UNIVERSIDADE DE SAO PAULO
INSTITUTO - DE risicn !
CAIXA PUSIAL 20516

01498 - SAG PAULO - SP
BRASIL | ,

SERVICO DE
BIGLIOTECA B}
INFORMACAD

* PUBLICAGOES

SURFACE TENSION IN FIELD THEORY AT FINITE'
TEMPERATURE: SEMICLASSICAL FERMIONIC PLUS

BOSONIC CONTRIBUTIONS

D. Bazeia
Departamento de Fisica, Universidade Federal
da Paraiba, 58000 Jod3o Pessca, PB, Brazil

0.J.P. Eboli

Departamento de Fisica, UNESP - Rio Claro,
C.p. 178, 13500 Rio Claro, SP, Brazil

G.C. Marques and A.J. da Silva
Instituto de Fisica, Universidade de Sdo Paulo -

‘rDezembro/l987




+ SURFACE TEWSION IR FIELD THRORY AT FINITE TEMPERATURE:
SEMICLASSICAL FERMIONIC PLUS BOSOMIC CONTRIBUTIONS

D. Bazeia®, 0.J.p. Bboli**, c.c. Marquest**t

and A.J. da Silva+++

ABSTRACT

. We compute, within the one loop approximation, the
temperature dependent surface tension for a model involving a

“Scalar field coupled to a fermioric field. The fermionic and

bosonic contribution have been computed in this approximation

by evaluating explicitly the determinants in the presence of

a domain wall.
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I. INTRODUCTION .

it has been suggested(1 3) that the analys;s of the

'Free Energles assocxated to d1£ferent topologlcal defects

oonstxtutes an 1mportant artifact in order to analyze the phase
dxagram of fleld theoret;c models. 7 . . ‘
At the cla551cal level the Free Energzes assocxated

to these defects give thelr total mass and are 9051t1ve. meﬂnnk

_-thermal fluctuatlons however, can change thlS plcture for

certain ranges of the coupllng constants and the temperature“ 5)

For high enough temperatures it can be shown, in the semlclas—
s1ca1 approximation, that the Free Energy of certa1n deiects 7
vanish even in the region of weak coupling constants. In this
situation the system represented by this Field Thoery is expected
to go to a ‘condensate of such defects, representing .a new phase.

In earlier papers(T 3)

, we proposed that the restauration
of spontanecusly broken discrete symmetries by thermal effects

can be viewed as a condensat1on of wall- llke defects whldlyuebd

. a background ‘state. of . zero . mean £1e1d value., .That is . an

alternative view to the Effective Potential approaon(s) te the
samerproblem. In ten latter view, ohe background orer which the
quantnm vacuum is constructed is always thought to be a constant
value field {(the lowest energy solution to tne classical eqaticon
of motien) and it is shown that above a certain critical tem-

perature is driven from the non zerc value (representing a
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breakdown of the symmetry) to a zero velee.uhid1mem$ restoration
: oE symmetry. 7

’ In (3) we studied the one loop Free Energy of wall—
. =like defects in the model of a H1ggs f1eld 1nteract1ng with a
Eefmxon fleld by a fuke;ercoupllng. There, the ferm1on1c
determlnant was calculated by quadretlng it and using a h;gh

(2) (7).

temperature expan51on due to Welnberg

In the present paper we return to th;s problem by
:calculatln; the ferm1on1c determ1nant without any appnmummnon.
A better care is also given to the finite renormalization parts,
which impfove.the determination of the mass of the soliten-wall;

-.even at zero temperature.

II. THE.MODEL
We shall use the imaginary-time formalism to study
the'system at finite temperature. So it is convenient to write

the model in the v-dimensional Euclidean space. The Lagrangean

density is ~

2

- A 2 _ = A 2 s ‘
.I. = 5 (.aurp) - ¢E¢+3- [q’z-%-J _ -.1g¢'¢¢ {2.1)

2
where A and m° are pos;tlve constants, the index p  runs

from 1 to v (v—2 or' 4},. V stands for t|J T and F for #‘au

.4,

The Euclidean Dirac matrices ‘4¥ ‘are defined in terms of the

usual Minkowsky ones by 7' 7.0 oo

Tu 7=A (?r‘iYo) 7 u = 1, ..., v

and satisfy the anticomutation rules

{vu.vp}_ = -2¥° .

The renormalized Lagrangian of the model can be -

written as

: ; . S . .
L = -i- (1+A)(auq))2 + % f—m2+3)¢2 +% (l'}-c)‘p’n -
= (+F} v 3¢ - i(g+G) Vg + [H+BJ : (2.2}

where A, B, C, F, G and E are the counterterms necessary to

render the physical quantities finites.

As usual, to implement the loop expansion around a
classical solition of the field equations we separate the

fields in the form

(2.3)

o

where a factor Hh? is assumed multiplying ¢ and V. Similarly,
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the contribution to the counterterms coming from the one loop
contributions carry a factor of h.
By substituting (2.3} in (2.2} and using the

equation of motion of

Polass the renormalized Lagrangian

density turns out to be

L o= L+ L +1L. ootz
where
2

_ 1 2 A (2 m?
L, = 3 (aucpc) 7 (q;c _T] (2.5a}
L = lé(—u+3A¢2-mz)¢—E(E+i )‘l). ‘ {2.5b)
0 2 ] r19% e

_ A 2 B 2  C & 30k 54 _
Linte = 3 ‘(auq’c) P T F Rt )\Q’c-‘15 * 7 ¢

-ig¥yd + (-ADq)C + By, + Ccpc)ﬂb +

a 2 B, 3. 2),2 -
+-2-(6u¢) +[—2-+ECQJCJ¢ +FI!JB’\|J"

- iGe V¥ +Co 9 - iGTHo +%¢“+—H ] (2.5¢)

of course, at semiclassical level we need to keep only the terms
up to order f. Thus, the relevant contributions in (2.5¢c} are
.the three first ones, with the counterterms A, B and C evaluated

at the one loop approximation. To fix these counterterms we will impose

6.

the renormalization conditions:

f(‘!)

= 0 (2.6a)
FO2Yp%20) = 2m?- ' . (2.6b)
=(2) _ -
ar - = 1 _ | o o (2.6¢)
dp pz =0 . .

for the 1PI functions calculated up to one loop order in j:he
vacuum sector, i.e., ¢_=¢_ =m//L. These calculations are

carried out in the appendix and the results are listed therein.

IIXI. DOMAYN WJALL SURFACE TENSION

Let us now calculate the surface tension of a domain
wall-like defect at finite tempera;cure. In a v~dimensicnal
space-time this topological defect can be fepresented by a
solution to the classical eguation of motion. If X is the

coordinate perpendicular to the plane of the wall {(we call it

the longitudinal coordinate} we have

2 tanh[f& xLJ ] (3.1
ey 2

It

Pu
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BL

.8..
The surface tension of this wall-like :defect is defined as R e o e e o - . )
HEE = 1 = .
: .1'w vz {F(tpw) F(tpv)} : (3.2) | with »

. where L'"? s the "area” of the wall and ':F(qic) is the free ﬁB((pc) = —'u + 3Atp; - m? ’ cor £3.8)
energy associated to the classical field configuration P+ In .
terms of the corresponding partition function Z{g,) , we have ' Cdlple = - (F +.ig€PcJ_ SR . - {3.10)

T = -1 in f.iq_)w_) ' (3.3} The integration in the Euclidean time extends from zero to
W v-2 77 Z{e_) - . . ] : . - .

BL v ' B=1/T and the functional integration in the bosonic_ {fermionic)
ﬁp to the one loop oraer 2l ) 1is given hy ST field assumes periodic {antiperiodic) boundary conditions in the
! c . > _

- . ' o Euclidean time, By formally deing these integrations, the
= - . ‘ ' Co - " surface tension of the wall may be written as
Z_(tpc)_ = exp{ 5.(9,) ScT(tpc)} x o :
= : 3.1
) T, Te + Top + Ty + T ( )
=S (8 =5 (%) : '
fl)@e bil fmpnzpe bil (3.4)
. o where

where = ' ) - . sy - 22n 3.12)

L : ‘ : e T Mg = 3X 3.

. | v. 1 . 2 . A (2 w2 ' LI s :
SC(CPC) = dx{-z- (auch) +j4‘ [ch"TJ } {3.5) . - 2 m ATﬁmB 2,/2'“1_ c (3.13)
: : cT 3x A '3%2
Y 1 2 1 2 . C 4 i -
. = —_ — —_— d
ScT(cpc) J a x{2 A(auqzc) + 2B_°9c * 3 q)c} (3.8). _ an
1 A " X
T T T e———tr An Q. (e ) - tr &n Q. {@ )} {3.14)
= M ' B v-.z{ B Yw B'Pv
Sp;1(8) = J d x@ﬁB(q:c)tb - (3.7) _ 28 L
R B ) 4 i G 3.15

A : : _ o _ T = =5 {tr in Q.(p) = tr in anv)} { }




with

~ - - 2 . )

QBWV) a+2m° S3.16a)
~ 2 : ’

figle,) = -o+2m - 3m? sech? [i% xL] {3.16b)

fle) = -F-I19g> ' | (3.17a)
rroy - gﬁ - - (3.

§ (p} = -7 ~1g-2 tanh (ll X ) (3.17b)
F w _/x ’/'2" L

In writing (3.14) and (3.15) we used the identity det =

.= exp{tr &n a1 .

A. ‘The bosonic contribution.

Let us compute {3.14), i.e., the bosonic contributions
to the surface tension. The vacuum sector is trivial and the

eigenvalues of the operator ﬁB(qu} are
2 | 22 2
QB(q:V) = @+ k™ + 2m . (3.18)

whare amn = 2n8 (n Qo,ﬁ,:z, ...} and ']EV is a continuum of
- {v=1)-dimensional momenta.

For the soliton sector, i.e., for the wall-like
defect ;ve are led to the well known Posthl~-Teller problem - see,
for instance, ref. (8) - in the longitudinal direction. Therefore,

the eigenvalues of ﬁB(q:w) are

)
2 2
Wl + K

o ey 2, %2 .3 2
RB(QW) = { wo + kg + zm (3.19)
2 *2 2 2
\wn + k; + kL + 2m
where Bwn = 2n¥w, ﬁ, is a continuum of {(v-2)-dimensional
momenta parallel to the wall and kL is the longitudinal
‘momentum and the phase-shift is
- /2 k- . , ,
= rd - —e
{ L) b arctan TESBE . (3.20).
. &=0,1 T

Using (3.18)-{3.20) we get for (3.14)

- 1
g T v-2 Z

- J~ LV-2 d\'-Zk y un
———— 5 { tn(e® + %2 4
28L (2my¥-2 ono 7t

n=-—om

Ldk T
b4 2 3
+ zn(wn+_lzn+-§ m?) +J' 2“L _[1 -1 §{k_) 4 )

‘Ldk
2

2, w2 2 2 i s )
en(wl + K7 +k2 +2n7) - J fnte® +%; +x2 +2m%)

Substituting (3.20) into the last expression and using the well-known identitym)

- 2 2 . ‘
z 1n[wz_+—4%] = Bm+22n'(§-e“3w)+1 ..




L1

where I is a ® -independent infinite, we obtain

) V.2 : ‘ ‘
d k
1 1v/:§ T fxz .3 2
1, = | ———= < 5V%k; + 3 /Ri+5 00 +
B (zﬂ)u-z 2 _ 2 . 2
>2 2,3 2
1 -8v Kk i "Bk 4z m
+B!.n[ Bln
3/ . /2 | 9K 1 1
3 v/ am 2 IR 2|
i T 2kL+m kL+2m

B. The fermionic contribution

Let us now calculate (3.15), i.e., the fermionic
contribution to the surface tension. For the vacuum sector,

charge conjugation, allow us to write

N .
det(i!+igq:v1) = det? [(_G+92¢3;)I:| . {(3.22)"

where I is the identity matrix. Thus we obtain

) (3.23a}

12,

where

2 2
RBF(wv) = -O0+gg, (3.23b}
whose eigenvalues are

Qpelo) = w + k% + g% {3.24)

where Ban = {2n+1)7 (n=0,%1,:2,.,..) "and % is a continuum
of {v-1)-dimensional momenta.
For the soliton sector, i.e., for the domain wall-

-like defect, the choice

1 o0
v, o= i
L 0 -1

and the use of charge conjugation invariance allow .us to write

det(y +ige, 1) = aet”* &g ) . get”? 8o, ) (3.25)
where
s .
(%) - . 2 2 W
QBF (@w) = O+g'g, g 5;; . (3.26a)

Therefore we obtain

in det(5+igq>w1) = tr ﬂ.n(z-i»igcpwl) =

Y] Ae) v A(-), S
= 7 tren ﬂBF {g,) + 7 tr An Qoo (e ) . (3.26b)
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By substituting (3.1) in (3.26) and defining the parameter s as

s? = 2 (3.27)
we obtain
-( ) | m? 2 2(m |
= (¢ Yy s -0+ = | 8% - 8(8%31) sech [u— xL] . (3.28)
vz
. . 1
Since A and g are independent constants , S = (Zgz/h)z

is an arbitrary positive constant. The eigenvalues of (3.28)
are easily obtained, but the corresponding ones of detnBF(¢ )

are'vefy length and complicated expressions.

To get insight into this problem without facing
these technical difficulties we choose to evaluate it for §

an integer positive number. In this case the associated Poschl-

-Teller problem has a discrete plus a2 nonreflexive continuum
spaxra(a)(like the bosohic contribution above). The results

for ﬂ{')(¢ are;

altlaes) =Gl + ¥ +afus-3 ;L= 01,280

“’(k = wl o+ B2 %m s (3.29)

with the phase shift:

5(+)(k ) = s - 2 Si1 V2 kL
s I = arctan m
. &=0

N

(-} _T2 e 2 ' _R#1
QBF (L,5) = w +ky +m (£+1}[s ———)

(=Y, 2
Agp (kyeS) = B ¢

with the phase shift:

kf + k, o+ % m" s

.14,

> : £=20,1,2,...,8=2

5~2 . /i k .
_S_é-)(kl.) = (S~-1)m - 2 z arctan [—L-jl

m(L+1}
2=0

Collecting the above results and using the following identity

B

n=-a

pd 2_2
z 4n [(211-12} ki

+m2] = wB + 28n [1+e’8"’] + I,

we get; after some manipulations paralelling the bosonic case,

av-
o= -2 /X2 42 z 7k +m£w-~)+
F 4 n.
(Zn)
'EYERY 5-1 _ _i
5 -8 kﬂ 4 8 +m {5 )
+=8enti +e + = tnjl + e
8 : B
_ £=1
/o2 .2 dk vfﬁﬁ + k2 + 1 m282
_ ___ZHI_S ‘/E m —L g - L 2 +
2 2% kz . 1 m2£2
L 2
1 2.2
_ = -8y K2+ k2 += m°S
51 ﬁ+%+lf§ m[1+e- 1 E 2 ]
. 2 "
+ 2 E: b2 5 + 5 ] ™53

(2.30) -




+2 2,1 2.2
g 5! nn[1+e8/k"+kL+'2'msJ .
+ 2 % _ . {3.31} -
B Z 2 1 2.2
2=1 kL + > m L

IV. CANCELLATION OF DIVERGENCIES AND QUANTUM CORRECTIONS

We shall now analyze the repnormalized expression (3.11)
for the surface tension. We first ‘s'eparate the zero temperature

contributions to =t and look at the cancellation of

and T

B F

their divergencies against the Top contributions.

A. Bosonic zero-temperature corrections

Collecting together the temperature independent
contribution to the expression (3.21') and the bosonic ones to -
(3.13) (look at formulas {A-6) to {A-8) in the appendix} we obtain

for - eg = TB(_()) + TCTB:

eB(\)).

n
[+N
<
t
N
=
|
»
+
=
ko
+
fw
=2
N
|
wr
48]
)
N
+

v 2 ,
+3+vZm dk{ ! + n +

2V lk? e om? o (k24 amd)?

16,
S 4 3 ' '
3y n 16 m .

+ 2 e e——— e T . {4.1)
Vok%42m?)’ 0V (k2+2m2)°}

From now on we will take. v = 4. After regularizing the

integrations above with convenient cut-off in kL ‘and’ ii" |-

we get

| = {1 .1 -
-53(4) = [,/3 7;] 26T ’ 7 (4.2)

The last term in {4.2) was separated to allow a comparation of

€ to related results in the lit:erature“'g'm’;

B it conmes from

finite contributions to the counterterms: A, B and C.

B. Fermicnic ceorrections

By extracting the température independent contributions

-to {3.31) and the fermionic ones to [3.13) {lock at formulas

(A—é) to (A-8} in the apppendix) we get, for Ep = TF(U) +T H
_ _ cTg
Va2 ; ) g-1 -
d ky — -
is(\J)==. _— —#k;{’,—z [ /kﬁ+m2!t,(s—£} +
v °F V-2 2
(2m). a=1




i
2.2 2.2
2 ,#2 WS 8-1 2 2 ., mS
3 d\)-‘lk kL+k“+ > z kL+ﬁ+ 5
+ 2m S + 2% +
V-1 2.2 2.2
{2m) 2, WS Py +m1
k=2 - K t=z—
/77 2 &k 1 v-2 5 .2 n’
T2/ mt s v 22+[-3_'\J-_.€S] N A
{2n) 2 mSs 2.,.ms
kT + k™ + -
: 2 2
4 4 [
+ 53—\,\1 Sz Irl2 — - 238\) m2 — (4.3)
[k2+m23) [k2+m25)

For v=4 the fermionic contribution to the wave function
renormalization counterterm is infinite and is essential to
cancel the divergencies. After performing the integrations in

(4.3), with cut-offs for k; and |kg |, we get

7 m® 2 ‘
ep = —iz for S=1 (A=29°) (4.4)
321
: 3 ' 2
e = _‘./._2_.&2_(4—34--91] for  s=2 A=) | (4.5)
32n Y3 :

V. THE THERMAL FFFECTS

A. The bosonic contributions
From the result (3.21}, the one locp thermal

- effects, appearing in thé beosonic determinant, may be written

in the form

(B) 1|8 [b (8) + b (s")] ' (5.1)
T = .7 . 5.1
. B 8 (21'r)\_’1-2 0 1_ ; : '
where

2 7, . 2.2

-8/ k d ~BY kj +k +2
by (8) = % [1_ u} JIm __2%21 1 _eB g Fk +2m
kL+2m

b, (8)

/2.3 2 ' ' 2,.,2 2
-BYk,+=m de -Bk+i§ + 2m
m{:—e 12 }—2/2m ———ml—-m{1~e 1
21 2, .2
2kL+m )
These expressions were obtained in ref, (2).

In the high-temperature limit, the bosonic contribution -

to the domain wall surface tension (v=4) is given by

+ Oz . (5.3)

‘rB(B) = -

B. Fermionic contributions

The one loop thermal effect appearing in the
fermionic determinant may be extracted from (3.31).- For the

particular value =1 (A =2g2) it has the foirm

av-? x .

e . 1 o1

T, (B = - = £ (B) (5.4}
F g8 (am¥-2 @




where
£ 2
(1) - BY ky
fo (B) Rn | 1+e
dk ' -8/ +k2+1 n? :
+2/2n | =2 —L —pnl1+e L'z (5.5) .
2k, +m
L
For S=2 (2A=92J it is given by -
V-2 ' . .
d kll .
wWer s - g | —5 (P 2P | (5.6
(2m) "
where
[ -8vx dk -8/ k2 + k% +2m®
(2) oy _ s i kg
£, (B)—E.n[‘l+-e— +2/2m sp o5z |1 +e
. . +m
{(5.7)
2, 3 2 a *2 2 2
~BY ki +E2 m -8v ky +k +2m" |,
£2)(g)y = tn [1 Bviki*3 +2/7m Fe n|1 e EITR
1 2w kfl+2m2

In the high-temperature limit, the fermionic contribution to the

domain wall surface tensions (v=4) is given by

(B = -’_—2——‘240(%) : s=1 (A=2g%)
128 -
' (5.8)
_ V2 m 1 . _ _ 2 '
p(B8) = STERsotg) ¢ os=2 (2r=g") .

3B

1

.20

Expressions (5.4} to (5.7) are exact. The tF(B)

-was previously calculated in ref, {(3) by doing a high temperature

approximation to the fermionic determinant. There, we used the
fact that among all the ‘one-loop graphs appearing in the e@xumiqn
of RndetC% around the vacuum, the leading contribution,

(aTz), comes from the graph with only one propagator.

VI. CONCLUSIONS

In this paper we have computed, within the one-loop--
approximation, the surface tension associated to domain walls
when scalar fields are coupled to Fermionic Fields. In this context, it is
interesting to implement a careful renorﬁalization of the surfacé tension.
We hé?e'checked explicitly that the usual perturbative counterterms
suffices to render the expressions finite even at finite temperature.and
in the presence of.a topological defect. After a careful remormalization

we obtained for the. zeroc témperature surface tension

: - 3 3
e{T=0) "= 2V§im - VE‘“; {31 - 1] +
32n° N3
s 1 for X = 2g?
+ Y2 m2 5 (6.1
3em - [%; - §1] for A= %T
- ¥3
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In (6.-1), ‘the first term is the classical result, the second is
the bosonic contributioﬁ and the last one is the fermionic
contribution that was computed for two values of . As
pointed out in chaéter iV, the bosonié contribution differs
from previous oﬁes presented in the literature“'g'm).

‘The dependence of the surface tension with the
‘temperature céq be infered from expressions (3.31) and (5.5},

At high tempefatures, one gets for the leading contribution

{in powers_of T),

e('f) = eg{T=0} -rrl_c;xT2 (6.2)_

where e{¥=0) 1is the zeroc temperature surface tensicon and «a
a positive parameter that depends on the ratico of the coupling

constant Lz We have computed a explicily for JL=?.g2 ang

; g
2
"1 =9§_ obtaining - a =§ and a =‘/1§27 respectively.

The first conclusion to be drawn ffom our results
is that quantum effects seems to lower the surface tension.
' That means that the cost Vfor introducing a domain wall in the
system, when guantum .effects are considered, is lower than the
classical predicticon. It is even conceivable that for a certain
range of the physical parameters (m,g,}\.) the surface tension
=v.-:misshes. (For.the model studied here from (6.1), A~ 10° and

consequently out of the range of validity of the approximation).

v

.22,

The vanishing of the surface tension signals a new
phase of the theory(S). In this new phase condensation of
domain walls occurs and consequently symmetry restoration. This

is precisely what happens when the temperature is high enough.

In fact there is a critical temperature fo which
e('I'c) = { .
From expression (4.2) it follows that

_ /e (T=0)
Tc = . o _}}_ .
. / 2 .

g

2 .
-92— . we obtain explicitly

_o2amiaa | A 13
To = T3 TEle
) 2= 5

in the A+0 limit we obtain the result of ref. {1).

For A

]

o]
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" APPENDIX

In this apperidix we present the calculation of fhe
counterterms A, B and C t.o the one loop order. From {2.5)} gix.ren
in the text, in the vacuum .sector I‘c vanishes and L'J reduces
to |

L, - %N—D+2m2)¢ - T(FAiMY (a-1)

where M = mg//X. The relevant L, . for our purpose is '

t

) ) 2
L, . o= m/h e+ 2ot - igTue + L m+locre +
: int 4 V/‘x’ A
A 1 m2 2 : ‘
__3-¢D¢+E(B+3TC)° . (A=2)
. . {1} (23
The one loop contributions teo r and E_ at
" zero temperatu}:e, are:
TR ++‘©+'—7‘—I
v, v 2
= - oAR dkv 2] 2*vgz[dkv 2T P Brx €
VX (2135 kK° + 2m j2m kT e

(A-3)

and "

T(2)

“and

o = 932 d’k 1 a| &k

T
[

o .24, |
= -«Qﬁ'-c- - -+ )—+ + ——@  + (pi+m?)
v

3k 1

“avk 1
(2m)" %% + 2;m?

= - 3A :
(2m1Y (k%+2m®) [ (p+k) 2 + 2m2)

+ 18m° 2

*

2

Y 2 2
2| d'k k+ k-
+ vg 5 —hgsrk o8 o - " +B+3% ) + (¥ + 2%y,
(2%)° (K*4+M° )} [ (p+k)“ +M°] . )
(a-4)

'By introducing the renormalization conditions (2.6) we cbtain:

- vg e (A-5)
(2m)” (k2 +2m2)° (2m¥ (K222

o

da’k 1 &'k 1
(zm¥ (x%+2r%)

(2mV (kZr2m?)?

B = - 3X

- 9am?

+

. v u
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The only divergent contribution in one loop to A 'comes from

the fermionic loop in four-dimensions.
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