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CIAOTIC BEHAVIOUR OF THE NUCLEAR SHELL-MODEL NAMILTONIAN® Quantum- chaos 1{Q.C.) has been the subject of -dintensive’

investigaticn in the last several years. A particularly convenient

-and well studied system which exhibits QC is the‘atomicrumleus]{

H. Dias, M.S5. Hussein** and N.A. de Oliveira

: i R X ; : Nucliear reacticns involving long time del i i,
Instituto de Fisica, Universidade de Sdo Paulo 9 g Tl ays invariably show

C.P. 20516, 01498 S3c Paulo, S8.P., Brazil chaotic behaviour exemplified through what is known Ericson

and fiuctuations. This is seen both.in neutron-induced and heavy

nucleus-induced reactions on a variety of targets. . In fact, as
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B has been recently discussed by Weidenmiller ', the S-matrix for
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brexel UniVersity Philadelphia, PBA, 19104, U.S.A compound nucleus scattering can be simulated and evaluated in
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a universal fashion, owing precisely to the fact that its
fluctuation properties are generic, and qﬁite independent of

the speéific dynamics of the system, a pre-requisite of a chaotic

ABSTRACT . .
motion.

Statistical features of nuclear structure have

also been widely discussed3}. In fact at high encugh excitation

Large scale nuclear shell-model calculations for
several nuclear systems are discussed. In particular, the
: ' . . energies, it is expecteéed that a theoretical description of nuclear
statistical behaviour of the energy eigenvalues and eigenstates,
’ . spectra based on random matrix theory can be contemplated. Even
are discussed. The chaotic behavicur of the NSMH is then
. ) ) the coherent guadrupcle oscillations in nuclei is expected to
shown to be guite useful in calculating the spreading width of : .
) : - undergo a transition to a chaotic behaviour at high excitation

4]

the highly collective multipole giant resonances.
‘ ‘ ' energies’

Since the underlying microscopic picture of nuclear

*Supported in part by the CNPg and HSF. structure is the sheli model, one is.ngtgrally.led to investigate

**3_ 5. Guggenheim Fellow. its statistical properties. Put slightly dlffgrently, to what
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New RexXLo. querane, representation of a random ensemble? The answer to this guestion

is two-fold important. First, at a fundamental physics level,
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it would supply one more important example of- QC in a linite
system. ' Secondly, from the practical nucliear physics point of
view, it is important insofar as it leads to a great amount of
simplification in the theoretical description of several nuglear
observables. In particular, the calculation of the detailed

structure of giant rescnances can be greatly simplifiedS).

6) (BB} have looked

Quite recently, Brown and Bertsch
into the degree of statisticality of realistic nuclear shell
model calculations in s-d nucle;. They found that the states
in the region of high level denéity-show characteristic. Porter—
-Thomas (PT) behaviour. The criterion they used to establish

the degree of randomness in the output of their calculation is

based on the quantity

A= <V>0P£.
D

with (V)O££ denoting the average rms value of the of[-diagonal
matrix element and D the average level spacing. It was found

by Bﬁe]

that when X >1, the individual level positions. lose
memory of their location in the‘diagonal part of the Hamiltonian
and éccordihglf the distribution is closest tGo a ‘BT .

" In the present contribution we extend the study of
BB tprlargér dimensions éﬁa Eér.a wider éléss of nﬁckwr éuxeé[

In table I we list the cases, with the correspending dimamions.

The SM calculation was performed with the Wildenthal interac-
tion. This interacticon includes a mass dependence of the form

(V) (A) = (V)V(A=18)(ﬂ/18]—0’3. The vaiue of ({(v)(a)] for

off.

the cases studied are listed in the last column of Tiile I.
These values are relevant for the determination of the Ai's
(Eq. 1) and subsequently testing the PT criterion of BB,

We have verified that the criterion used by BB,
Az1, Eg. (1), to establish the closeﬁess of the nuclear
spgctfum t6 a PT distribution is not sufficient. To demonstrate
this we have performed a full shell-model calculaticn with the
Oak-Ridge Code. In Fig. (1) we present the distribution of .
the eigenvalues obtained for N=109 and N=517. The [irst
case in the one discussed by BB. As we see they both show
Gaussian distributions, indicating that the central-~limit
theorem is operative here. We ha&e éhecked that ail other
cases presented in Table I exhibit fhis 5eﬁaviouf. Armed witﬁ
this conclusion we are now ih a position to analyze ﬂw m@ﬁit&k
distribution. We.present in Table‘II ﬁﬁerresult 5E iﬁh;én;lfsié.
In the last column wértabulate a measure of ﬁhe deviatiéﬁ of‘.

the calculated spectra [rom a PT distribution,

Ca&f-—.‘PT

| AS @ e
A = Z , P ] ‘ S _ Co{2)
' Y= . . -

where M represents the total number of intervals used in the



construction of the histograms, and the Porter-Thomas distributioh
is given as usual by

By =l el 1l /2]

(3)

In the above expression, N is the dimension of the basis [i}

used in the construction of the nuclear state |3j), and ay i's

are the expansion amplitudes,
|;,L> == g cLJ"L ¢ > o (4)
. > . -l
. 2 : . ‘

It is quite clear from Table II that a good meésuré
of the adequacy of the PT description involves a close cor-
relation between A, Eq;(1), and A, Eq. (2). . The good-case'
presented by BB is that presented in the third_line of Table II,
with A =2.63 and A= 0.16 . We héve verified that this sitwation
involves an energy intervai which corresponds te the maximum
in the Gaussian distribution of the eigenvglues; On the oﬁher
hand, other cases shown in Table It indicate that the correlation

ketween large A and smail A is not always automatically

' guaranteed, and there is a strong dependence on the dimension
of the basis. The important variable seems to he the energy-
-range. As long as the energy range is situated arcund the

region of thie maximum in the Gaussian distribution of the

.6

eigenvalﬁes (Fig. 1) then, in this range, no levels attain
special characteristics, rendering the amplitudes quite random.

It would be interesting to discover the right
combination of the parameters X, A and the energy range which
encompasses ﬁﬁe region of.maximum in the level dist:ibutidn,
such that the PT distribution approximation can be unambiguously
and economicaily verified.

The above findings are relevant to the discussion
of the decay of giant multipole rescnances in nuclei, as has

5)

been recently demonstrated by'Hussein . . In a recent theoretical

development, Dias et ala)

, have introduced a GR miking
parameter, |y , which measufes the relative importance of "direct"
and compound contributions to the decay of the GR. This parameter

can be written as

¥
/u — K : ' o {(19)
Y+ Ot

with I‘t being the escape width and 1"1 the damping width of

‘the- GR arising from the coupling between the ip-1h, subspace

on the one hand, and the more complex configurations (2p-2Zh,

3p-3h, etc.) on the cother. Since Pt can be calculated from

continuum RPAB), we concentrate our attention here on the

evaluation of ?+ , which is connected with the prgceeding




statistical considerations.
. . v
The simplest possible expression for . T is Fermi's

Golden Rule's

NG - SR
0N 2WZ|<GR v l@p-20 >0

4

If we identify the |(29—2h)§J)> states with those of Eg. (4},

we can then approximate the sum in Eqgq. (5) with

) B Tz
AR PP ](ka |V j@p-20) ] f@ o]
- ar-zh)

where .

e ——————— .
<aR DNV 16p-2"5 1% = S1a; i Zarving )

In the above equations, V represents the coupling interaction

responsible for the GR fragmentatiocn |aj ifz , the width of -
r
the PT distribution for the émplitudes, and pégiéh is the

2p—2h density of states {(with spin J). In obtaining Eq. (7),

‘we"have assumed that

*
a‘-*aj/,-:i -:-]a

In j)i-

o
\"Sﬁﬂ | (8)

consistent with a chaotic-behaviour.

From the" PT distribution, we have immediately .

| a: [7' 1 (9)
2.t — N .
T . . .
Therefore we have for T , the following simple estlmate
. )] . 2
@ 2GRV LTS (g
r—7¢ . ~ 27T L - ) (10}

N 2jo— 2]

Eq.(TD) should supply a convenient and simple way of obtaining
an estimate fer F+, once the dimension of the basis is decided

upon. In a future work we shall discuss the evaluation of

F+(J) , having in mind the

50.3‘

Eq. {(10). Here, we simply estimate

A-dependence of the nondiagonal interaction (V(AJ%H;

10’11}, we have for A=18,

g.01
A0-8

Knowing {GR[V[i) (&=208) = 0.02 MeV

@RIV]L) (A=18) ~ 0.1 MeV . Thus EHGR!VH)Iz _
i

MeV -

and, éccordingly

(=) (2 — . _ '
F(ﬂ) ne 26 [ )‘(ﬂ) X [ Mew (1)

A7 Jap-2n

:Thguabove formula is very close to the empirically derived

fofmuia of T ~ 85 & (2)

Pop-2n
Mev.—i . In fact this seems to be

quite reasonable in, e.g., 24Mg, where at E* =23 Mev, th

if the density of states (A)

is taken to be ~1.14 x 103

m

- 13)
experimentally determined density of states is aboulb 1,000 Mev !
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In conclusion, we have analysed in this paper the
statistical properties of the realistic nuclear shell model
Hamiltonian. We have verified theba Porter-Thomas distribution
of the basis amplitudes can be assigned as long as the energy
iﬁterval considered encompasses the region of the maximum in
the spectrum distribution. The results of our analyse is then
applied to estimate the spreading width of giant multipole
resonances. In particular, for the giant quadrupole resonance,
our expression for F* comes out very close to the empirically

2/3

determined formula T ~. 85 & “° MeV.

10,
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TABLE II

Necleong | mhermy Tmterval | WEIRTTOC | x| b
TABLE I 5 0 - 12.87 10 0.50 44
5 14.17 - 17.47 10 1.93 34
wamber o 5 20.17 - 27.47 30 2.63 16
l\'fucle;nsoin 8pin (J") | Isospin | Dimension ‘;“t‘;‘*t’:; of <V>ofé 5 38.77 - 54.57 10 0.40 44
sd Shell [Mev] 7 0 - 15.32 | 24 0.97 50
7 15.32 - 20.53 39 4.64 34
5 127 172 100 . 109 0.64 7 20.53 - 25.48 . 55 6.88 23
+ _ : 7 25.48 - 30.62 82 9.89 15
7 7 12 /2 517 200 0.62 . o - 10 . " 0.68 62
7 3 /2 923 200 0.62 7 10 ~ 15 29 3.60 46
7 572" 172 | 1142 200 0.62 7 25 - 20 61 - 7.36 35
. - o  aoe 200 . e 7 20 - 25 99 12.28 24
' . 7 0 - 7.4 7 0.58 65
10 1 0 - 1753 200 0.60 -7 7.4 - 12.4 20 2.48 51
10 ' F 1 3011 200 0.60 7 12.4 - 17.4 52 6.45 42
7 17.4 - 23.14 121 13.07 29
8 8 - 11.51 7 0.37 65
"8 11.51 - 16.51 20 2.44 S4
8 16.51 - 21,51 45 5.49 a4
8 21.51 - 28.32 128 11.46 30
to 0 - 7.81 13 0.99 63
10 . 7.81 - 12.82 24 2.87 50
1o ©12.82 - 17.94 57 6.69 a4
10 17.94 - 23 106 12.57 34
10 0 - 13.91 27 1.16 66
10 13.91 - 16,82 32 6.59 54
10 16.82 - 19.76 56 11.42 as
10 19.76 - 23,23 84 14.52 4




FIGURE CAPTIONS

Fig. | - Calculated spectral hiétoqram-for

(sa)®

case (a})

and . (sd)7 case (b). See text for details.
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