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ABSTRACT

Bose~Binstein correlation is discussed for par-
ticles produced by raptdly expanding sources,

- when kRinematical affects hinder a direct rela-
tion between the observed correlations and the
source dimensions. Some of these effects are il-
lustrated by considering Landau's hydrodynamical
model wherein each space-time point of the fluid
with temperature T-Tc =mpy is taken as an indepen-
dent and chaotic emitting center with Planck
spestral distributicn. In particular. this model
reproduces surprisingly well the observed f{-7T
and K-K correlations at the ISR.

1. INTRODUCTION

. The correlation between identical particles produced
in a reaction is closely related to the space-time struc-
ture of the emitting source of these particles. This is the
base of Hanbury-Brown and Twiss methodl) , used in radio-
astronomy to measure stellar dimensions, and also of the
GGLP effectz) in nuclear physics. Several authors have
3-7 , but so far concrete applica-
tions have mostly been restricted to static sources, the

studied this phénomenon

ones with fadtorized time and space dependences or field
theoretical model with a classical sources) . -While these
models clarify several qualitative features of the phenome-
non or even are convenient approximations in_some cases, it
is questionable to straig-htfomrdly apply  their results
and try to extract from the data quantitatiwe information
on more dynamical processes like hadronic interactions. In
these reactions, the particle sources tmcally move at
relativistic wvelocities with respect to each other and
important kinematical effects appear preventing us to es-
tablish a well known simple relation between the observed
correlations and the source dimensions.

" In a previous papera) . We gave a prelimimary account
of our study of the identical-particle correlation, by
using Landau's hydrodynamic model as a prototype of such a
rapldly expanding particle source. Related discussiong have
recently been made by some other au(:iwrsg} by wsing the
string~fragmentaticon medel, which presents several ecommon
features with the hydrodgnamic models. In the present
paper, we shall give a more ipbuitive presentakion of seve-
ral of the effects caused by the emission-source motlons,
by considering a simple two-point-source model (Sec.2) and-
then illustratimg them by a more reatistic hydrodynamical

model (Sec.3). For comparison with data, which will be a-

chieved in See.4, it is crucial to consider the emission of
quanta throughout the whole phase transitien, during which
the energy density decreases from the initial value EPICTG R
calculated for the plasma phase, down to eh (Tc )}, computed
for the hadron gas. We will draw conclusions and propose
some experimental works in Sec.5. :

2. TWO~POIRT-SOURCE MODEL

Lot us comsider two point sources which are in move«




ment with respect to each other, so that when their space-
time localizations. are respectively given by x'H - (t'f?')
and x"M - (t"ggf), they independently emit quanta (pions).
Two fixed counters. A and. B, placed at xgkand_xg'are adjust-
ed to detect particles in coincidence. Then, following the
usual. reasoning the amplitude. of detectinghtwo identical
quanta, one with. rour—momentum p!'t (E 1) by A and an-

other with pr' (E ,p ) by B is glven by
”’““F o expfi Lh“m,‘-zh) + B (g2 )1}
N . . M . !
+ Q’Ff"{ "'[ﬂ“(‘IAp*xﬁ) + F;(’xav"xvﬂ} (13
énd the probability

W(f’l; Pz) = M’Wfllloc X [f + 4 (AFHA.IF‘)] ? (2>

where
{AE/ AF) = (Ez'El-J ;:-""_F: ) 3
and |
= (a1, A?) ('t”t r-v'). N

The correlation coefficient is then written

VV(fh) ﬁz]
Wp) W(p.)

where W(p ) is the single particle probability.

Clpups)= L+ cos(aphax,),

1
More generally, we are interested in two point sources

that irradiate at random during a finite interval of time
bt. so one has to integrate eq.(5) over t' and t" with

appropriate source-velocity dependent weight functions and
some random phases. In general its explicit expression
becomes complex, but for the sake of discussion here, we
reinterpret our basie relation, eq.{5), by replacing it by
a certain average

Clp,pe) = 1 + < CW('APHA‘XP)X (5a)

In the static case, this egquation establishes a direct
connection between the two-identical-particle correlation
and the distance Ar as well as the relative direction of
the two point sources. Thus, by choosim;AE 0 and measurlng
C(p,.p,) at different values of p (p +p /2 and Ap- ; K] .
one easily determines Ar‘ For mov1ng sources, however, and
especially when the wvelocities are variable, the problem
becomes much more complex.

Let us first study two collinear point sources which
move one away from the other along the X-axis. For simpli-
city, iet us consider

(t',o’-o’d)"

- (6)
'x'”“-: (t”/ x”J 0 / 0 )')
where the second source 1s accelerated and so with an
increasing four-velocity u —(u Sy 0,0}, each source having
a half-life of 5t as dlscussed below eq.(5). Let us try
to measure the (longitudinal) distance between the two
sources. It-is ciear from eq.{5a) that the most convenient
way to achieve it is to place the two counters at ~ 90°,
i.e. pJ.Ox (see Fig.1l) and measure ccp p ) as a function .
of A;}//Ox (AE=0). Now, x" is changinq here and so we do
not have one distance but many of them. As is well known,
if we assume that the spectral distribution is isotropic
in the proper frame, in the laboratory frame it becomes



concentrated in the forward 'diréctién as- ul' increases.
Hence, the larger the wvelocity u is, the smaller is its
contribution to { 5 of eq-(5a) in the present case. This
effect is the one which has been discussed also in Ref.9).
The distance A x=x" that the correlation data reveal would
then be the one corresponding to a "typical” u, obtained
with the momentum spectrum as the weight function. To be
more specifie, let us assume that the invariant distribu-
tion is given by

. ] i -

Edn K [.Etﬂ] = [._E‘L'E]

s “wF R WEO - @
ﬂepce, we have '

2
: _ T 27 T
W ’-‘—’(!+-—— — (I+:-) (8)
with the corresponding rapidity width of A = 0.94, if
T % my and <pT> = 0.35 GeV, a number of the same order
of magnitude as used in Ref.9). However, eqs.(7} and (8)
show ‘something more. If one calibrates the counters so

as to ‘deétect -large-momentum particles, <110> decreases

tending to 1, so A - 0. This means that if the second
source 1is accelerated as happens in an expansion, the
"effective” size which the correlation data show decreases

as p_increases.

Let us now study the measurement of the transverse

"distances"” between the source points (we are decomposing
the vector‘A?? along three independent directions). For the
configuration given by eq.(6), it 1is evident that such
"distances"” are identically zero. but in general x"H may
have y" and z" components. To determine Az, it is natural
to put the detectors nearly parallel to the y-axis f3510y),
and measure C(p{,pz) as a function ofiﬁpz (AE=0). To esti-
mateAy, one just turns the counters by {/2 and repeats the
above procedure. One might think that it is also possible

to evaluate Ay by setting the counters aleng the y-axis
and measuring C(p,,p,) as a function of Ap_ . However, for

) v, . L
non-simultaneous emissions, i.e., At = t"-~t' ¥ 0. the

argument of cosine in eq.(5a) becomes

Apax, =AEAt - Lp, Ay
_—-_AF[ A't' A] _— AF [-—A‘C] D)
1z d
(By=0) ILAp
So, although the actualAy'is zero for our two point sources
given by eq.(6), it appears as if Ay - -(dE/Ap )At ;'¥VAt._

In other words, when the second source emits, the field
emitted by the first one has already travell&ad a:distaﬁcé 
vAt, so the peint (t",0,vAt.0) béhaves as an effective
source simultaneously emitting with the second one.”Evidéné;
ly, the effect we .are discussing here has.néthing to &6
with the source motion, but just with the emlsszon-tlme
difference. However, such a delay in the em1351on time
is a basic feature of any more realistic model of expandlng
objects and, as we will show later, it bécoﬁes cruciai-in
the analysis of the data. ' T .

So far., we have restricted oursélves to the stﬁ&y.of

the correlation as a function of cne component of}ﬂfi tak-

ing the other components equal to 0. Clearly, such configu-
rations are highly improbable. This is a wvery important
point when one tries to extract information on the source
structure from the data, because if, say, the component of
Ap which is parallel to T is L0 and the correlation is seen'
as a function of a normal component of Ap, for instance Ap ,
first it will not be =2 at the oTrigin . (Ap =0}, but (z'aﬁﬁ
also Ap =0 will not be the point of maxlmum of - ‘C(p .p_J.
Obviously, this implies. that a simple parametr1zationzof
the data by eq.(5a) or by a Bessel function as usually done
in the case of a continuous source may léad to completely
erroneous conclusions. To show these effects, let us acgain




consider the last erample and now set the detectors so as
to have p// Oy and Ap - (4p, Ap .0), with Ap > 0 constant.
Then, Ap"’Axr‘ = AEALt - Ap Ax whlch gives Ap"dx > 0 when
Ax = 0 and C(p,. pz)< 2 there. The maximum of C(%_,gz) is
located at Apx = ABAL/Ax > O.

3. HYDRODYNAMICAL MODEL

Let us now extend the discussion given in the preced-
ing section to a more realistic extended source that we
will describe by a variant of Landau modeil®) in which we
assume that the fluid is theJquark-gluon plasma and the
fireball mass is an event-dependent parameter. While the
latter assumption is not necessary if we confine ourselves
-just to a theoretical study of the expansion effect on the
correlation. it turns out to be essential when comparing
the results with the existing datall).

Since the final results are not expected to be very
_sensitive to the details of the expansion model, here we
completely neglect the transverse expansion and use the
asymptotic form of Khalatnikov solutionlz), namely

z X ~_cflT ' (109
T : a ' :
« = A4 j;h 1+x (11)
Z —x

where

o = rapidity of the plasma,
¢, ~ sound velocity ¥ 14/3 and
& - -2y l, 2€ - initial thickness of the fireball

L

This solution is valid when 1] >» |« [
VUsually, one assumes that the . final particles appear

when the local temperature reaches a certain critical value
T=Tc2mﬂ, which defines a transition surface. However. due
to the statistic factor, which is large in the g~g plasma,
its energy density'Gp (Tc) is too high to assume that pions
appear from such a surface. We think it is more reasonable
to let the fluid expand further and assume that the final-
particle emission occurs during this interval of time when
the energy density goes down to the characteristic value
for the hadronic gas Gh(Tc). Since the pressure remains
constant during the transition, the expansion in this stage
is expected to be inertial, being o in eq.(11) unchanged.
Here, we shall first study the problem under the assumption
that particles are emitted at T~ 2‘ when ¢ = 6 (T )} and
then improve the results in the next section, by cons1der—
ing the above effect, but for simplicity taking T = {T»
e, - where (1’) is a certain average value which will be
computed later. Evaporation from the hot plasma would cer-
tainly exist but here we assume that the bulk of the pro-
duced particles come from the transition region which deve-
lops from inside to outside. The effects of resonance pro-
duction, final state interactions3), as well as of the par-
tial coherence of the sourced-7) » if any, should be taken
into account, but here we simply consider a totally chaotic
source, which will show (Sec.IV) surprisingly well fitted.
to reproduce the existent data.

So, let us initially assume that each point of the
surface Z' T in the plasma where T=T wmﬂ-xs an independent
chaotic source with the momentum spectrum

() _&« “n |
Jlp) >~ {‘H) ?/xja( = ) , (12)

where

uf - (cha, shal, 0, 0) - 4-velocity of the fluid,
pt - (E, px._py, pz) = 4-momentum of an emitted (13)
particle.



The amplitude for finding a particle at x and emitted
at x' is written

Jtoe,x') =[oLFJf_(p—)_ expl-iplatoaty] @x,o[i 8], ae

where §(x'} is a random phase. Fellowing the notation of
Ref.5), the probability of detecting two quanta of momenta

p1 and p2 in an event is

Wik, pe) = I(0,p)T(0.p) +|E[n- pzl,z(r)ﬁfa,_)]{ (15)

where

f(np,.p) = fotxale MP[L'XAP-;-EMP][M’I&,AJ(,I'))
(16)
17045 2 VT(or82 X)) = 80-x") T, 8%, )

and the average is taken over the random phases (x')} and
B(x"}. We also have

W(h‘)E<lfdx'ﬁzxf:(é-hr)J'(x,x')dxr> = f(f?,]:,;). amn

Thus, by inserting eqsl(12-14) into (16) and .then
I(Ap,p) so obtained into egs. (15) and (17), we can easily
calculate the correlation coefficient C(p .p ) defined by
eq. (5), giving

o= 14l
c R Apy

ijui —ﬂ —-——f-*”)+{EAE ,ba;v,)—l +Z;_ u"] }

27t

X

[( %_I’-;-. (AE?'—AF:)'L::) +4 (EAE-pAp, j % ]3’&

<

?;.}[\J P . +(EAE FA@li-\’F“Pﬁ
[(§~f"ﬁ+%ﬂ: )i - (E4E- FLAf’,_)zJ.'/#

y{[(l:h_) (Eaz f,.A? ) o (e s, Af”- e (AE;\FL) ]

%
IETP:_ _‘_(AE AF._) ](bAE P,_A?L)} ) o (18)

T

C

where

b= %(P,-i- PA) = (E}FL;P? il’f])
APE b= = (aE,Ap,Ap,, 4p,)

AI’T = UAP;"'A?-; .

We fix the critical temperature T. =T and Tj shall be
determined by imposing the condition T= T on the plasma To
doing so, we need the initial temperature T which depends
cn the mass M of the fireball and its initial size. 1t
has been shown that the hypothesis of large mass Lorentz

. and’ (19)

contracted fireball formation around one or both of the
incident particles provides a nice framework to. accounting
for several of the experimentally observed quantitiesl3'l4?
In Ref.14), it has been shown that, if such a fireball is
made of guarks and-gluons, a very reasonable choice of the
initial radius RZRpro leads to the experimentally observed
mean charged multiplicit)n(Nc;xM) as well as to the pseudo-
rapidity distribution dG'/dv (M), which have recently been

10




measured in large-mass diffractive dissociation at the pp
collider . In contrast, 1if such a fireball is made of
pions, a too large radius R becomes necessary to fitting
the data. It would alsc be possible to impose some other
initial conditions wherein non constant space-time distri-
butions of temperature and velocity are specified16’17),
but in this case we would not have a definite principle
for such an assignment and, moreover, a simple version in
which T and v are specified on a hyperbola 7'- const. gives
exactly the zame asymptotic Khalatnikov's solution; so, as
far as the practical results are concerned, we can go back-
ward in time and start from a constant temperature T=T0 and
v=0 at t=0. Then, following Ref.14).
Y%
To = | ff‘z’ —— | VFT = 6V = 018 VAT, 20y
YR (Ga 44 4,)

where g, and 9, are the statistical weights of gluons and
quarks respectively and the numerical wvalue of b in the

last equality has been fixed (in Gevlfz), by using the

fit (N_>=1.8YM (which means R=0.76 f if N.-2 as is taken
tbroughout this Sectlon) ‘Then, from eq.(10) we have

’ &
z
Tod(f (e ) = srw.
T 3T Vmg
We shall now illustrate the klnematlcal effects dis-
.cussed in ‘Sec. II. by using eq. (18} above. Let us first con-
s1der two equal ‘energy quanta emitted symmetrically with

'respect to some transverse dlrectlon and plot C(pl,pz) as a

function of Ap=lp2-p1| We show in Fig.2, curves with Ap =0
and 4p;=0 at two different values of M. In the ApL=0 case

(Ap=ApT), -the correlation coefficient does not show any M

dependence because the transverse dimensions remain cons-
tant in the present ‘version and independent of the energy.
On the other hand, in the Ap&=0 case (ApaApL), a strong M
dependence of C{p,.p,) does appear. This effect can easi-
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ly be understood if we notice that according to egs.(10)
and (11) the surface T=T, from which the hadrons emerge is
a hyperbola which moves upward as the mass M increases (see
Fig.3) and curves with constant velocities are straight
lines starting from the origin of the coordinate frame O,
namely x-vt, which means as discussed before that the cor-
relation in ApL decreases {(apparent size increases) with M.
Let us now study the Py dependence of the correlation.
We show in Figs.d two families of curves corresponding to
two different arrangements of counters, each curve computed
with a fixed average transverse momentum pT qf the two
quanta. Their average direction has been set to be H/Z
with respect to the longitudinal axis and the curves in
Fig.4a represent the longitudinal-momentum correlation
whereas those in Fig.db correspond to the one with ‘&3A/$'
(source-depth measurement). In both the cases, one clearly
sees that as P, increases the width of C(pl,pz) increases
as well, mimicking a diminution of the effective source
size, in agreement with our previous discussion in Sec.I].
It is also interesting to see the fireball-mass de-
pendence of the correlation coefficient as a function of
zkp as displayed in Fig.5 {the axes have: been chosen as in .
Flg la, where the fireball expands along the x-axis). For
all these curves the transverse dimensions of the source
are the same,'differqnce occurring only in the longitudinal’
expansion. As discussed in Sec IL (eqs (7) and 8 aﬁd

"below}, once the average energy of the identical’ particles
is fixed, the average veleeity of “the effective seurce (uy:

is. also defined. Now, by looklng at Fig.3 one notes that '’
for the same velocity of the fluid the time At becomes
larger as M- 1ncreases, yleldlng due to eq. {9) larger appar— 
ent depth for the source or narrower curve . for C(p ‘P

Let us now examine some more probable cases of Ap
dependence of the correlation, in which more than one compo-~
nent of AP are #0. Figure 6 displays some examples where

12



the correlation has been computed at an avefégé direcﬁion
of T/2 with respect to the symmetry axis and with Ap #0.

In each case, C(p .P, ) is plotted as a function of Ap .

where Ap'= (Ap? -Ap2 %/2 The main feature of these curves
is as seen the fact that L(p p 1< 2 at the origin Ap'-=0,

which is quite natural 31nce here Ap'=0 does not implies
AB=0. As we have already discussed it in the last Section
{and here:we'emphasiie it again) data are never bbtained
with, say, Ap}éo, but within a certain limit, so the_ experji-
mentally measured correlation coefficient is always smaller

than 2, even if the source is totally chaotic. Also, the

maximum of C(pl,pb)-is not necessarily at Ap'-0. Although
this is the case for the curves in Fig.6, this feature can
more clearly be seen when one looks at Fig.7, where we show
¢(p,.p,) as a function of Apx when Ap #0 and the average
direction of the two gquanta are not at right angle with res-
pect to the expansion axis (poOJ.

4. COMPARISON WITH DATA

In the last Section, we have shown several kinematical
effects that the source expansion causes on the correlation
by considering a hydrodynamical model where the source is a
quark-gluon plasma which is assumed to be formed during a
hadronic colllslon and which emits the observed pions as it
cools by expans1on and reaches the critical temperature
Tc=mt. As has been’ mentioned there, due to the large sta-
tistical factor in the g-g plasma, its critical energy
density e (T ) is much higher than the characteristic ha-
dronic energy density &€ (T ). Then., in order to compare the
results with ;he datalll}, ; more realistic model is needed,
whereby the fluid expands further undergoing a phase tran-
sition. Particle emission -cccurs during this time interval
in which the energy density decreases from EL(TC) doﬁn to

13
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In estimating the correlatlon coefficient with. the

phase transition taken ‘into account, - we assumé following

Gyulassy and Matsuils) that an isentropic path is followed

- during such a transition. Then, because our fluid is one-
dimensional (with. the transverse expansion neglected) and

is expected to underge an inertial expansion during this
stage -as argued <in Sec.3, the - fluid velocity remains v-x/t
=constant. and ‘ : e

8T = /T =47, (BeT<Yy) (22

where sp and 2; are respectively the entropy density and
the (proper) time ‘when the transition-beging and sh'ahd'i;
are the same quantities at the end of the transition. We
assume the entropy deﬁsity s as belng the one of a (mass-
less) non-interacting guark-~gluon plasma

z
3

4, =g X% 1
F gf't;s,.“ 7
with the effective number of freedom g =2x8+7X(2X3¥2XN }/8,

being Nf the number of quark- flavors, and Sh ‘as- that of

- (25

the usual pion+kaon ideal gas; namely
A&=%[3n6(zm)+gk-6(z,<)] Tc T (Zé)
where 9 =3, g =4, z =m, /T and
4 K,,(*nz)-r- nz K, (fnz)
G (z) L

.n_ ) »

So, with the use of eqs.(20) and (21) (the numerical wvalue

(253

of b has now to be changed to 0.099 because our hadronic
gas contains kaons as well as pions), we gel
Ln¥es .
’t&:_’ff_’tc: (4n745) g T s (26)
4y, 259102, ) + 9.Glz)

14




o N

where G(zp 1)%7.476, G(%(53.5J=2.156 and 1; is given by
eq. (21).

At a given instant of time in the interwval ‘2'&2' h,
we have

=4+ (-{)4, o0<4<! 27
i.e., the total entropy density of the fluid is a sum of a
plasma portion and a hadronic portion,. so that s-=s at't-%;
and s=s, at ?%?;. It immediately follows that

4 =E_:..z_.££ ) (28)

which is the fraction of the mixture that is stilil in the
plasma phase. We think this portion of the entropy, namely

f4, = =T Ty (29}
Y- T

{(in terms of density) should properly.considered as the
particle-emission source during the transition.

So, a more exact calculation of C(p ,pz) would amount
to including the factor given in eq.(29) into eq.(12) or
(16) of the previous Section, whefe the integration has
been simplified by SCT—Z') assumed there. However, as will
be discussed below this is mot all the story. In order to
get quantities comparable with ‘the datall) more integra-

- . tiens: or averaging procesees are required. 'In the present

‘paper, we instead preferred to 31mp11fy the problem and

estimate C(pl,pz) by  considering "typical"™ wvalues of all
these integration variables and computing it there. Thus,

instead. of performing a detailed 7 integration in eq.(lé)*'

with an additional facter f given by eq. (28}, we have com-

*See details in Ref.8).
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puted the average time

2z
72
{Ty = _27(’& —.,) . T (30)
E[ﬂu£—1]+’ -
TC TC

with s, taken as the weight function and then replaced ?T
by (TP in eq.(i8). In Table I, we show the numerical est1~
mates for ?L/?; and (TjVQE when N.=2 or 3 and the hadron
gas is made of pions and kaons. .

Now, as stressed at the end of Sec.3, we should not
forget that the kinematical situations chosen there are
highly ideal. Due to the low statistics, ‘the available cor-
relation data have been obtained by considering pairs of
identical particles in much wider kinematical domeins. For
instance, in Ref.11), data were obtained for pp collisions
at v's=53 GeV, by detecting all 7" ‘mesons with B2 20.1 GeVv
and in the rapidity range of {y|{£1.0. Then, the correlatlon
of such pions is determined by taking all the pairs into
account and as a function of q . with qr<0.15.GeV or as a
function of"qT with qL 0.15 GeV. Here, a {and %y )} are the
usual Kopilov's var1ab1es4), namely. the components of A;:
which are parallel (and orthogonal) to p=(p +p y/2.

Thus, in order to make comparisons wlth experimental
data we should average our result given by eq. (18) over

- several of the kinematical- variables However, inclusion of
*.all thlS averaglng procedures makes the computatien much.
more complex so for the sake of simpilcity we decided to

invert it and estimate C(pl,p )} by adoptlng some "typlcal"

7.(naverage) values of all the varlables but one, namely q*
" or q, . as function of which the data are given. The only'

averaging which has explicitly been carried out is the one
over the azimuthal angle with respect to the "typical®
momentum p taken from data. )

We present the results of this valuation in Figs.B

16 |



and 9, together with the data of Ref.1ll). As it caﬁ be-seen
the agreement is quite good and especially in Fig.8a) one

sees that, although our source is completely chaotic, qy

dependence of (C(pl,p )) for w'#t is much better reproduced
by our curves . than by the empirical fit presented there.

Observe that we have not adjusted any parameter by fitting
the data, but all the numerical parameters have been prede-
termined either by the experimental conditions described in
Ref.1l) or by theoretical considerations (as Tc;wﬂ and gp).
It is interesting to notice that no appreciable diference
in (C(pl,pb)> is introduced by changing the number of quark
flavors. This is, in our opinion, due mostly to the fact
that the data are the average over several pion-momentum
directions. so that mainly those pairs which are relatively
insensible to . the collective motions give contributions to

the data. We think that in analyzing data if one enhances

the longitudinal (Ap; ) correlation, one can better discri-
minate among several possihilities.

5. CONCLUSIONS

We have studied in the present paper several kinema-
tical effects which a rapid expansion of the source may
cause on the correlation between two identical particles
-emitted in a high energﬁrhadronic collision. This has been
schematized by 'a simple two-point-source model in Sec.2
and then.extended to a continuous chaotic source .in Sec.3,
by using the sca11ng solution of the hydreodynamical equa-
tions as such a source.

We have shown that what we actually measure in corre-
latlon experiments are the source dimensions characterized
by some_typlcal‘collectlve four-velocity uogﬂ(ub>. Numeri-
cally, if (pT)EO.SS_GeV, such an interval turns out to be,
in terms of rapidity of the source points AX=1l. This value,

17

however, 'dépends'on:pT?ahd“decréases as p 'increaSes,-sug-
gesting an experimental study of the- velocity dlstrlbutlon
of the source.

The a dependence of the correlation coefficient does

not directly show thé source depth but a’ combined effect

of the depth and the emission time interval, ‘hoth in the
velocit& interval mentioned -above. “This effect may be
used in high-~energy. heavy-ion collisions in order to dis-
criminate between single-source- -and multi-source-formation
mechanisms.

Experimentally, all the.components of p are generally
non-zero. Thus, e-g.., qT=0'if one is plotiing C(pl,pz) as ‘a
function of qL. It follows that the experimental C(piépzl
is always smaller than 2 at. the origin'(qﬂ=0) without imply-~

ing necessarily that the source be coherent. In this paper,
we have taken a completely chaotic -source which has shown
to be enough to reproducing the data.

The correlation is shown to be strongly dependént:on
the mass M of the fireball. By varying the incident energy
VS, one may experimentally study its average mass KMY)
dependence. In Figs.10 and 11 we show some predictiens for
such an energy dependence of 7'#" (or 9% ) correlation at
the pPp collider energies, by assuming exactly the same
kinematical restrictions imposed in Ref.11). As is seen,
there appears a strong energy dependence of (C(pl,p2)> as
cne goes from the ISR to the collider energies. It is also
desireable to see how it varies with M at a fixed energy.
because it is well known that there is a large inelasticity
fluctuation in hadronic c¢ollisions.

In comparing with the data, we have assumed formation
of quark-glucon plasma which undergoes a (first-order) tran-
sition as it freezes down to a critical temperature. The
agreement with data is quite good suggesting that the
physical idea behind our model is reasonable. As a first
estimate. we have simplified the computation by replacing
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the average values of C(pl,pb) by its values at the average
points. We intend to improve the results in the near future
by effectively carrying several integrations ocut. Neverthe-
less, our feeling is that the explicit integration does not
change the main features of the results.

. The: averaging over. several -kinematical variables
washes out many of the interesting features of two-particle
correlation. This is especially well illustrated by Figs.2
and 6. Although it may be an arduous task to get statistic-
ally reliable data, it is worthwhilé to narrow dowr the
kinematical windows, for it will certainly give a much
richer information on the - space-time structure of the
hadronic collisions.

In short, we conclude that in high-energy hadronic
interferometry, we cannot get any correct information
neither about the nature of the scurce nor about its dimen-
sion without taking the source expansion effects into
account. -
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FIGURE

Fig.1l:

Fig.2:

CAPTIONS

A schematical representation of relatively moving
two point sources. A graphical definition of the
vectors 3 and AS are also shown.

Correlation parameter giveﬁ by eq.(18), as a func-
r “-‘__»
tion of Ap—lplrp2

. when 3! and 3; are symmetrical

~with respect to some transverse direction. The

Fig.Q:

Fig.4:

Fig.b5:

Fig.6:

Fig.7:

coordinate axes have been chosen as in Fig.1i, with
Ox parallel to the expansion direction, APLE P_-
The curves labeled average correspond to the mean

values taken over thé‘ézimuthél angle with respect

to 3L

Graphical representation of the transition surface

T=T_ (or.'?=?é) for. two. different. values of the.

fireball mass M. The straight line indicates the
curve v=const.

pT dependence of the correlation coefficient alas a
function of’ApL at M=40 GeV and b) as a function of

ApT at M=540 GeV.

Fireball mass dependence of the correlation coeffi-
cient as a function of Apy.

Correlatlon coefficient with Ap £0, as a function of
v(t\p +Ap 2y1/2

Correlation coefflclent with Apyfo and PLEP, %0 as

. a function of ApL-Ap

Fig. B:
Fig. 9:
Fig.10:

Average ﬂ;ﬁ; correlation coefficient, computed as
explained in the text, is compared with the experi-
mental data . The c¢ontinuous curves are our
estimates with N.-3 (qp=47.5), the broken lines
with Nf=2 (gp37), whereas the dashed lines are the
empirical fits given in Ref.l11). In accordance with
the experimental conditions, we have taken {(M}>-37.5
GeV, (p;)»=0.38 GeV, (€»1.01 rad and in a) {q.)
=0.075 GeV and in b) {qT}=0.1 GeV.

Average KK correlation coefficient, computed as
explained in the text, is compared with the experi-
mental datall) - The symbols are the same as those
ones employed in Fig.8. Following the experimental
conditions, we have taken {M}-40 GeV, {ppy =0.44
Gev {g-0.85 and (q;>-0.15 GeV.

Energy dependence of the average ﬂ;ﬂ; correlation
coefficient as a function of q,. computed under the
assumption of the same kinematical restrictions
as in Ref.]1).

Fig.11l: The same as in Fig.10, but as a function of 9.
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