aPx k2" 1
b T(D/2) T'{m+e}

(2m)P  (ke1)™E (2 ;P

(A.4)

and ‘their sum gives {(4.11).
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FIGURE CAPTIONS

Fig. 1 - Graphical conventions for the Feynman rules.

Fig. 2 - QED 2-point function with one and two internal crossed

lines.
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