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HADRONS, THE SIMPLEST GENTILIONIC SYSTEMS?

M. Cattani

Instituto de Fisica da Universidade de S3do Paulo

C.P, 20516, 01498 Sdo Paulo, SP, Brasil

SUMMARY

Basic guantum mechanical properties of systems
_constituted by two and three gentileons are deduced in this
paper. By using Pauli's theorem and symmetry properties of
the intermediate states it is shown that, in some cases,
gentileons must have half-odd-integral spin. As an immediate
and natural result of our theoretical analysis, we show how
fundamental observed properties of composed hadrons can be
predicted from first principles assuming quarks as spin 1/2

gentileons.

1. INTRODUCTION.

(1)

In a recent paper we héve éhown, acceording to
thé postulates of quéntum mechanicé énd to the priﬁciples §f.
indistinguishability;.that three kinds of particles could exist
in nature: bosons, fermions and gentileons, These results can
be synthesized in terms of the following statement (Statistical
Principle}: "Bosons, fermions and genfileoné are represénted by
horizontal, wvertical and interme&iate Young shapes;Iresbaxﬁvélrh

Bosonic ahd fermionic systéms are described by one-
dimensional totally symmétric (ws} and totally anti-éymmefric
(¢A) wavefunctions, fespecti#ely.‘ For boséns and fermioﬁs_the
creation and annihilation oferators cbey bi-linear commutation
relations. . .

Gentilionic systemé are described by,nmltiﬂﬁﬂensiﬁnal
{spinorial-like) waQefunctions (Y) with mixed symmetries. Since
they are represented by intérmediate Young shapes, only.three
or more identical gentileons can form a system of indistinguishable
particles. This means that twé identical gentileons are
prehibited to constitute a system of indistinguishable parficles.
This suggests.that gentileons cannot.appeér freely. Indeed, if
this were possible, two free identical gentileons coude;mstitute
a two-partiéle system in an occésional éollision. For gentileons
the cregfion and annihiiation opé?atorsnobey nmlti—lhmﬁxlmnxiﬁial

commutation relations. Finally, due to very peculiar geometric




(1}

properties of the intermediate states, there appear selection

rules confining the gentileons and prohibiting the coalescence
of gentilionic syetems. Tﬁo systems iike [ggg] and [gggg], for
instance,lcannot coalesce into a composite system of indistin-
guishable'perticles [gggggég]. Only bound states [gggl - [gggg]
could be peossible. The gentileon confinement appears as a
coneequence of the.selection rule which prohibits the decamposition
oE'a~systenf [ggg...gg] into [gog...g] and [g]. .

(1 only systems of

In ocur above gquoted paper
ldentlcal gentileons have been considered. Let us now consider
-systems composed of two d;fferent klnds of gentlleons, 'g and

G. Taklng 1nto account the statlstlcal pr1n01ple we must- expect

that systems like [gGl, [gg9gG], [gggGGG] and so on, are allowed,

On the other hand, systems like [ggGl, [g99GG], [gggGG]... are
prohibited because [gg] and [GG].are not aliowed(j). .Of course,
the coalescence of miied systems is also forbiaoen, as can be
easily verified.

As well known, halfmodd—inteéral ahd integral spin
partlcles are descrlbed from the leﬂt of view of the Lorentz
group, by splnorlal and tensorlal 1rreduc1b1e representatlons,
respectlvely._ From the pOlnt of view of the permutatlon grcup
Sr.] ' part:.cles are descrlbed by bosonlc, femu.om.c and gentl_llomc

1rreduc1ble representations, Accordlng to the celebrated

2-4)
Pau11 s theorem( 4), 1£ creatlon and annlhllatlon partlcle

operators obey b1~1xnear commutatlve (antl commutatlve) relations

these particles have integral (half-odd-integral) spin., By using
bi-lincar bosontc and fermicnic relations, consietent local,
Lorentwx~invariant quahtum field theories are developed. In
sectien 3 we show that, for a system composed by three identical
gentileons, the tri-linear matricial relations can be reduced to
bi-lincar [ermionic relations.

The confinement and non-cealescence are intrinsic
properties of gentilecns as the total symmetrization (anti-
symmetrization} is intripsic to bosons {fermions), not depending
on_their physical inte:oretation. Thus, they could be assimilated
to real particles or to dynamical entities as quantum collective
excitations. -

The total anti-symmetry of the fermionic state
function is responsible for the exclusion effect and, conse-
quently, responsible for the stability of matter on a large
scale. Similarly, the spinorial character of the intermediate
states would be responsible for confinement of gentileons and
nen-coalescence of gentilionic systems. As well known, the
range ol the exclusion effect mechanism depends on the fermionic
systeom.,  Analogousiy, the dimension of the gentilionic system,
which would be governed by the confinement and nan-coalescence
mechanisms, would depend on the gentilionic system. Gentileons
being, [or instance, noninteracting collective excitations in
crystals or in complex molecules would have very different

conlincment volumes. On the other hand, if quarks are gentileons(s‘ﬁ)



they would be interacting entities confined within hadronic
dimensions.

In section 2 we present a detailed study of the
symmétry properties of the three gentilecons state vector Y(123).
We have emphasized the simplest non-trivial case of three particles
aiming té épply the theory to the descriptioh of SU(3) model
of strong interactions(s's).

In section 3, commutation relations of gentilionic
systems composed by three identical gentileons are analysed in
crder to rstablish a connection between épin and sunisth3(2_4h
When two ygentileons cannot occupy the same guantum state it is
shown, by using symmetry properties of the intermediate states
and Pauli's theorem, that gentileons must have half-odd-integral
spin.

In section 4 we show that the SU(3) represen-

color
tation can be naturally incorporated into the gentilionic symmetry.
In section 5 our theoretical results are applied to
investigate some aspects of the hadronic physics. Assuming
quarks as spin 1/2 gentileoné, bagsic observed properties of
composed hadrons are predicted from first principles. It will
be seen that the color guantum number plays a fundamental role
in the gentilionic theory of hadrons. 1In terms of the cblor
‘guantum number, haarons can be divided into two classes: coclored

(quarks) and uncolored (baryons and mesons). Gentileons are

colored particles, bosons and fermions are uncolored particles.

.6,

In .section 6, taking quarks as spin 1/2 gentileons,
a guantum chromodynamics is proposed where, instead of fermions,

gentileons interact with gluons.

2. SYMMETRY PROPERTIES OF THE GENTILIONIC STATE VECTOR ¥Y(123)

We present in this section a detailed'study of the
symmetry properties of the state vector ¥(123) of a system
composed by three indistinguishable gentileons. This simplest
three particles case (N=3) has been emphasized in order to apply
the theory to the description of SU(3}) models for strong
interactions. Of course, it is possible to extend our results,
concerning the structure qf Y, for N>3, at the expenses of
unnecessary labour and non essential complications for our
immediate purposes. Thus, acqording to our general results(T’,
the symmctry properties of Y(123) is complete;y described in
terms ol the three.quantum.states a, B :and ¥ . In analogy

with the clectromagnetic color theory these states will be named

"primary colors”. In terms of the cclors @, § and v, Y(123) =
=¥(afy) is written as(1):
Y](123)"
1] 0123 Yy L
Y{afy) = ¥(123) = — = (2.1}
VA | vy(123) o e

Y4(123)




where,

¥, (123) = (|aBy> + |Bay> - |yaB> - |vBa>}/4

Yy (123) « (|uBy> + 2|ayB> - |Bay> + | yaB> - 2| Bya> - |yBu>)/Y12
vy (123) = (-laBy>+ 2|oyB> - |Bay> - [yap> + 2|8ya> ~ [yBa») /Y12,

and Y (123} = (|aBy>~ [Boy> - [yoB>+ |yBa>)/v4 . The state ¥

. . Yy | 1 {¥
15 decomposed: into two parts, ¥ .= ;. where Yy = —
1 (Y '
and Y_ = — [ 3]_, corresponding to the duplication of the
y/Z Y4_ : 2 .
states implied. by the reducibility of our representation in the

(1,5,6)

intermediate gentilipﬁic states"® We shall show, in what

follows, that Y, and Y. have a spinorial character{s'e),

resulting a “bi-spinorial™ .character in Dirac's sense for

Y(lzj)(ly. The probability,aénsity function for ¥Y(123) is
given, by the perﬁutation in&ariant Eunction{1) ¥y = |Y|2 =
= (iY]|2:+'|Yé[2:+ §Y3|2 +:]Y4L2)/4 . The bi-spinorial character

(1) predicting:

of ¥{123) 1is responsible for selection rules
{1) gentileon Confinement.and-(Z} non-coalescence of gentilionic
systems. It is worthwhile.to note that, in this context, our

{8-12) and

theory differs drasticélly,frpm paréétatistics
fermionic ﬁheories;"iﬁ:tﬁe case of fermions, the three parti-
cles state function $(123) would be given by  ¥,(123) =

= (jaBy> - |ayB> ~ |Bay> + [yaB>+ |8ya> - |yBe>)/v6  and for para-
particles ¢(123y would. be written-as, @P(123} = a Yi-+k)Y2 +

toyY,+dy

3 g4 + Where a, b, c.and d are arbitrary constants. For

thesé theories the wavefunction ${(123}) is one-dimensicnal,

from which the selection rules (1} and (2}, above mentioned,
cannot bhe deduced.

OQur intention, in this section, is to show explicitely
the spinorial ¢haracter of ¥(123). and to establish fundamental
properties of the gentilionic.system that can be deduced from
this spinorial.character. Iﬁ this way we must remember that,

due to the six permutation operators of the symmetric group S
(1 '

3!

the Y(123) is. transformed tc

-

3
where ”j (i=1,2,...,6) are 2x2 matrices given by:
10 -1/2 V3/2 _
Ny = =L 7 ny= ;
0 1 -/3/2 -2
-1/2 =32 10 :
ny = ) ; ng = : (2.3)
372 -1/2 0 -1
(=172 V372 -1/2 /72
N. = ’ and Ng =
W32 an -/3/2 1/2

From the point of view of group representation
theory, Eq. {2.2) immediately suggests the reducibility of the

intermediate representation.  Due to the separation of Y into
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two components, Y, and Y_, an interpretation of these objects
is claimed.

Let us show that it is possible to interpret the
transformations of Y, and Y_ in terms of rotations of an
equilateral triangle in an particular Euclidean space E3. That

is, we assume E, as a space where the color states are defined

3
by three orthogonal coordinates (X,Y,Z). Due to this assumption,
this space will be named "color space™. It is alsc assumed
that, in this color space, the colors o, 8 and y occupy the
vertices of an equilateral triangle taken in the (¥X,Y} plane,
as seen in Fig. . The unit vectors along the X, ¥ and Z axes
are indicated, as usually, by 1, j and k. 1In Fig. 1, the unit
-+ -+ -+ . =
vectors m,, mg and m. are given by, m,

and 56 = (vV3/231 + (1/2)k, respectively.

=k, m, = -/3/2)1 + (/2%

(INSERT FIGURE 1)

We represent by ¥{123) the state whose particles
1, 2 and } occupy the vertices a, B and 7y, respectively.

Thus, we soe that the true permutations, (312) and (231), are

obtained (row (123) under rotations by angles $ = £271/3
around- the unit vector '3. As one can easily verify, the
matrices o0, and Ny e that correspond to these permutatiohs

are represented by:

10, -

= = 1/2 +'i(/§/2)0y iexp[iﬁ.g(S/Z)] and

(2.4)

[}

n, = - 1/2 - i(/?/z)oy exp[i3.5(8/2)]

where the Ox' cy and cz are Pauli matrices.

Similarly, the transpositions (213), {132) and (321}

are obtained under rotations by angles ¢ = f1 around the axis

54, ES and 56' respectively. The corresponding matrices are
given by:
. L > ’
n, = 9, = 1exp{1m4. o(d/2)] '
ng = /3/2)0 - (1/2)0, = iexp[iﬁs.awz)] and (2.5)
ng = - t/3/2)o, - (1/2)e, = texplimg . G(8/2)1 .

{3}

According to our preceding paper , there is an

{2,1]
(2,1
with the 35, gentilionic states. :In analogy with continuous

3
groups, this invariant will be naméd "color Casimir"{s). For

algebraic invariant, K with' a8 zero eigenvalue, associated

permutations, that are represented by matrices with det =+1,
the invariant is given by Krot = nAA&n:-+n3 . For transpo-—

sitions, which matrices have det=-1, it is defined by Kin =

v
= + + Taki int t m h. and m and Egs
= my+ng g aking into account m,, mg & s -
- h _ _ (4— ++ i ) —5(0
(2.5) wo see Ehat, Kinv = n4+ HS*‘ﬂe = m4 mS m6 - = -

This means that the invariant King ©an be represented




geometrically, in the plane (X,¥) of the color spaco, by

b= ﬁ4-+55v+ﬁs = 0, and that the equilateral triangle symmetry

of the S, representation is an intrinsic property of K ne = 0.

Egs. (2.4} and (2.5) suggest a spinorial interpretation
for Y, and Y_. Here, starting from a general standpoint,
we show the correctness of this contention. It is well known

that the non-relativistic spinor can be Introduced in several

(13}

ways The interrelation of the various approaches is not

ovbicus and can lead to misconceptions. 1In order to overcome
the necessity of enumerating several approaches, let us stick

on a geometrical image, recaliing the very fundamental result

(14)

ou group isomorphism S, ~ PSLZ(Fz) , where PSLZ(FZ) is

3

the projective group associated with the special group SL2

defined over a field F2 with only two elements. Obviously,

PSLZ(FZ} ~ SLZ(FZJ/SLZ(Fz)rlzz, where the group in the denomi-

nator is .the centre of 8L and cerresponds to the central

>
homotheties, since Zy. is the intersection of the collineation

group with SLZ'
1f we consider the matrices (2.3} as representing

transtformations in a two-dimensional complex space characterized

by homoycncous coordinates Y1 and Y2,

(z.6).

12,

whore p is an arbitrary complex constant and the latin lettors
substitute the coefficients taken from (2.3), it is clear that
{2.3) constitute a homographig (or projective) group.

Making use of definiticn (2.6) we can see from
(2.3) that, apart from the identity UP the two matrices 1y
and. Ny which.have det = +1 , are elliptic homecgraphies with
fixed points *i . If we translate these values for the variables
of ‘E3, we see that n2 and n3 correspond to finite rdzmions
around de } axis by an angle & = *2n/3, agreeing thus with
Egs. (2.4). The remaining matrices Nyr Mg and ng are elliptic
involutions, with det=-1. They éorrespond to space inversions
in E3, considered as rotations of #*71 arcund the three axis
34, ES and 56 , respectively. These matrices completely define
the axis of -inversion and the angle 7, as is seen from Egs.
{2.5}. 1t is an elementary task to establish the correspomkmce,.
via stereographic projection, between the transformations in the
two spaces, Y,(¥.) and E3.

A topological image can help us to see the 4m
invariance of Y, and ¥Y_ . If we consider the rotation angle
$(®%) as the variable describing an Euclidean discg¢, the covering.
space associated to this ﬁisc is a Moebius Strip(15). adijusting
correctly tﬂe position of the triangles we ¢an have a vivid

picture of the rotation properties for each axis. This construc-

tion allow us to visualize the double covering of the transfor-

mation in By and is a convincing demonstration of the spinorial
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link between E3 and Y, .
From this analysis we conclude that Y, and Y.
are spinors. As one can easily verify(7) by using the projec-

; . . . Y
tive geometry, the four-dimensional state function Y = [ +}

Y_
.ig a "bi-spinor" in Dirac's sense. Since E3 is a "color space,
Y, and Y_, in analeogy with the isospinor in the isospace,

will be named “"colorspinor".

We observe that the same transformation properties
of ¥, and Y_ can be obtained if, instead of the equilateral
t;iangie shown in Fig. 1, we consider the triangle drawn in

" Fig. 2.

{INSERT FIGURE 2)
In the vertices of the eguilateral triangle of the
Fig. 2 we have the colors a, B and Y. The unit vectors
P * . > g = 2y _
my, mg and mg are given by, my = -Mm,, mg My and
'ﬁg = —Eg . This means that, in this case, K, , 1is represented
geomeltrically by M* = ﬁ;-+ﬁ;-+ﬁg = 0. This two fcld possi-

bilities for depicting the triangle will be physically
interpreted, in the next sections, in terms of the existence

.0f colors and anti-colors.

3. SPIN AND STATISTICS

In this section the commutation relations of
gentilionic systems composed by three identical gentileons are
énalysed in order to establish a connection between spin and

s 2-4 .
statlstlcs{ ). We show that ‘when two gentileons cannot

occupy the same gquantum state the matricial relations(1} are
reduced to bi-linear fermionic relations. Indeed, when two

gentiledns cannot occupy'fhé same quantum state, that is, when

"a#B8#vy#a, we see that the gentilionic commutation relations

(1)

are given by :
- _ & *
[a¥, aj]+ = Gi] ' a;a, =ajaj = 0
a.a.a = a_a,a G(kji) and (3.%)
i k a8y " yBa '
a*a*a* = G(GBY) a*a*a*
i99% ijk’ “a “pg Ty '

where the indices i, j and k can assume the values o, 8 and
. . . 4)

¥y and G(...) are 4 x4 matrices given elsewhere{ . From

the above tri-linear relations one can deduce the bi-linear

relations, seen below applied on gentilionic states Y,




a aaY(uBY)

B

a Y(aBy}

e s
aB aa_Y_(c_x*(B_)_
a& aBY(ayﬁ}
aB auY(Bow)

a, aB Y{Bay}

aB a, ¥{yaB)

a, a8 j{yaB)

ag a, Y{Bya)
a_ a
o

B.Y(Bym)

ag a, Y{yBa)
a(-I ag Y(yBa)
a(’; ag Y{00Y)

* *x
ag ag y{00y)
* *
ay aB Y{0y0)

ar a* y(0yo)

S
B "a

* *
ay aa.YWOO}.

g

E B
agay Y{y00}

#

G{

Y{00y)

o

G{B

By
GY] Y{00v}

. arB
-G{.uB-Y) Y{00vy)

ayB,
BaY) Y(00y)

Bay
G(UtBY) Y(00y)

Y(00v)

[+

Y 8.
Glagy! ¥(00Y)

yoR
G(BCP() Y{00Yv}
Byo

G(aBY

}y ¥{00y)
Byo
G(Bay} Y{00Y)

YBC‘

G(O.BY

} Y{0OCY}

B
Glg o) Y(0OY)

Y(aBy}
G(BaY} Y{aBy}
aBy

Byo
G(aSY) ¥{aBy)

ayB

G(-aBT}-- Y(aBy)

TBa

afy
yaB

G(G'.BY

G( ) Y(e8y)

) Y(aBy)

and

remembering that there are six intermediate states,

(3.2)

Y(aBy) ,

t{ayB), ¥(Bay), Y(yeB), ¥(Bya) and Y¥(yBa) . The above bi-linear

“adopted to describe gluons exchange between quarks in baryons

.i6.

relations have been written in order to calculate the non
null matrix elements of the operators A = [aa ,aB]+ and
A* = {a&*,aé*]_i_.
Since the six different state vectors Y are
equivalent to represent the system, only average matrix elements
of A and A* will be meaningful in our approach. Let us consideor
that all these states are assumed by the system, one at a time
in a temporal sequence. As gentileons are continuously changing
of state it is not possible tc say at any moment which gentileon
is which state. This hypothesis, which is similar to that
{16}
e
is illustrated in Fig. 3. 1In this case we verify, taking into

account Egs. {3.2), the G{...) matrices and remembering that

{ INSERT FIGURE 3)

(1 ), that the average

Y] . Y2 R Y3 " and Y4 are orthonormal states
matrix elements (A} and {A*) are equal to zero. That is,
(lag cagl,) = (la} ., agl,) = 0. Thus, in this context we can.

write, for o #B, that
lag ,agl, = lag,agl, = 0 . T 43.3)
According to the first three bi-linear terms of

Egs. (3.1) and to Egs. {3.3) the following commutation relations

are valid for gentileons when they occupy different states','



tal, aj]+ and

§. .
1]
(3.4}
. — * * -
la; ,a51, = [af.ajl, = 0
where the indices i and j can assume the values o, 8 and y.
Thus, we conclude from Egs. {3.4) and by using

pauli's theorem 2 %)

that, in these conditions, gentileons must
be hall-cdd-integral spin-particles. of course, it does not
mean that these gentileons are f{ermions; it only implies’ that
‘they can be taken algebraically as fermions in the framework of
a guantum field theory.

Our above results are extremely important since, as
will be seen in section 5, they.will permit us éo study the
composed hadrons assuming guarks as spin 1/2 gentileons. More-
over, as gentilionic guarks obey bi-linear commutation relations
it will be possible to construct for these gentilionic quarks a
consistent local, Lorentz-invariant quantuh field theory (see

section 6).

4. THE S; SYMMETRY AND THE 5U(3)o)or EIGENSTATES

In section 2, we have shown that it was possible to
interpret the Y¥(efy} transformations in terms of rotations,

in a color space E3 , of only two equilateral triangles with

.18.

vertices occupied by three privileged colors af{o), B(B) and
v(¥). The Y must constitute symmetry adapted kets: for S3. In
other words, their disposition in the plane of the triangle
must agree with the imposition made by the éolor Casimir. -According

m. = (-v3/2,1/2),

to Fig. 1, these colors are defined by, o

5
B = 56 = (/3/2,1/2) and y = 54 = (D,—1i . and according to
. - 2y _ > T - o - = p* = .
Fig. 2, a = mg = 5 ¢ B mZ m and v my m, - The

equilateral triangle symmetry for 5, plays a fundamental role

in EB' allowing us to obtain a very simple and beautiful

geometrical interpretation for the invariant _Kinv==0 . Indeed,

since the Sy Symmetry, according to section 2, implies that .

+ > + Tx _ T e, da .
m4+rn5+m6 = 0 (M m4-km5~+m6 0) , we conclude that the

total color guantity of the system, pictured in E3, is a constant

o
M =

of motion, which is null.

At this point we compare our -color states o, B and

vy with the SU(3) a7y

eigenstates blue, red and green..

color
These color states are eigenstates of the. color hypercharge ¥
and of the color isospin 53, both diagonal generators of the

algebra of the 8U(3) ... The eigenstates blue (b}, red (r)

color
and green {g) are written as |b> = .|-1/2,1/3>, le> = |1/2 . 1/3>
and |g*> = |0,-2/3>.
Taking into account that the $U(3) and S3 fun-
. . . . (17,18)
damental symmetries are defined by equilateral triangles v
it is quite apparent that the color states |a>, |B> and |y>

can bea represented by eigenstates of i3 and ¥ . Indeed, as-
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suming that the axes X and £ (see Fig. 1) correspond to the

axes I and ¥, respectively, and adopting the units along

3
these axvs as the side and the height of the triangle(17), we
verify that |a>,. [B> 'and- |y> would be given by, |o> = |b> =

= [=1/2,1/3>, |[B>=|r>={1/2,1/3> and |y>= |g>=|0,-2/3>.
If we have considered the states |E> . |B> and |?>, seen in
Fig.-z; we. should verify that these states would correpond to
the:anti-colors |3, |b» ana ig> of the 3 color representation.
Thus, if we . assume that the states- |a>, |B> and
|¥> correspond to |b>, |r> and |g>, respectively, each
unit vector Ej' (3=4,5 and 6) is represented, in:the plane
(33,?) by the operator § = T3-+?/2 . This means that the vector
M will be represented by the operator i = d, +3, +d, , where
the indices 1, 2 and 3 refer to the three gentileons of the
syétem; .Thus, adopting the SU(3)Color eigenvalues we see that
M will have a zero eigenvalue only when Y is given by Y(brg}.
That is, the wavefunctions Y{nnm), where: n,m=b, r and g, with

two particles occupying: the: same cohn‘mﬂte”'S),are_prohibited.

It is important to note.that, in our previous paper(5),
since the SU(3)color scheme was not adopted, we have assumed
that two gentileons could occupy the same color state. This is
a poeint that remains to be .analysed:. the existence of another

kind of calor representation, besides the SU(3) , which

color

would be able to describe consistently the gentilionic approach-

.20,

5. ‘HE _GENTILIONIC HADRONS

Since gentilecons are confined entities and their

systems are non-coalescent it seemed natural te think quarks as

spin 1/2 gentileons(1'5'6). €5

With this hypothesis we have shown
that baryons [ggql, that are formed by three indistinguishahble
gentilecns in color space, are represented by wavefunctions
W = 9. Y(eBy) . The state ¢ = {SU(3) XO3)5wwm¢ric cirresponds,
7
’

according to the symmetric quark model of baryons to a

totally symmetric state. The state function Y(aBy) corresponds

to the colorspinor written explicitely in section 2.

It will be assumed in what follows that the color

states a, B and y are the 8SU0{(3) eigenstates blue, red

color
and green, respectively. According to section 4, Y(aBy} must
necessarily be composed by three different color states, resulting
for the baryon wavefunctions, ¢ = ¢ . Y{brg) . In these conditions
the guarks in [ggg] that, accofding to ¢ and Y(brg), have
disponible an infinite number of guantum states, cannct assume
the same color in the ceclor space. In other words, two quarks
in [qgq] cannot cccupy the same guantum state. This implies,
taking into account the results of section 3, that gentilicnic
quarks must be half-odd-integral spin particles, Thus, our
initial hypothesis of assuming guarks as spin 1/2 gentileons is
now jgst;fied, showing the self-consistency of our model.

Once adopted the celor eigenstates blue, red and green
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% SU(3)

wo see, based in sections 2 and 4, that the SU(3Hjavor color

representation, both 3 and 3, is naturally incorporated in our
scheme. With this in mind and observing section 2 we see that
in the gentilionic formalism one possibility is to define the

individual quark charge as;:
G = g+, = (I;+¥/2) + Iy +¥/2) (4.1)

where qp = I,+Y/2 refers to flavour charge, §_ = (I;+%/2)

c 3
refers to.color charge and XA is an arbitrary constant that
cannot be determined in the framework of the thecory. With this
de[initfun, the total color baryon charge 0 is given by
Q= A<M>. Remembering that the expected value <M> is a constant
of motioﬁ equal to zero, that is, <M> = constant = 0, for the
states Y(brg) ; as shown in section 3, we see that the generalized
Gell—Manh—Nishijima relation is automatically satisfied(S)
independently.of the A wvalue. Putting A =-1 we obtain integér
quark charges, according to Han-Nambu, and if A =0 we have the

(17). Note that the

fractional charges adopted by Gell-Mann
result § = constant = 0 can be interpreted as a selection
rule l[or quark confinement in baryons.

(1,5)

In our approach mesons are conmposed by a gquark-
antiquark pair [ggl]. According to the statistical princile,
systems like [q], {gq], [qqa] and {qqéé] . for instance, are

prohibited (it could exist only bound states [qgl - [ggq] of the
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mesons [ggl). Since g and q are different particles in color
space we can conclude, in agreement with ‘our general results(?),
that mescns are represented by one-dimensional state functions.,
This implies, remembering that g and & are spin 1/2 particles,
that the system {qg) is represented, in fermionic -and gentilionic
theories, by the same state vector.

We are now in condition to make .a sunreary of -the
fundamental properties ithat :must :be observed .for hadrons composed
by gentilionic-quarks: 1) gquarks-are confined, (2) hadrons
cannot ccalesce, (3} ‘baryonic number is .conserved, {(4) ﬂuehaixm
color charge is a constant of meotion equal to zere and (5) -only
color singlet hadrons can exist.

The -above mentioned hadronic properties have been
predicted independently of the intrinsic nature of the gentileons;
they could be -particles, ‘gquantum collectiﬁe-excitations or
something else. Conseguently, no dynamical -hypothesis, phenome-
nological or ‘approximate -argumentshave :been ‘used to prove them.
They have been deduced :from £irstfprinciplés:‘fnanthe statistical -

principle or ‘by using the symmetries ‘of the -8 intermediate

3
representation. Thus, 'if ‘quarks ‘are gentileons, ‘there may ‘be
hidden or explicit a confining mechanism in "the ‘dynamical laws.
The confining mechanism could be produced by a very peculiar
interaction between guarks, by an -impermeable bag as proposed

by the -bag model or something else. At the moment these

mechanisms -are unknown. It is not our intentien,in this paper,
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to study this problem.

In spite of our stimulating general results, there
remains. .the crucial problem of determining the intrinsic rature
of the quarks. and their dynamical properties. According to the
current. theoretical ideas, quarks are fermionic elementary par-
ticles.: The mathematical formulation.of thé fermionic medel,
the chu is:assqccessful modern field theory since it is able
toéxplain many properties: of .the-hadrons. In next section.
taking.quarks as spin 1/2- gentileons, a guantum chromodynamics
;s'proposed where, instead-of-{ermions} gentileons interact with

gluons: -

6. A QUANITUM CHROMODYMNAMICS FOR GENTILIONIC HADRONS

To construct a quantum field thebry for hadrons
composed by spin 1/2 gentilionic guarks we must take into account
the 50(3) 'symmetry, flavor and color, and remember, according
to sectiun-B{'that'the creaticn and annihilation quark operators
obeygférmiongc;cpmmutation relations. Furthermore, the gentilionic
quanktum: L icld approach mﬁst be formulated incorperating the
symmetry properties of the intermediate states in order to
predict, as ceonservation laws or.selection rules, the hadronic
properties deauced~in_section 5: (a) quark-confinement, (b) non-—

coaLESCang;of-hadﬁons; {c).baryon number conservation,  (d) only
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color gsinglet hadrons can exist and (e) the hadron color charge
is a constant of moticn equal to zere. This is a very ambitiéus
and extremely difficult task. Since we were not able, up to
now, to develop this "intermediate Sg gauge invariant theory",
an alternative one will be proposed. In this way, let us mggesg

the following Lagrangian density for gentilionic guarks inter-

acting with gluons,

A
= ¢t u 3 +ou [ E i _
L= E[an\“. 9 99, Y [2] A 9 quaq]+
ax : ab
i
ant  aalt 2
1 i 1] K
T a TR v gfijk‘n‘u‘i\\)
ax ax
where the summation is over the flavors f = u,d,s,c... . The
summation aver repeatéd indices a,b, ..., referring to color

is understocd. The Ai/2 are the 3 x3 matrix representation

of the SU(3)Color alyebra gererators, satisfying the commutation

Ak/z . where fijk are the SU{(3)

structure constants. The flavor. symmetry is orly broken by the

relations [Ai,hj] = lfikj

lack of degeneracy in the quark masses. Finally, the quark free

fields y(x) are expanded in terms of positive and negative

frequency sclutions, mk+(x) and mk_(x)  of Dirac's equatiocn,

q{x} = Z {ak+ ¢k+(x) + a;_ @k_(x)} .
X
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where a; and af obey fermionic commutation relations.

With the ahove assumptions, both theories, the usual

QCh and the gentilionic QCD, that will be indicated by QCDG,

will have the same gluons and the same Lagrangian density. 1In

both approaches the previously mantioned propertiés {a), (b} ...

énd () appear now as additional conditions. In these cir-
cumstances, both theories will givg identical predictions for
hadronic properties. In spite of this we note that they are
not equivalent. Indeed, in QCDG the five conditions cited
" above appecar naturally, deduced from first principles, whereas
in QCD they. are imﬁosed "ad hoc".

Finally, as pointed out in section 3, the time
evolution_process illustrated in Fig. 3, describes in quantﬁm
chromodynami¢5n(QCD and QCDG) the exchange éf gluons between

quarks in baryons(16). In gentilionic approach this process

can be interpreted, in a topological scheme(]g), by rotatiocns

of the equilateral color triahgle inside the T2 torus generated

by two anqgular variables & and @ that appear in discrete

rotations, R{J) . R{P) = exp(i}.a %). iexp(im.agd, given by

Egs, (2.4) and (2.5).
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FIGURE CAPTIONS

Fig. 1 -

Fig. 2 -

Fig, 3 -

The equilateral triangle in the color space (X,Y,2)

with vertices occupied by the coloxs o, B and y.

The equilateral triangle in the color space (X,Y,3%)

with vertices_occup;ed by the colors o, B and y.

the vertical dimension fepresents the'épafial separation
bet@eén'gentileﬁns.ahd the horizontal dimension repre-
sents-time. The‘gentileons 1, 2 and 3 are continuously

éhangingféé_sééfé.' in practicé it is not possible to .
determine.thé:statés of the gentileons; only the .

probability of each state can be calculated,
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