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ABSTRACT

We show that the set of Wig:qer functions associated with the excited
states of the harmonic oscillator constitute a complete set of functions
over the phase space. An arbitrary probability distribution can be expanded
in terms of these Wigner functions. By studying the time_ evolution, according
to Stochastic Electrodynamics, of the expansion coefficients, we are "able
to separate explicitly the contributions of the radiative .reaction and the
vacuum field to the Einstein: A coefficients for this system. We also supply
a simple semiclassical explanation of ‘the WeisSkopf-Heitler phéndmenon in

resonance flucrescence.,




I) Introduction

(1,2}

Stechastice Electrodynamics (SED) is a revival of Panck's secend

theory. Since it treats the electromagnetic field as a c-number, it may be

. 3,4
considered as the oldest semiclassical radiation theory. Revxews( ) of

such theories have generally concentrated on the version of Jaynes, in which
there is no vacuum fi'eld. The conclusion has been reached that semiclassical
theories are inadequate, because_ of their inability +to explain various
phenomena, including the coincidence counting of the "photons" in an atomic

(5) (6)

the "“anticorrelation" in +two channels of a bear splitter "y

(7}

and fthe "antibunching" observed in resonance fluorescence . Recently it

cascade

has been gdemonstrated, _hbwever, ‘that. an optical. theory based. on SED is capable

8)

of expléining all of these phenomena( y and hence this conclusion is incorrect,

Althoughr the mb'dern revival of BSED preceded Jaynes' theory, it has
received 1little akttention in the 1itef‘ature, ‘'This is probably b;acause, in
its original conception, it was overambitious. It treated the electron as
a classical point particle, and set out to explain thé whole of nonrelativistic
Quantum Mechanics (Q.M.) through the interaction of such a particle with
the zeropoint electromagnetic field. The programme was remarkably successful
for just ocne quantum system -the harmonic oscillator— but thirty years study
of non linear systems has given only one useful result -a correct estimate
of the size of the hydrogen atom(gj. We have to recognize that, in the absence
of new "classical" ideas, which could include, for example, a stochastic
version of the electron-positron field, a more modest version of SED should
be used. This would continue to insist on the reality of the zeropoint electro-
magnetic field, and hence on its representation as a c-number. However, it
would describe the motion of electrons inside atoms through the nonrelativistic
Schrédinger eguation. This more modest version of SED would be only semiclassical

and not classical.

At this point we may note that a certain cbnvergence has occurred between
Quantum Electrodynamics in the optical region and SED. Thirty years ago there
was little recognition in Quantum Electrodynamics that the zeropoint field
was anything other than a source of “virtual photons'. Now, with the emérgence

of quantum. optics, especially the study of the atomic equaticons of motion

{3}

in their Heisenberg form the vacuum field has a much more "real” status.
The idea that the ground state of an atom represents some kind of balance
between radiative reaction and vacuum field effects certainly originated
in BSED, but it is now being propesed as a respectable quantum-mechanical
description. Parallel with this is the idea that "spontaneous"emission, which
Einstein, 'its discoverer, always considered so unsatisfactory, is actually
stimulated by <the zercpeint field. We shall show, in this article, that,
by returning tc the harmonic oscillator we can make more _precise the
contributions respectiirelly of the radiative reaction and vacuum field +to
Einstein's A coefficients. This may also cast some light on the gensral problem.

of how frictional forces may be included in the quantum formalism.

Our treatment will also show more clearly the status of 'negative.
probability" in Physics. We shall argue that non positive definite distributions
can enter into the description of physical systems only as a calculating
dgvice. They cannot be properly interpreted as distributions of probabi]:ity
and only ‘those Llinear combinations which have the property of positive
definitehess may be said to describe real physical states. This has a redical

consequence which has beer recognized in SED long ago(lo):

no excited state
of the harmonic oscillator is a real physical state, and hence a statement

that a given atom "is" in a given excited state may not be correct,

One argument (1)

in favour of ‘'negative probabilities" inwvclves the
clasgical diffusion of a particle between two reflecting walls; the
eigenfunctions of the diffusion operator are not positiﬁe definite, Since
nobedy questions that, in this c¢lassical process, the particle is always
in some definite place, we infer that these eigenfunctions cannot, on their
own, represent physical states of the diffusing particle. We shall show that
the Wigner functions of the excited states of the harmonic. oscillator play
a similar role with respect te the Fokker—Planck operator, which gives the
time eveolution of an arbitrary distribution in phase space. None of these
functions, except that representing the ground state, are, however, positive.
definite, We infer that only certain linear combinations of these excited-state
distributions, that is certain mixtures of the first kind, represent real

physical states.



II) Completeness of the excited states in phase space.

A hamiltonian H, for instance a one dimensional hermitiah, operator,

may, im certain cases, possess 8 complete set of excited states ch&x) such
that

(2.1) H @A‘Q = En‘b\kx)

where En, are the corresponding energy levels (u=0,|,z we- ) and the
eigenfunctions b&ﬂ satisfys the completeness relation

[+ 2]
2.2 %) D) = B(x- ) .
@ 3 o by ¥

The time evoluticn, in Quantum Mechanics, of the hamiltonian system specified

by H is then given by:
m 1
2.3) abyty = L %n ¢“,0‘)WPQ*'E“—J‘/"’L) y
"~ Az
where
® %
(2.4) Quy = &é‘x q)“(:‘&) "PU‘,O)
-00
Consider now the W1gner function W(x,p,t) associated with ‘\.PQ(,".):

(2.5) \:\l(x,p,lc) = S A_‘k ‘1}( 0<+~6,¥) "q)(x— ) MP@""'& JR).

The time evolution of W(x,p,t) is

. W(X,P,m%% o o, WoP ) T Em-Ewk /Jh] )

'where%(]-“_ are constant and
2.7) W) = &ﬂ. q) ey ) (’?v\’ -‘Ui"\f U—"‘i"a/’ﬁ)

Real physical systems do not evolve in time according te (2.6); all
states, except the ground state (W=0 ), undergo decays by spontaneous emission
of radiaticn. We propose to study such processes also through the evolution

of W(x,p,%}, substituting for (2.6)_ the more. gengrai_rgl_atio_r_z:
o o T )

(2.8) Wb(,p-lg)r_ 3 b C“(L‘%B W‘*’ﬁ?)
wm=0 =0

The explicit expressions for Cm*') will be obtained below, for the

case of free and forced harmonic oscillator, within the realm of SED.

In order %o be sure that such an expansion is possible, we need a
completeness property for the set '{\J““’
the following theorem.

. This is puaranteed through

Theorem1l:The set of functions w\“&x |V) is complete and orthogonal
over the space {x,p). . .

Proof: According to the definition (2.5) we can write

(2.9) L i_ \J\J (X\?) \\l&bﬁc) =

wi=p WN=o

o @ | _. .o R
= ) {38 (9 srp(24n-v3 ﬂ"%f?&f*‘i"éi’&*’\) -

2 dun) sy = BDse-p)
2 Gy sy = i y

where we have used (2.2) end the Fourier Antegral representation of 't_',he

Dirac delta function.

This establishes the property . of - completeness. .The - property of

orthogonality is obtained in a similar hanner"ahd' we give only the result

(2.10) Sc\,x S&Y \A‘&i\'\\)) \l\]((}g\) b

Bv dng
2%




In the fellowing two sections we shall consider the special case of

the harmonic oscillator, for which the hamiltonian is

7 ~2 ’
(2.11) H::—i'-‘-a 3—-— + -L"\-o o %
- 0

where YA, is the mass of the particle and uJo the frequency. Then the excited

state wave functions can be expressed as

{2.12) Cl)OQ = (1: ‘\- —Uz m@o) H ( ‘F‘T— )WP(-WU,OK )/

where H“_ are Hermite polynomials.

In this case each function of the complete =zet of Wigner functions
\\L& , defined in {2.7), can be calculated explicitly giving(lz)

Wike o 2 )hﬂoo\a(—%— Faw )

(2.13) T
(2“0@07\ + 2 )

- R

if “\-SW . Here L. n are associated Laguerre polynomials. In the case
W\,')h. we get a symilar result, that is, we must interchangeWA,. with W
everywhere and also replace i by -i.

We shall see that for studying transitions induced by thermal radiétion,

the diagonai subset of ]\'\0’““.\ is sufficient. The functions of this

subset, which may be termed "Wigner functions of the excited states", are
given by

2
(2.10 W“g\v)=%_\__;§3?3w‘;(&)a\)¢%) )

2 \ °
were Z= MoaX /& P/ moant o Ly =L

is a Laguerre polynomial.
In this case it is possible to prove another completeness result.

Theoreme 2: The set of functions U“gi') is complete and orthogonal

in the sense:

® S
(2.15) g&z UW\,(%) U\‘E') = -ﬁ"-\"_
0

2%

and

, 0 _ rz)
(2.18) % Uv{"") U"\—%‘) - 7.111’!\?'
—°

These results follow directly from the standard orthogonality and completeness

properties ‘of the Laguerre polynomials.



I1I) The Einstein A and B coefficients en SED

There has been a great deal of controversy about the respective roles
of the vacuum field s.nd radlatlve reaction in the spontaneous emission of
radiation. Mllonnl( )
in the second-quantized formalism, that the contribution of either of these
fields may be reduced -formally to =zero. Such a treatment sugpests that there

is no real difference between the vacuum and radiative reaction fields.

In SED the electromagnetic field, instead of being an operator, is
a <¢-number. A product of fields is independent of its ordering, and "field
commutators” are just a coded way of specifying the various autocorrelations
of the zeropeoint field. We can 'therefore make an unambiguous distinction

between the wvacuum fields and the radiation reaction.

The motion of a harmonic oscillator in SEDl is given by a Langevin-type

equation

2 2
_ e
;%=

2 . ‘
Wy % - me2¥% 4 ¢ E ) S

(3.1) Wik = ="p

where the term —'2:.6 moi in the equation of motion has its origin in the
radiation reaction force 2,22‘.).(‘/3(,3 . The random force Q.Exﬁ'-) is generated
by the x compenent of the fluctuating electromagnetic field, that is, E}!.-E)

is a gaussian stochastic process with a spectral density given by:

(3.2) Itm) Sc\'c (E (k)E(lc:;c))w,LP(.\.w'c.) :

Buch a system differs from a Brownian harmonic oscillator in only one
- respect; the noise E%&,) is not white, so that IO is not a constant function
of B} . If we choose for Io(u)) the spectral density of the zeropoint field

(3.3) 'IOM) - "VLN’Q/GT{‘Z(?’

has shown, by making a suitable ordering of the operators’

10.

then, because of the linearity of (3.1), )L&) is also a gaussian process.
In particular +the stationary phase-space d;stribution is the ground state
distribution given by equation {2.14) ‘

3.4 \v\l A _ &Pti)
(3.4} (‘K |._? ) UQKE) = T

In order to understand the role of excited states in SED, we now consider
the tir.ae-dependent case. 1t is . convenient to treat "éponts.neoué" emissions
aldng with those stimulated by incident -radiation. This means considering
a peneral spectral density L{W) instead of just the zerf;\point field IO(SU)
However, because the zeropoint field is not directly observable we write

(3.5) 'I@): ‘10@) +Id§§° ,

where Iabgm\ is the observable part of the mcldent spectrum The phase-

space distribution w(x,p,t) satisfies the Fokker—Planck equatlon(lo)

(3.0) =¥2 ) + k"\“)ﬂbk’“ "’N\

’

where g and i‘\ are constants of the deterministic motion, given by

Sinfulet)
" = B Sindek) - b cosliet)

Gre,)l .
(3.7) t\) _.—_ WI[“’O)

g =X '_'l‘%\‘io_ wS(et) —

is the diffusion coefficient. Because g ..\-l'.\ = % it is " easy to show that




A

(2)
the stat:.onary solutlon of (3.6} 15\\\ \)(%) %_ in the particular
1 .
case in which ‘D= ‘Do - (‘\TQ\ :g'b)o) ':-'\‘/'L
A further tra.nsformatlon is convgnlent
) 3 = VB Y ’]'—'—E g,

where E is the same as before (see 2,14). Then (3.6} becomes

W 1P )
(3.9) = 2% (% +\c~\) +’D(% +43T —2-2;1?—1 .
We observe that a system which, at t=0, is in equilibrium with the
zeropoint spectrum ( \Nd = Uo(i} }, and which, for t< 0, interacts with any
field of thermal {that is inccherent) radiatioﬁ, is always hémogeneous with
respect to the varlable . We may therefore, for such a syst_em, discard
the - derivative w1th respect to L? in {3.9), and consider W as a function of

z and € only. Then usxng theorem 2 of the previous section, we can put

s W = 1 cm\)@ - -,
where \)“3) was defined before in {2.14) and

29 Séz Ve Wet)

The time evolution of the ceefficients CY\k"') can be obtained by

{3.11) C“_(‘\',)

substituting (2.10) -into (3. 9) Using the recurrence- relation between the
Laguerre polynomials \_&E‘) we get :

{3.12) Z C}éﬂ \’J\k.%] — i C,“l'-\-.) U\&%
n=0 W=0 _
.{\( E‘“Su,m\+ S“‘“ + (M\)S“‘m N+

+ Q’D[“%n‘n-\" fenu) Snm, & laxi) %v\‘“.\-}x

1%

Since the functions Uv‘?‘) are orthogonal we must have

(3.13) é’“g‘\:) = \Y\. (—\64-'2.'9) 3“““'_\_‘ _\.. B -2D (1_“.\,\)-3 S“M— +
+ v +2D) (‘\-\-\\Sv\,'v\.\\ Cutt) = |
= (pvxlv\,\.\ + ?u,;n. + p“,\'\.-\) Cyk) .

With the above definition of?“.“+\ , ’?VL‘\'L and ’p\l\.‘\&—\ we can interpret
these as 'transition probabilities", per unit time, from the mathematical
(not physical) states W to W +1, W to VL and YL to ¥V)-\ respectively.

The explicit expressions for these "transition probabilities" are

Py = (an) D)
(3.14) 'P“m’ = T - )2

R\u“ﬂ = V\.'V-‘D"l‘\é)

Here, for instance in the expressions for ,p‘ﬂq it and ‘p“-‘“.-\ T, we

can easily identify the role of radiaticn reaction due fo the presence of
T . In a '"downwards transition", like T’“_l\H , we have a positive
contribution of radiation- reaction as is expected on physical grounds. However
in a "upwards transition", like 'p“‘“_*\ , we obtain a nepgative contribution

of radiation reaction.

To obtain the Einstein A and B coefficients we substitute (3.5) in

the expression for D given en (3.7). Then

’.P\h.\\'\.-\\ = va.m\'—fe\ég%) + AY\.‘M|

{3.15)

?\n W B“nﬁA—Ie (w"_) ¥ A“.V\'\-



\3

where
_ 2 (nw) Weer . =0
o Bupn = Pl ) P
and 7 T
o
2nvtes e Yo

(3.17) B“.“‘\:m‘ i A‘V\..“—\ ?__,m,,c"b

These results are in full agfeement with the formal calculations of
Quantum Electrodynamics. In particular, the coefficient AV\..M\ of
"spontaneous absorption" is zero and we now see that this is because of a
balance between the effects of radiation reaction and vacuum fields {‘6‘: Z-.DQ
as was seen before). Also the coefficient A“'“_\ of "spontaneous emission"
has equal contributions coming from these two sources (\6 and tDo ). The
equality betweenB“_.“_“ andB“_“ " also follows from (3.16) and {3.17).

We note that these conclusions agree with those reached by Milonni(la)’
though his arguments had a more quantum-mechanical flavour. We aiso note

that one of these results, eguatien (3.17) for A“_“_,\ y is a rather old result
. (14) v
in SED .

We stress again, however, that the "states" given by the "distributions"
%) are, in SED, nothing more than a convenient complete set of functions.
Their role with respect the Fokker-Planck equation (3.9), is very similar

to that of the functions

(3.18) \]“‘UQ = QBSQ&X) ) W=0,1,2 ..

With respect to the diffusion problem

(3.19) N _ f'bq'\]

N (:-a-lj-::O 0}‘3 )(:0;‘\"\“) .
2t W X

W

None of the solutions (3.18) derived from {3.19) represents by itself a physical
solution, with the sole exception of the '“ground state", Y\ =0. We could describe

the -solution

(3.20) \l@{,h = {4+ of Cos() 9-’)6‘)(-‘1()

as a decay of the "mixture" of states n=0 and n=1 into the sfate n=0 as t.
tends to infinity. Bub ﬁe would not, in this context, allow such language
to obscure the fact %that such a mixture may.bé a physical stét_e o.nly for
those values of 04 , namely AZ o{ & | ., for which V is positive definite.
The same considerations apply to the excited states of thé harmonic eseillator,
and also, possibly, to the excited states of atoms. The state n=1 is represented

by the Wigner function {see 2.14)

(-3.21) \T\‘“\\l“)) - k?.'%"—r-\ Yo ?('_%)

which is negative for 2 & \/'Z. . If we consider mixtures of this with the
ground state 50 }

{3.22) \\)QL‘P): \Pxné%]\::\fs\\(%)

then such states corresponds to physical states only if . 0 <0( < 3 .

The language we are warning against is, of course, strongly entrenched
in the literature. It is now becoming fashionable to describe resonance
flucrescence as the radiation emitted by an atom which is. oscillating coherently
between two states. We shall show in the following section that such language

is no more justified than in the case we have just been studying.




IV) Rescnance fluorescence in SED

Resonance fluorescence occurs when' an atom is driven by a coherent
electromagnetic field whose frequency is close to one of its transition

frequencies. It was predicted, long before sufficiently coherent sources

became available, that the radiation emitted should have the linewidth of.

the driving field, ratiler than the natural linewidth cof the tra.nsition(le'l?).

Alt_hoﬁgh the prediction was based in Quantum Electrodynamics, it has always
been considered  somewhat paradoxieal, though it is now well verified

experimentally.

In SED this Weisskopi-Heitler phenomenon receives a very natural

explanation. A driven harmonic oscillator has a Langevin—type equation

“ . 2 ‘ -
(4.1) X 4+ 26K 4+ Wo X = -%EE;L"—) - F's_m_(m\:)] .

In the absence of the zercpoint field aﬁ we have_the deterministic solution

s o[ deEoypponty :
o Yo R"LW\o(mg..w’wzxxw)

In the absence of F we have the zeropoint. Statlonary solution Xz which is

welllmown{l 2) in SED, Then th_e steady—state solution of (4.1) is

Now the radiation emitted by this system at a given frequency is obtained

from the autocorrelation of ¥, that is
(4.4) \‘(a ('C—) = <§<Q¢) $.( (’\'.-\-'C-)> _ . .

Becausex&and X;Z. are independent we have

@5 Kig) = (52&_&) %A@:w)} +{§Z&) 51%&#(,)7 »

o

The first term on the right hand side represents radiation at the single
f‘requencyb} (which is the frequency of the deterministic motion X‘L }, while the
second term represents a line of width ‘6 centred on the frequency (I,g as

is wellknown in SED“”Z).

But we saw in the previous section thgt the ground
state of +the oscillator, which is represented by +the stochastie process
i! ; is an -equilibrium state in which +the radiation. emitted at a given
frequency is equal, on average, to the radiation absorbed at that frequency.
Hence only the sharp line, at frequency u) of the determinist:!.c force, is’

observed,

The phase-space distribution in the steady state, cha.'racter‘ized by

(4.3), is easily obtained. Since Xg is independent of X4, , the joint

distribution of)(z and E=“’°\k‘2

is simply the ground state, given by
(3.4): '

—E‘—ﬂ_'

e W (Xﬂ‘:&) ’h WF(— Y‘\.o!.\)o

-‘Hence the distribution of (x P) (XA—-"XE’ Pd-i- {3%)15(1_8) -

o Wi = s g GY)

According to theorem 1 of the section II we may write this as

(%_'8) N()(,v?};) = Z C m N W \7) L1

M=o ¥izg
where

ok
oo O ={da(dp Whon Wogly

These expan31on coefficients may be obtained most easily by using the expre551on

{2.7) for \J {x l?) , together with the generatlng functions for the Hermite

“w \l‘z.

polynomials. The result is

W
(4.10} C“&E = % my

( %) +ilm-wyE H%m)



it

where

aEh SN = ey i e o Jowptanty,

and Y\&Qc‘ is given by {4.2). In general G‘ and 8 both have a small periodic

part, but for the case of resonance théy take the gonstant values

(a.12) Vz'_gi_ ; %=
T v F R

For this rescnance case, (4.8) with (4.10) is readily recognized as
(18) .

° C(w=we) .

the quantum mechanical coherent state it corresponds to the state (2,6)

with the coefficients /
: _ v \\/2
{4.13) 0'“ = —g\]—) WP(:'G’/?-) : ' :

This is remarkable because such a state has no formal radiative corrections,
whereas the SED description corresponds to that of Quantum Electrodynamics
rather than to Q.M,,Just as the ground state - of Q.M. represents a balance
between radiative reaction and zero peint field, so does the coherent state
répi‘esent a balance between these two fields ané the driving field. Because
of the time variation in G" and 8 , such an identification is not so simple
for the general, off-resonance case, so {4.7), or equivalently (4.10) and -
(4.11), give an SED generalization §f the coherent state, by the inclusion of -~

the radiative correctiem.

\8

V) Conclusion

By a study of the harmonic oscillator in SED, we have shown that, for
this system at least, the only. role of the excited states is to provide us
with a su:'l.tal;le complete set of Wigner functions in terms of which an arbitrary
phase-épace probability distribution may be expanded. Consideration of both
spontaneous emission and resonance fluorescence leads u-s to the conclugipn

that these states have no independent physical existence.

There are, of course, many elementary facts of atomic physics which
can net be described by a harmonic oscillator model; for example the Ritz
combination principle for line spectra, which gave birth to the excited—state
concept, remains unexplained in the completely classical version of SED.
That is why we have argued, in the introductory section, for a2 new semiclassical

version of SED.

Nevertheless, we think ouwr results show that it is neceésary to treat
the excited states with some care., In quantum theory, and in SED, a harmonic
oscillator driven by a coherent field at resonance does not alternatg ‘between
its wvarious excited stafes. The coefficients Q“_!&\:(-LE“;‘:/g\) af (2.3)
or wam&)

varying phases which give rise to the emission of radiation at the freguency

given by (4.10) have time independent modulus; it is their

of the driving field. To be sure, quantum theory asserts that a measurement
of the energy causes a collapse of rq} , leading to a discontinuous change
in Q\n,_ . Furthermore, current descriptions of, for example, the "shelved-state"

experiment {20)

interpret as a I'measurement! +the intervention caused by a
second laser operating at a different resonant frequency. However in view
of many acknowledged di‘fficulties of quantum theory of measurement, especially
the non local features associated with the collapse of the wave fumction,
we think it is premature to conclude that this is the only possible explanation
of such experiments. Another possibie explanation may come from Stochastic
Optics (a branch of SED} which has already given a completely local description
for many phenomena which 1% was previously thought displayed quantum
nonleocality”. We therefore believe that further study of SED, especially

in its semiclassical version, is justified.
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