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Abstract

» I discuss the use of bosonization /fermionization techniques to convert
non-linear operators of one theory into linear operators of the dual. We gen-
eralize non abelian bosonization to the case where the central charge of the
Kac-Moody algebra is not unity. In particular, using this generalization
of non-abelian bosonization, the bosonic string vertex of the compactified
theéry, turns out to be the fundamental field of the fermionic theory, or
bound states of it thus permitting explicit computations easily.

Work presentéd at "Encuentro Latinoameriano de Fisica de Altas
Energias®, Valparaiso, Chile, 7-16 December, 1987.

1. General equivalence between WZW theory and Thirring model.

Two dimensional models and conformal invariance are very important
ingredients in the modern description of strings{1]. In two dimensional space
time the conformal group in infinite dimensional, being equivalent to the
group of reparametrizations, supporting its relevance to string theory[2].

Bosonization methods have been used frequently in string theories.
In particular, the equivalence between the Neveu-Schwarz-Ramond and the
Green-Schwarz formulations of superstring theories can be understood most
appropriately applying the above methods to obtain relations between the
three different representations of the little group of the Lorents group,
which in ten dimensions, being SO(8) has a three-fold automorphism re-
lating them|3]. -

Our aim in this communication is to use this same technique in a dif-
ferent way, though yet in the context of string theory but this time in the
purely bosonic case. We wish to fermionize the purely bosonic string the-
ory defined in a group manifold, a problem related to the compactification
issue in string theory. Following Gepner and Witten[4], we define the latter
through the Wess-Zumino-Witten (WZW) action[5]. We argue that this
action is equivalent to the non abelian Thirring model{6], with the corre-
sponding symmetry group, at the non trivial fix point{7][8]. The action of
a sigma model with a Wess Zumino term ie invariant under a given group
G. It describes compactification of the string, which turns out to have a
non abelian symmetry as well, rather than U/(1}4 , due to solitons wrapping
around the tori[9]. It is well known, on the other hand, that the non abelian
determinant can be written in terms of the WZW theory|10]. This is the
roat of non abelian bosonization. When the level of the representation is
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k=1, the- WZW theory is equivalent to free fermions. This has been shown

by different methods [5|{11)12]. We first consider this issue in & more gen-
eral scheme, namely general values of k, and a more elaborated interacting

fermionic theory. '

The bosonic theory (WZW) is defined by the action

R 3 - k s tan. -
-Sz-mjdzza“g 18”g+§;]dtjdzzewg lgg 1aveg~18%g (1.1)

‘The conserved currents are

Ligle) = NEgasg)u@) — (12)
J-5(z) = Ni(9-gg™")ss(s)] (126)

E oBéying:'-
8-J, ='of_-a+J,.' o ay

In the usual bosonization prescription, where k=1, the group valued

field: g4y is given in terms of fermions as

3

0l = s WY@ )

In order to study the case k& # 1 we need further information. We
congider the U(n) invariant Thirring model, which is known to have a con-
formally invariant solution at a certain value of the coupling constant[6), as
we will see.The model is defined by the lagrange density

L=Fidy - Lpprogriong - Lqwidrs  (15)
where (1%, r?} =1 f “”r",-and the ﬁeld-.equation is '

=gt rdi (e

We define the currents

=Py s

=% (1.6c)

They are Noether currents of 8U(n) and charge conservation, respec-
tively, while 75 = ey 2" is associated to peeudocharge conservation; How-
ever the current 3% = ¢, j*% fails to be conserved if the field equations are

used
. auj;mﬁ o y)tabcj'f\bjfs (1.7)
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Nonetheless, Dashen and Frishman|6] were able to show that there
is a particular value of the coupling constant were vacuum fluctuations
change the above equation. We study the conditions under which the quan-
tum model exhibita conformal invariance. First.consider the equal time
commutators

[jg[t, ), 35 (t, )} = 115555 (¢, 2)b{z — ) (1.8a)

8 t2) 8(65)] = 31535 (0,208~ ) + i s0(o - ) (188
[ﬂ‘(ts ) jﬂts wl=if abcjg (t,z)6(z - y) {1.8¢}

If the theory is scale invariant, it follows from the above equation that

35 has.scale dimension one. We can prove now that 52 is divergenceless and
curl free. To see this consider the two point function

Al Cq C :
< Ol (24 2= )i (v, 9-}10 >= or —vs T3P - (19)

The right hand side is fixed by the fact that _1';,. = jg + 3 transforms
under Lorentz as 1/z. We may analogously consider functions of j... From
those expressions it follows that '

Bui*=0 . (1.10a)
as well as | . .
H3 5, =0 - : (1.108)
5

The following commutators can be computed now

78 (es), Lyl = 675 (22)8{es —y2) +4 2%6“66’(:& —y+) (L1le)

[z (), s lys)} = iCob' (2 ~ ys) - (11
Qne finds also
[f2,%(¥)] = —(e £ &1° )P (3}é(2x ~ 1) (111¢)
(8,900 = o (L S oles —ys) (L1

where, due to Jacobi identity o = 1 and 62 = 1. It is very important to
notice that the energy momentum tensor is of the Sugawara form

N AR TN APy :
T(oz) = g7 2 duloe)” s+ 1 i (me)™: (112)
This implies that the Fourier coefficients of the energy momentum ten-
sor satisfy a Virasoro Kac-Moody algebra, together with the Fourier coef-
ficients of the currents.

[Ens L] = (0= m)Epim + g5n(82 = 1)n,om (1.13a)
[Ln, I = —mIf (1.188)
[J&, JE) = ifobedg . -+ nk6%08, (1.13¢)
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where the central charge of the Virasoro algebra is determined, and is given
by [13]

kdimG

= v+ £k

. For the SU(n) case it reads egyn) = H%‘,‘ﬁ .

(1.14)

The'(conformal invariant) two point function is given in terms of the
spin-3 and anomalous dimension- fy as is generally the case in conformal]y
mvarmnt theories

< ow,(m)q,lf(g);o >=

oliler —g) + B (= (e ) iefeg + o~y -y)} D (L18)

‘The four-_poiﬁt function has several constraints, arising from the fermionicQ

fiold equations. These have been set up by Dashen and Friskman, by means
of the following construction: the energy momentum tensor is of the Sug-
awara form, (1.12), hence using (1.11) one fids the commutator of the
-energy momentum tensor with the fermionic field. Since this tensor gen-

erates translations, we identify the commutator with the derivative of ¢, -

obtaining:
o 1., 1-61., %
18 #’1 = E{Z‘Eﬂ-+k§M sy +c—a t -1 1} (L.16a)
. 1 1-46 1 .
10 4y = 5{2 oy 2 : +$2 +22 C‘ ‘J+‘¢‘2 1} (1.165)

1+51
+
@ = Pt b+

7

z. j+¢z1 :} (1.16¢)

1+461
iy = p{ar oAb gy 1 210

P -2} | (1.16d)

At this point we identify ¢ = 2—’2‘(1{,,—61,6 =1 corresponds to the free
theorﬁr, and § = —1 & non trivial fix point. The four point function is
written in terms of a scaling piece times a function of the MBbius invariant
variables u and v given by ~ '

o) el -+
“= [y o) i =)+ N
pofle-cel) bty ~pt)bd gy

ICEPART (RErarT

We write this Gre?en'.t'unction a8 feﬁoﬁ#

<o T Tl >= urn-e

{['(Z+—y+)+€][‘(z+"y+ +f]} hﬂ){[ﬂ (= -4~ Jeli(e ¢t ) -i—e]}"("")
Msbbt(u,v) (1 18)

The function G may be written in terms of invariants of the symmetry
group as

* Gaatbbt (2, 0) = baarbspe Hy (t6,0) + Bape o Ha (1, v) (1.19)

Differential equations are obeyed by H; as a consequence of (1.16).At
this point it is convenient to rewrite the four point function, for the sake
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of comparison with a bosonic theory. We write it in terms of the euclidian
variable z = #; — t23

< 01 ()98 (32)95 (a5}t (34)0 >=
[l21 ~ 20)(ea — 28)] {887 A1 0] + %8 Aa(a)} - (1.20)

where x is the Mobms invariant combination z = {ﬁ}{ﬁ}

The functions 4; and A; obey hypergeometric differential equations,
due to the fact that the fermionic fields obey the equations of motion, which
in terms of complex variables is given by

é—a‘;qﬁl(z) : Forpy(2) - (1.21)

T n+t

The above implies differential equations for the euclidian four poini
functaon The last blt of mformatwn comes from the short distance expan-
gion

()¢’1(W) '#"1("-’) - (L.22)

whxch mey be uued inside the corrcla.tora, following BPZ{14] and KZ{15] to
define the normal product in {1.21).Thus we obtain
3

{ ri 1 bre by thredis b | 1, + G Tt il O b5 |
n,—i—!c 23— 2 23—z 2y — zy

(1.23)

—<0|¢1(z1}¢1 (22)T (za) B8 (2)|0 >= < O (e )T (an)51 (as) 0 (210 >

From the above one arrives at differential equations which should be
fulfilled by the A’s:

34‘11 % -n 1 B 1
e -0 = (- Vghrp * mprm ot - - Dyt
' (1 24a)
aAz i

= ={zz(i; )+2n( )(z 1)} As— z( )Al (1.249)

The éoiutions of this equations are obtained in terms of hypergeometric
functions as (crossing symmetry is required to determine h as below)
Ar(z) = 7N (z) + hF M (z) (1.250)
Ax(z) = FO(2) + hF V(=) (1.25b)
where the functions F are given by

- Al — 1 1 1
};(0)(;;):@ 2A(l_z)dl 2AF(_n+k’n+k’1+n+k;z)

(1.26a) |

0} p) = — —1,1-2A01_ \A 28y ___1 L1 1 .-
N a) = —(2n+k) 12128 (1-a)d1 24 (1 et

{1.26b)
1
o z) (1.26¢)

- - n—1 n+l
71(1)(1)-:45‘ A1 - gt mF(ﬂn-}-k’-n+k’1_

B N n—1 n+1 n
?2{0)(5}=—nzA1 2A(1__2)A1 2AF( it n+k’ n+k’ )(1 266)

and the function F{a,b,cix) is the hypergeometric function defined by the -
series expansion

o afa+1)b(b+1) 2

_F(u, bo;z)=1+ _— e + ——j_Z'c(c 1 (1.27a)
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and the constant h is

TR ) |
() (T ) .

We compare these results with those obtained by Knighnik and Zamolod-
chikov[15} for the correlators of the WZW theory. Actually, both theories
have solutions derived from analogous equations. Let us first of all present
the KZ solution of the WZW theory, which iz by now well known. We have
the two point function given by

< gis{2 D)gi (w, W) >= Einbia(z — w) 22 (z - w) 22 (1.28)
which, after comparison with (1.15), corresponds to the identification

<8l 2 03) >=< o obw) <o @) > (1)

or, in terms of operators, it corresponds to (L4). However, in order to
interpret (1.4) as an operator identity between WZW field g and Dashen
Frishman fermions, we proceed to the four point function.This has been
computed and reads

< giirlen, 21057 (22 )i (s Za)oun (24, 24) >=
1 (212228 %14%28) —m{ [3'1[0) ()70 () + hF D () 7Y ()] 8i5Bitbir o o+

(FO2) F (@) + b7 (2) 750 (2)) Bssbmabum b0+
[FHN2) 7O (@) + h75) (@) 7O (2)] bsx180 e Suor +

79 7 z) + 7)) ?}"(ﬁ)]éaé,-;&w&w} (L.30)

1i

 Now, comparison of the above with fermionic correlators confirm the
result (1.4) as interpreted above, after using crossing symmetry.

2.Conformal theories and strings

After identification of both bosonic and fermionic theories, we discuss
their common framework, namely conformal invariance.

Both theories have conserved quantum currents. The WZW theory
wag constructed in such a way that there is a right moving and a left
moving current, which in euclidian domain means an antiholomorphic and
a holomorphic currents: '

THz) = trg~10:gr° o (2.1a)

Jo{z) = traggg'l_ff’_ T (2.18)

In the case of SU{n) Thirring model, this property is not valid alreadj

at classical level because of the interaction, since d,j#2° = gfebeybezes,

However, as we discussed in the quantum cese the rhs vanishes due to con-
formal invariance at the fix point.In this case we have also holomorphic and

antiholomorphic free currents J%(z) and J*(2). The equations of motion in
this language are

FtRgeen) = Pty (220)

12




(n+ic) azg(z, 7y = T (2)rog(z,2) : (2.20)
wﬁe:ré; using the operator product expansion (OPE) we have
o0

c: zﬂ(z, z)+ Z(w -z e g g(z,z)  (2.8)

n=1

Jw)rtg(z,2) =

where 747% = ¢,1.This allows us to define
Tﬂ-
Jﬂ(z)r g(a, ) = hm (Ja - “.J___z.)g(z,is') | (24)
Actually, this allows for the determination of critical exponents, since
the equation of motion may be regarded as associating the field
3 [+ | 1
= (J_lf - E(f&“f‘ k)L—}_)y (2.5)

to a null field, in analogy with the constructwn of the Verma modulus in
the Virasoro algebra[14][15].

" For the fermionic theorjr, on the other hand we ha#e, at the non trivial
fix point '

Cdaa(z,7) =0 _ (2.6a)

Lot DB = Pl (e
3zt (a, =0 (2.8¢)
13 -

goia(n®) = T@Eova(nn): (260)

which are again the equivalent of (2.4) , and ¢, and ¢, are a fermionic -
representation of the constraint (2.5).

At the string theory level, describing the bosons in terms of fermions
avoids difficulties associated to the description of the compactification pro-
cess[16][7). This procedure implies an action containing an antissymmetric-
tensor coupled to the bosons given by

§= j Pr{3"0.X,h K0 + SBYX X, (1)

which is rather involved. But the above WZW type action is equivalent
to a fermionic model as we discussed. Moreover, vertex operators in the,
bosonic language

V=t X (2.8)

are given by a product of fermionic basic field operators, due to the bosoniza--
tion/fermionization rule

= GiX ) (2‘9),

Thus correlation functions of vertices may be computed as the product
of the well known vertices in Minkowski space, times Thirring field correla-
tors, the latter describing the compactified piece of the theory.

In order to study properties of fermionization of strings we start with -
the fisld constraints imposed by compactification
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First we study the abelian case where the compactified manifold is a
' torus, with [U(1}]? symametry. Thus, the separation between left and right
Inovers proceeds as usval, and the equivalent Thirring model is abelian,

described by the action

3 | LelF0 - Boploieliv) (2.10)

with field equations
5.%‘6{ = ~2miFad{{z4)th (2.11a)
6:5_ 3Vt = ~2miKuJ2 (- (2.118)

where ﬂ'gj = FaiKoj .

Notice that there is no relation among the various U(1) coupling con-
" stants. '

The right and left movers and euclidian holomorphic and antiholomor-
- phic position operators are given by

] 1
Xo(z) = X§ + %polﬂ.z-i- ; . (2.12q)
Xo(2) = X8 - pglnz + % ; %"“_ﬂz""’ (2.128)
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The position operator is obtained adding the two expressions above,

X(z,7) = X(2) + X(3) (2.13)
We also define

X(z,2) = X(2) - X(z) @2.14)

In a compactified space, we have symmetries associated to the period
of non trivial closed orbits; in the present case we shall, for the time being

~ restrain to compactification on a d dimensional torus, w1t]1 a common radius
R.Thus we have for each X*(z,7) a symmetry

X-X+R (2.15)

This symmetry is rather intuitive; but it is not the only one. Consider
the mode expansion on a torus :

X=Xo+ Tg'f +2LRe + ‘;,: ;mz"‘ +E@nz ™. (216)
% T

The momentum pp is quantised i unities of %, corresponding to the
above symmetry. On the other hand the momentam conjugate to X, pq,
has eigenvalue 2LR, thus a multiple or 2R. This mesns that X, lies on a
circle of radius 1/2R; therefore the symmetry

xﬂX+%- (2.17)
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is obeyed..

" The fermionic field constructed out of X and X’ is given , in the case
of a single U{1) by

 tha,p(2, 2) = eoXelalHiAXR(s) o %X HEgt % (2.18)
and under (2.15),(2.17) transforms as

| Vapodape (2.190)

Va5~ Ya g6 F) o (2.198)

One should note at this point that {2.19a) and (2.19b) correspond,
in terms of strings and moduli space, to modular transformations. Thus,
modular invariant amplitudes requires that physically relevant operators be
invariant under the above tra.nsforma.tlons Those are either bilinears of the

type ¥1(z)¥(z), or bound states (gb.,, s(z )) = f[{ga,pg(z), such that

Fla+B)R=2n | (2.20a)

Fa pt-om (2.208)

)ZR

where F,n,m, are integers.This implies, for the gpin, the relation

_ 3___)\__ a’— g% ma

G =T (2.21)

which is a rational number.
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We can work out in some detail the free field case, =0 A= 9;—
For spin one, A = 2, ¢, is a physical field alone for B = /2, since ¢ is
invariant under (2.19a,b) in these circunstances. For half integer spins, we -
need R=1 and bound states of two fermions.

In general we have more complicated relations. The energy momentum

tensor is of the Sugawara form
m o
04(24) = g : {I°(24)}*: (2.22)

in the U(n) case. The commutation relations between currents and elemen-
tary fields are

[72{z), 41 (y)] =__—%A“‘¢§$(z_ —y.) (2.23q)
[N - P S
I3Eh ()= ~5OWid(es - v2) a9
26 0 = Do -1.) (2:234)

Thus, using the Sugawara form of the energy momentum tensor we find _
[9 (), Wi 1) ]= A T e Y S - x1)+;; A“ﬂ\ai‘l’: Y

[9+ @, V@ J o 2B TV S 4 i BB P S, )
[Q_,.(“—é) Vi), x;)] Y T ot o (m’«P :3 (e e CUC YL § )

[6_(1-) ,WE (,z.,x.@ - -2aD™: I (=) ”\bz :3(:_—:.')%:}) :B"‘”ff'2 30&:1-')
18 (2.24)



For the ¥ ’s to satisfy the equations of motion we need B = 2Js
and D% = 2K, Demanding also that ¢ has spin & = § we have

ZAmAm - E B g —

é [4

Y C%0% -3 DHD" = dx (2.25)
&

There is 2 possible solution to these equations given by:

A% = (2% 4 % - Y %)) (2.26e)
B¥ = (2% - 2%+ Y 2%V (2.265)
O = (% 4 B + Yoo 2¥) /2 (2.26¢)
D% = (g -z -y z¥) X (2.264d)

where Z is symmetric, Z = 71 and Vo = Y,
The fermionic operators are given by the usual Mandelstam formulae
o= (- iAM X" (3} +iBY X2 (24)(2.270)
'ﬁbi = eac«‘x;(m,)—wﬂ‘xi(u-)(z.zn)
If we consider now that the torus is obtained dividing the space by a
lattice A generated by the vectors %, we have the symmetry

X% — X° + 2nEint (2.28)
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where n# are integers, while the dual lattice Eﬂ, defined by the relation

E“E"“ by (2.29)
generate the symmetry
Xe o Xernlmd - (2.30)

For the fermionic fields these transformations act as
'4’{3 = wiagq:z'"‘(éﬁ:!:Y“z.u:kﬁaszﬁ)E;”" (2-31‘;)

and i
Py Plpe T B (2.318)

These twists are rather comphcated modula,r mva.ﬂant operators must_ .
be defined in an invariant way. Some particular cases ha.ve been ana.hsed in
(16) but the general discussion is too complicated.

Therefore, in order to obtain modular invariant operators, we need to
consider bound states of the above defined operators. The most important,
ones we consider in this work are the vertex operators. The first is the
tachyon vertex

V(.-.-,):e"’?xii} o | (2.32).

which in a compactified theory can be written as a product of the Minkowski
space piece :
Vadink(z) = ke Xz . . . (2.38) -
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where o = 0,...,datink — 1 are unbounded coordinates,times the compact-
ified piece

Veoms(z) = gthix! (=)_ o (239

t = difink,-.., 0 — | are compactified coordinates. Accordmg to Gepner
a.nd Wlt.ten, we have to. conslder for the compact1ﬁed part of the vertex -

VC’omp = g‘, (z E) (2.35)

which is equivalent to the above expression after usmg non a.heha.n ferrmon—
ma.tmn, and’ abehan hosonmahon preacnp’bmns '

“ With these prehmma.nes out of the way we pass to the discussion of the
non abeha.n case which is far more important, smce non abelian 3ymmetry
groups appear naturally in compactification processes, such as that defined
in heterotic 3trmgs compactification, namely 26 right moving bosonic coor-

dinates turn into 10 open and 16 compactified, the latter ha.vmg aymmetr’y
group E(8) x E(8}.

The éo'mpiefe ope'rator"solﬁtioh of the non abelian Thirring model is

not known.Nevertheless, there are helpfu] expressions which may be used in
some bound state Green functions.For the product of spinor and antispinor
field operators we have

W) = Clar - ) Az —y-)~"
=0 {ta+2) [ o (e )dus Hoa) 37 4 (w-)do- } M%(z,y) (2.36)

where M satisfies
ItTM =0 _ (2.370)

21

Again, we have the non abelian fermionization and abelian bosonization
formulae. Comparing abelian and non abelian cases, defined on the same
compactification torus, we have the identifications

H'-J — (1%)ii(r%)s4 (2.38q)
or ' -
F; (Ta)‘l'l ) ,
Koi s (7%);5 (2.385)
A% —s (1) (2.38¢)
Cat' —d (.ra)ic' ‘ (2 38 d}

It follows that that for an even self dual lattice ¢ is modular invariant,
and there are no further constrmnta in the non abelian piece Oniy abeha.n _
pieces leave arbitrariness. -

We discuss now the definition of those bound states which are relevant
to the computation of vertices. As it turns out, a vertex is a product of the
compactified piece times the Minkowski space part,eqs. (2.38) to {2.35).The
compactified piece consists of products of elementary fermionic fields, We
shall consider a bound state

PE=NpEeete] 0 @)

We have an explicit formula for the four point function

< po(g + gt (ept (Nd(E + ey > (2.40)
22



given by(1.23).We compute (2.40) for ee' — 0, using

1 1 n z

F(_n+k’u+k’1+n+k;z)zl_mﬂm (2:41)

In the above limit we have
< 11).:(& + 5)11)61-(5)#!‘1-(&")1,&4(.‘;" +e) >= Eaﬁacd(te )24
+h{ (&‘ f')ﬂ }Al —24 6&66“{ n&“"&bd)

(eer)l—ﬂA k-n §abged

B (=2 ey Y

— kB%5M) + ... (2.42)

The first contribution is trivial, and must be subtracted. For k £ 1,

the second contribution is the only one remaining after renormalization is
performed. We have in this case

hy—84

<Nt W' >= =g

(64553d _ msucsbd)

- (2.43)
Therefore we have an anomalous dimension v; = zrtopy.

For k=1, on the other hand, we have A = 0, and j has canonical
dimension (1) since

-8A _
<O >= g - ) (49

23

and the problem gives nontrivial results for & # 1.
3.Conclusions.

We analised the boson/fermion equivalence for non abelian conformal
invariant theories with central charge not equal to one. As it turns out,
the fermionic model has a quantum conformal invariant Thirring coupling.:
Correlators may be computed in a closed form and are representations of
the conformal algebra.

For string theories, this construction is relevant for computations in-
volving vertex operators. Moreover, for closed strings on a compact mani-
fold there are in general constraints on the compactified piece of the vertex
operator.For a non abelian symmetry, as we have seen these consfraints
may not interfere if the lattice is adequate, but if abelian symmetries are
involved one must form adequate bound states in order to ensure modular
invariance. Correlators involving vertices may be computed without much

difficulty.

Acknowledgement: I wish to thank M.C.B.Abdalla for a colaboration

in this work, and discuasion.
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