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ABSTRACT

A digcussion of compactified bosonic string thecry is
presented, with a thorough use of conformal invariance inorder to
relate the theory to the W3W model and U(n) invariant Thirring
model at critical coupling. The gquantization of these theories is
discussed, as well as the definition of vertex operators in the

various equivalent models above.

Work: presented at "II Summerx Meeting on Quantum Mechanics of
Fundamental Physics"™, Santiago, Chile, 17-21 December, 1987.

1. INTRODUCTION: CONFORMAL INVARIANT STRING THEORIES IN A COMBACTI-
FIED SPACE

In the last few years strings have been proved to be ex-
tremely important objects for the description of fundamental in-
teractions‘l'. However there are many technical difficulties in the
description of string dynamics, and ﬁaybe one of the most relevant
aspects to be fully understood is the compactification issue. In
this note it is my aim to relate the string defined on a compacti-
fied space time to a fermionic model, in such a way that in the
latter, complicated and at the same time important operators such

as the vertices{1)(2), turn out to be elementary fields. There-

‘fore, correlators involving vertices, which are non linear in the

string field variables, will turn out to be linear, in terms of
fermionic variables.
The action describing a string on a compactified man—

ifold is given by
— %
5- .;_ dede 9 X apx (Tpc&“"c")* £ ﬁBabm) (1.1)
ﬁ'

where the first texrm is the usual Polyakov-string action, whereas
the latter is the Wess-Zumino term, necessary to mantain conformal
invariance in the compactified space(3)(4); it is necessary since
the first action describes a non linear sigma model,.which is, a
in general asymptotically free (5,

The separation between left and right movers is_ rather

subtle in this theory. In order to substantiate this statement we



elaborate further. In the conformal théory, left and right movers

are the equivalent to holomorphic and antiholomorphic fields in the

euclidian version of the theory(s).

We have

rnaf.—a

a a in 2y
X, X, B, x, + 2. 0( e {1.2)

where the position variable is simply the sum of left and right

movers
% . a o .
X%y = X, ) + X7 (=0 (1.3)
a - ~n'
One defines also the dual field X , given by the ex-
pression

Mo o a ab o a
x [ A X+ xy ) - X_ (x.) 4 B oy (X+(I;)+ x_(Z-) . (1.4)
motivated by the algebra valued fields of WEW theory

Jf(.‘!'-.f) = %‘1 ’()+ C&

(1.5}

J =) - 'a’% %'_‘L | . (1.6)

O
where X is the Lie algebra valued field corresponding to the

group valued %- field described by the action

S- _deihgaagiu,l_ & dx)‘hEF 51§49 §9-5

{1.7)

We can formally identify

1o

37 (11)=;’p&t(-113= - 2 X

P

L (1.8)
k4
]d_
If the symmetry group is abelian, as for example [UU-) .
O
a torus, we may suppose all X ''s to be independent. Their com-
1
mutation relations are easily derived from J s RKac-Moody alge-

bra, and are given by(T)

[X =, X, (*3+)] % EGa-yed . (1:92)

Pren ) 455cegs

{350, 3 (‘zi”] t' 58 (xf g+ )

(1.9¢c)

which is an - abelian Kac-Moody algebra. Wé will elaborate further
on the abelian theory lateron. Now the (non abelian) WZW theory
will be discussed in some more detail.

starting from (1.7}, it is -possible to formally integrate
over the I vafiable, obtaining an effective action, with an un-

known expression A(g)(g):




j’dzﬁ,a 931“.__[01%:!7- 4(?’93- (1.10)

For .the purpose ‘of canonical quantization, A(g) is not

needed. All necessary information is provided by the derivative
E}"-,ka @ = ——LaA‘” ZodAwe SRR 6 W 8
which is given by

-4 - B
F(ei;k& = 94 %Q_ %ta %Cf_ 95- %k& . {1.12)

The momentum conjugate to. g, is given by. .

Wo. L Ag . LAgq W
st
-.Define alsé

A ; AU . ;
: T . (1.14)
'Tt'i.a. = Wy - 1A i< _
4 &
Canonical commutation relatlons have been discussed in

the llterature, they aret8);

]-_TL’%. (x),‘I{u(\a)] =0 _ (1.15a)

[‘3:‘5(“, Ti;ltg)]= i SR 5&2 S.{n‘-&‘) (1.15b)
[%"a'(”‘(}kﬂtﬂ):]: o - 1. 1501

at equal time; it follows that the current, which can be written

in terms of the elementary field as

+

& - -1~ a '-& ot &
j =—fnc.tcaia%t = (L C& _Z;:caaig)z {1.18)

(there is also an expression for :[m) has well defined commutation
relations. Actually since the above expression is purely left mov-

ing the expression below is valid for any time:

w

(3, qu&)] = ff&m‘lcﬁ”ﬁg‘“ﬁ’ v 4 £ 375 3) (1.17)

The energy momentum tensor may be readily computed,being

of the Sugawara form(4)

6, x4y = (chg) | {1.18)

cv+-k

We define the field operator

= - . 1.19
.X [CA T J 4 d-a, { )



which - in viewof (1.17} obeys the algebra

[Xm@‘h Xbﬁ'a)] = L f‘m (Xcow - xcc‘a) ) E(x-g')
> ¢

- ab
PP Cre-u) (1.20)
4%
Our problem is to implement compactification, namely

realize the identifications

X* X*+ 2% E'wg““n'L , {1.21)

where 71F' are integers, and E;T generate a iattice A, in such
a way that Eﬁ//A is the target manifold of our sigma model de-
scribed by the action (1.1}). A string theory defined on a compact
manifold has a further symmétry(7) associated to the dual field
5€ defined in (1.4). This symmetry is related to the dual lattice

o~

N, §enefated by E;? , defined as
o “JQ-U o
E. E = 3 {1.22)
in the one dimensional case E= R , and the symmetry is

X = X + 2% R {1.23)

In order to understand the second symmetry, consider the-

mode expansion of the cloéed.étring field on a compact space
: X(x)_-. -)(o + Mz + 2LR6 + oscilators {(1.24)
R
noticing that both zero modes are quantized, the former@% =%§J
because the string is in a compact:space of radins 1/R, _andiT%
must be quantized (M is integer),-and the other one (Pp = L2R, 1
integer) because 6 is defined up to multiples of ™ , in which

case X can only modify by multiples of 2% , eqg. (1.23).

Therefore, left and r%ght movers are
XL. = X"L .1- 4. (__Pﬂ_. +2L'P\) (.i*f) .+ ;%cilators (.1.25)
2 \R
X& = Xog + —:z—(%-IZL’R)(.Z’@)'-P éscilators (1.26)
implying the expression
- o

~t o~
X = X_ +Ms, 2LRT + oscilators (1.27)
R o .

which has a momentum 1%. =1, 2 R, guantized in unities-of 2R; thus

the identification
~ ~ P e ..
Xz X+ W _& (1.28)

is valid.




2. BOSONIZATION AND FERMIONIZATION IN CONFORMALL¥ INVARTANT 2-D
" FIELD THEORIES o

The principal non linear 6 model with a Wess-Zumino
term written as a;fupctidnél'of a groub-valﬁed field g(x) is des-
cribed by the action

S;.M; J 393*”36 ﬁjdrjaiﬁgfaﬁg §* 9 g

(2.1)

This is donformélly'invariant only if the coupling cons-
tant is given by(4),m.

7. 4z

PR S (2.2)

The constant Kk is quantized (integer) since the topo-
logical term is defined up to redefinitions of the extension
%uaf gkr,n:) . Different choices(oﬁ Poundaries differbyxwultiples
of 2% ., This system has been related to ffee férmions by several
authors, when k- 1 . This s0o called non abelian bosonization
prescrlptlon is reallzed by the 1dent1f1cat10n 7

PR P

(2.3}

where N is a normal product prescription and P’ an arbitrary

mass parameter. The resulting theory is amultiplet of free fer-

mions (3) (4) (9)
Aiming at general values of the central charge h; we
study the G-invariant Thirring model  (we will specialize @?:Su(ﬂ),

when writting explicit formulas). The lagrangean is given by(lp)

L= FFH_LgO¥ ¥ Ty b g P92 Fyozn ¢

(2.4}
with [to. Zs} D 4_.&:.,; e
The formal field equation iz
. _ - }h o + \6"‘ . (2_5)
(T = 9 ﬁ " xr b %_3ﬁ.: ¢ | .. .
where the currents are formally defined by the expressions
o ~ .
jf“ . Y KP Ve 1‘; (2.6a)
. P,y ' (2.6b)

According to the syhmetries of the'model, we have three

fundamental conservation laws




- 10 -
'aﬁjﬁ =0 ' O 2.7a)
3‘“»‘}; -o ' | | (2.7b)
e O gu -0 | (2.70)

(29} 2 N
The curl of JF' is however non zero, cbeying a "non

conservation" law

E:x\? ar., 3:_ . % &rw ‘co.hc. fa,ldn Buc. (2'8)

Dashen and Frishman(lo’ studied the conditions under which

the guantum model displays conformal invariance. They considered

the equal time commutators

[}:(t'x)‘ J:’(t,gJ] = 1 Fabcgf (£,2) 3 (x-g)

(2.9a)
[3:' (t,x) , ét(tlg)] =t {nh‘. 3: ('&l'x.) S(_x—(a) +
. ab
+ -;2_1;_ 877 3 ) (2.9b)
O b . abc
(_}l (tl"')f Ai (tj‘a-)] = L '{'\ a: (t‘x)g (w__'a) (2.9¢)

If the theory is scale invariant, it follows from above

_11._

a. o
that 3P has scale dimension cne. We can prove now that &F is

divergenceless and curl free. Consider the vector ':LjﬁJ'with_ di-

mension one, and the two point function

oV T (x, %) Tp egdto> = < _
+ .'x- + ‘a ‘3 (x4-—t-&+'+£6)z CU{3.10a)

The right hand side is fixed by the fact that J_,_ = Jot 3, transforms

under Lorentz as !y, . We may consider analogously

4ol 3. (=, x> J- (%*,«3_)10> = C {2.10b)
(e-y-rie)

From these expressions it follows that

. i
. ey = (2.11a)
’a\)lmL> o

as well as
f’l"
£ G Dy =0 (2.11b)

Therefore the non conservatiqn law.(2.8) transforms, due
to quantum fluctunations into a conservation law in the quantunlthé—
ory. We will ﬁerify which. conditions are left by the above impos-
ition of conformal invariance.

Let us set up the commutation relations:
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i) singlet currents obey an (abelian) Kac-Moody algebra
. ]
[at (xi), at L'at)] = B¢ Co % C"‘"&) {2.12a)

[_3,, CHNNE SO B R (2.12b)

ii) singlet currents act on fermicns in the same way as

the abpelian Thirring model
[%t(xi),qblg)] :—(&fags)‘b(})g(xi-g:) (2.13)

iii) Non abelian currents satisfy a Kac-Moody algebra

n

: [’é_i'ﬁ“f), ai(‘afk)J 2¢ ;F&LLG: Cx4) S (xf"‘éi-)

+ Lk E;ﬁklg’(x+-%+)

o

(2.14a)
[g‘fcx-), 3‘1(3-)] - 208 e Stay)
. < ab ] _
* 'l?:*g 3 (I_' %) (2.14b)

[}?(’“3) ’&f 4" ]- o (2.140)

- 13 -

iv) Non singlet currents act on fermions as
[af_ ey, Wep | - -6(13 8) L A% D § (e -4 (219
where Jacobi identity requires
6= A _ {2.15a)
S {2.15b)

The energy momentum tensor is of the Sugawara form; fix-
ing the constants requiring that currents and energy momentum ten-

sor satisfy the usual form of Virasorc Kac-Mcody algebra we have

L : 2
6, (x) = 1 _ {31("9) R - (g:hﬁz)): {2.17)
R Cuth

The constant Qb defined in (2.12a) is arbitrary, and
will depend, as we shall see, on the dimension and spin of the fer-
mionic field. The Casimir C; is given by the relation

‘Ff-\l’c- _‘:dbc

ok
= CVS‘-""

(2.18)

For SU{n) we have

Cy=m : ©(2.19)
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and k- iz the central charge of the Kac-Moody algebra; thus it is

an integer.

The energy momentum tensor satisfies the Virasoro alge-

bra:

[61 (xt), O: (‘Jt)] = 2 (93 (x:)+ B¢ (‘31)) 3|(11-%¢_)

»}

- _£_<3 (s - Yt )
ew (2.20)
where the central charge ig(11)
C= _kdmG | _lkiln-1)
(z.21)
vt ke mn+ ke

the last expression has been especialized for G=35U(n).
Using (2.13) and (2.13), the acticn of the energy mo-
mentum tensor (2.17) on the fermionic field may be computed. on

the other hand, we know that it generates translations. Therefore,

equations of motion may be computed. They are

+
=3
1
pL

(I @ - b, b . .22a
¢ ll’idﬂz{zulg 4_';\./&_«[;1 ,&-{L (2.22a)

Cytk 9 Co

(Y

* =L{2ﬁ 43 At Y v ad g, b (2.23)
EY pry 2)\ 6‘&- 2 - 4 T2

Lt

i

{m‘ 15§ 9P, a‘j"b, T b el aq-{q)_‘ } (2.24)
Cytk 2 .

pl
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o ) oy i _
| 13'4*,_ :%{Zu_ﬂ_g_ LA ;3‘3’4’2:», ata :3,“"2:}

2,2
Cytk 2 C. (2:29)

Comparing to the formal field equations, we make the iden-

tifications

%: "ga—" o (2.26)

ca: 2% 1-3

Cotle (2.27)
v .

Notice that S::i corresponds to the abelian Thirring

model (g=0). The point &=-1 , or

- 4w
% Cvi ke

(2.28}

corresponds to a noh trivial zero of the @..function, which -has
not been seen in other treatments (there have been recently some
hints in this direction, by the path integral procedure‘lz)).
Notice also that there is a doubling of the field equa-
tions. This is necessary, because the formal expressions (2.6) can
no longer be used in view of (2.11), which substituted the formal
equation (2.8). Thus (2.24) and (2.25) are interpreted as defini-
tions of 6:’ by ref. {10). Moreover, if 3£L + 4+ are free
fields, as predicted by conformal invariance (see (2.7}, (2.8))the

equatioﬁé obeyed by QPL andg (45 decouple and the system may be

Vi
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solved. Finally, at the non trivial coupling (§=4) we may adjust
the constants o, 5 = such that {2.24), (2,25) ‘as  holomorphic
{antiholomorphic) conditions to be obeyed by ﬂ{ and ﬂﬁ in  the
euclidianized version:

From this point we specialize to the case of G=8U(n),
and compute the two and four point functions. Conformal invariance

is enough to compute two point functions

25 - .
1Y Wy lo) - [iGgnrel Loeyle ceGorge ) (2.29)

where % is the dimension and g the spin.

The spin and dimension may be computed in terms of the

previously defined parameters o, & , Co ; Cuv and K
5 4 aa mt )
Tz ' I — (2.30)
Co c o (kem)
Yo 4_.[ Tr&’ 4 2w _oB-t ] (2.31)
4y Co n(n+k)

In order to compute functions of q#; s interchange =,
%¢ into z_ %- . 7
In order to compute the four point function we need ‘use
of the field equations (2.22-25). Therlast piece of information

comes from the normal product of the current with the elementary

field #) . One uses the commutation relations

{(2.32)

[}ghzx\u), 1{{., (3):1:__&?_ .LANQL:QJ |

zrr_ 2. - ,:(x;gf)_ I3

- 17 -

and others arising from (2.13), (2.15)and the separation from cre-

ation and annihilation operators

-(pay

+ Cpxs

o

Therefore, taking the derivative of the correlator

- It . .
et - <ot P>

i, g (2.34)
with respect to =, one gets correlators involving the product
€22?‘qﬂme) %j*ﬂcx) ; at this point one uses the  commutator
of 3*"’ with the remaining fields, to obtain a differential equa-
tion for the correlator EF - Since this is technically straight-
forward but long computation, we refere to (13)(14) for details,
and write down the results. In order to compare to known results

of conformal theory, we write down the results for the euclidian

theory. In terms of the 2 , 2 variables which correspond to
Trie . . :
e ;, the field equations read

Y e 1 15 At Tt e

2 <tk
L 2= Jey e 3y (2.35)
Z  co - .

ey - T us A, PO en

L RS

(2.36)

+ Lot 1 FB)y Y, @I
2
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and analogous formulae for ‘¢é . The above equations mean that q&i
(analogously ﬁ% ) is a representation of the simplest Verma mo-
dule (15} of the noen abelian thecry(lﬁ) in terms of fermions since

the constraint is

(2.37)

T T 4 (k) L. Y oo
1 21 i

The ansatz for the four point function is now (10} (13)

+ + |
<‘b:&’.) '4": (2:) "-P;' (%) 'klf(;,,) > -

= [(%,- 2,) (22 23) {S“S“LA1 P S Y L’J'Aicx)}

{2.38)

where

L= (in'%Z) (“_"-"3" &Q)

(2, -#y) (is’ 24)

(2.38a)

is invariant under modular transformations {generated by LT ; Lii)'

The functions JL'Z (=) obey, as a result of the fermionigc field

equations together with {2.37) ({specialized to G=5U(n)}}:

- 19 =

2L(x-1) CLA; = [(_1-1) %1‘-“' + x. A.’l . (x-—;) T AZ .
dx 2(mtk)  an(nik) 2(ntk)
{2.39a)
Lo o .
L R Jre- 2 A
dx 2{ntk) z2n(ntk) Z(ntk)
(2.39D)

The solution is given in terms of hypergeometric func-

tions
i) ' 1) o
Aiti).f S‘i ey + "2. fjl (=) (2.40a)
) : &3]
A, x> = Sg_ oo + R :’Ez =) (2.40b)
where
) ~ab A,-28 A
:r{i (x3 = x (t-x) ! Ff{-2 R mn ;x (2.41a)
A’ A A
:ﬂ“’)' 1-24 4,24 (2.41b}
2 W= x (1-x) Fif-4 , 1440 2+2m ;%
Aem A A a
j_’”’ 2-28 A-28 (2.41c)
1 = x (1-x) F(‘."_?:L’-nﬁ f-m . x '
A 1 ’ 1 4
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using %(IJ as a primary field obeying

F

) 4,-24 A28
z(t):-'n,:c -2} F("M'-nf_l L -
: A A A (2.41d)

(3—: (M _2!.:Ln+*-) L_D%‘?o : (2.43)

where

with a current JL&) (and also 3 CE) )

' : Th 1t as follows.
Co+ k =m+ k (2.42a) e results are o

o
h

For the two point function

A _:L‘L:..i._ (2.42b) -2l -25
. Y _ .
2 (‘hf E) <%L"- (‘E,é) %kE(w_'m>> = Sik. Sae (.Z'U)) (2-w) (2.40)
A_; = N (2.42¢)
m4 lo ;

& result following only from cotformal invariance, and which, com-

aring to (2.38-42) implie
and F  is the hypergeometric Ffunction p g ( -42) implies

- + - +
Flabe,e3=)= 24 °'~_b_:v.. + %Maﬁ (2. 428) <‘3;a- @8, wm>= (z)"l’,knw)>(¢25(a)¢u(w)> (2.45).
e 2l c(ers) . : . . -

. . , A sufficient condition for (2.45) to be valid is
At last, crossing symmetry .(:Lnterchangl_ng = by 1-x}

fizes -P,_ to be

- (4,"' — 7 ’
%ia- (.%',i:) = i {3} Za' (%) (2.46)
W~y -n+1 )
'R_,z 1 P(u-ﬂ;) 1\.+Ig {f‘(’hq-k } 42
‘—z'"' e (2.42¢) We check now this relation in the case of four point func-
W r‘( * ) - '
mMtle -n.u. rl( Mt tions. It is enough to borrow K.2 5 formulas

These results are worth comparing to correlators of the

WiW 's g -field, obtained, by Knizhnik and Zamolodchikov (16) '
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‘<% 1)%
gﬂ(

o -1 _ -
(.%z.%z) %kk’ (2‘3.?:3) %Ev (%‘! i‘f) > =

1y 23 'I'I 2-3;)

Ef@ o) jﬂd (S ) |
I wh @i I end, ) JS"B' Sie Sops 5‘€,+
) {c} ) ()
[i (x) ¢x) + g: €x) 1 (x) Sf-k. géa é::'g'} Jk'l' ¥+
f0) (o) €1}
+ [92 )y 3—2 ¢x).F g‘ 2 (%) z ct)JSl.-k

J- (2.47)
'k’ g'ué'
We compare with previous results and verify that it cor-

ds to th 1 oy VLU i
responds to e replacement %‘3 oo e 24 , With
crossing obeyed by the composite field, a requirement that fixes

the value of . 4£ to be given by (2.42e).

o) ro) (1) )
[39 o @+ hF o 3{1 cij]g4z’.§' S0 4
L *

- 23 -

3. THE THIRRING MODEL AND STRINGS

3.1 ABELIAN SYMMETRY

As a preliminary we consider a one dimensional compac— -
tification, namely suppose that one coordinate field operator
X (2,2)

is compactified on a circle of radius K. . The mode

expansion is given by

X,3) - X )+ X (3.1a)

X(‘E) xia)_'_ i PQY'-?'- + £ N q'n z (3.1b)
2 2 m¥EO M - ’
v . ~ =N,
XGEYy = 2 Lalnl L A &2 (3.1c)
. 2 ‘P * 2 mfgo M i .
and we define as previously
N ~ 7 -—
X(%,‘i) X @)y - X2) ' (3.14)

with currents

J@y = _¢ X (3.1e)
Ve B2
Jay = = 3% (3.1¢£)

5
w
™
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The energy momentum tensor is given by

2
Ty = 2% JEy (3.2a)

= = . 2 3.2b
T¢EY = 2® : J() ( )

-
-

The associated fermionic field theory is defined by the

field operator-

= X2y + 3 3?2(3))
: e z

1

'lk,;r,_ (2,3)

= € : (3.3)

We have the following operator product expansions (OPE's)

T “ﬂlr_,'(w,a,): e :'J(-z)‘\P,,p (@) — _(* “1’ (w, )

. _ 2 “lfs
S 4 (@) (3.4a)
T ‘*l’,("g {wd) T _3:@) "’bxlﬁ(w,fb): - L gét ‘-I’“ ﬁ(w,B)
% 4GE-@Y

(3.4b)

Since q%%)— T () generates Lorentz transformations,

- 25 —

we readily compute the Lorentz-spin of the field '¢L,p

§5- A - H-p (3.5)
2

The ceonstant l3 corresponds to 3/UE: in the Thirring

model with coupling constant %—.
‘We use now the identifications {(1.23) and (1.28) in {3.3}

to obtain the transformations of the field 4; A :
]

: (R (243) _
(\pa(,p — q‘k,p e (3'6)_

under (1.23), and

@L SR (3.7)
W= ¥xp €

This tranformations correspond, in the string language,

to modular transformaticns. Modular invariance of the theory requires

that well defined operators be those invariant under the above

transformations. Therefore, in general, we are required to study
products the above operators. In case we have a hound state of F

f
ﬂ)s + we require, at the same time that both following aqua-—

tiong be fulfilled

FR(x4B) = 2n 7. - (3.8a)
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Fep - 2m (3.8b)

2R
n and m integers, such that the spin is
. Z .2
S X-p o mam (3.9}
8 FZ

and: is, thus ¥equiredrto be a rational number, unless we take an
infinite number of ng to build bound states.

Two simplé minded examples are the free field case, ﬁ:o,
5= "‘1/8 , where s=z4 and compactification radius R={2' ensure
invariance of ?P itself, Or else, s= 12 , ReA1 requires
‘bound states of 2 Wis

These results are readily generalized to a symmetry
[U(l)]d(7,. In this case ﬁe come back to Minkowski space, recal-
ling expfessicns (1.9) and (1.21-1.235, implying the quantization

of momentum

a S
ot
,P" = MH' E {3.10)
? P A S | _ (3.11)

where fqr, and L? are integers.
The corresponding fermionic model is described by the

action
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! z
Y

9.1 &wdz[i'ﬂ;”a' '“Pic PR A M
PH W) e

where

and the spinor is : db: (’(b_!
2

The formal field equatiohs are

(3.13a)

+ . [+ 9 ’.
(a ’qu = —ZT(,L I:a.u, J.;.. ‘d)?.

- o ~ oLl L

oY, - - 2w Kao 3. QPJ (3.13b)
The commutation relations are given by the expressions

(3.14a)

{_1?{_1) , "4}2‘-(%:] = —jz_ AcLi wzt-ua)'g@cf-t&f)

' [_J_a(-z) , 'lP:cupl = —_52_ B“C“l);uy o (=-y-) (3.14b)
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[:L (=), {q’;ktg)]- =4 O "J’;_ 3} S (e g+ ) {3.14c)
(5%, Bl ) -4 € S (=g (3.140)
A I AT B s ) o :
{for free rfields - o}: critic.:al' ;I‘hirri.ng coupliﬂg, “B=D.=0)..
. .We 's.uppose -t':.'he -e'.nérgy. momentum tensor td be of the Su-

gawara form. Theréfore, using the above we may compute the Lorentz

spin as dome in (3.4), (3.5):

| S A . ___( j;..(A“)z’ %. (8*)%)- [g(caijig(ﬁif)(a.ls)

{ 1
2 8 8

A possible solution may be expressed in terms of a ma~

. val s _
trix 27 together with its inverse (2 ) = EM , and an
b b
antissymmetric matrix Yq' = - Y & (other solutions exist) (7,
al s pac | gad ab bc-.) .
A - A (2 + 2 - Y ‘Z (3.16a)
B™ Py (2‘“. - 2% 4 YoM ) (3.16Db)

C I (& B LYY e

1

al (22 - 2 o oyebag {3.164)

<
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The bosonized realizaticn of the [U(l)]d spinor fields is
€ o . .
v C O X Ty - DX (x)
Yiate : O (B.17a)
LAYy EBTT X D)

2 ; ‘ © o (3.17bY:

a o
- 2w E
AX, * (3.18a)
AX> = W« Er— {3.18D)
we have ﬁhe transformations
o . . o .
th' q}c zﬁ;J—;F(ZM-i-YaL'ZLL' BQBZBL) El"‘ N ]
3 —p 1 e . . (3.19a)
LI - ' - a.
r(!)'_- ¢ -Qifcﬁ'(?m'—- Yqb?.'b"+ Bu!’;_‘h) EP',
e Y e . : {3.19h)
ac Ha
3 ¢ ~emw 2 E» \/71—’ (3.19c)

4z —® 1,2 e

As in the previous case, bound states must be considered.
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3.2. NON ABELIAN SYMMETRY

In the non abelian Thirring model, a complete operator

solution is not knowh, but there are some helpful expressions,which

ray be computed, and used to bound state calculations, and to fix
the spin of the field.

For the product spinor-antispinor we have (10)

¢t -A .
‘4’1 0y "P:cg) = € (x4-9.) CEPS) ®

. A 3
-2|.C o+ &)j g_f_(l-Ll'-J + {a-~a) 3_ (w.) dw_
. o T e
< € Mtgcx.la) (3.20)

where M satigfies
*
E) r1 =0
OM - sl iem s 4
_ mrk ] 2 i 4% ((x-y-)re

- a(n-3) M] (3.21)
"o

P"M ab-

with the condition

M (“’-,’L) -4 ) {3.22)
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Thus

4 T
Co [C_'J; ﬂbgbdm ' t'c}]b(thj'Xrg)) o
M(x,a) N o€ woe (3.23)

Again, we have ncn abelian fermionization and abelian bo-
sonization formulaze, which are the same as the usual (2.46).
Comparing abelian and hon abelian cases, defined on the

same compactification torus , we have the identifications

Hia' — (t&)g(, (t“)aa

(3.24a)
or
F . Fotal . K . o T2
o~ T L 4 ar o {3.24b)
Also
v &©’ :
AY (z2) (3.24¢)
al _ a il
C - (t ) (3.244)

for an even self dual 1attice‘17), QP is modular invariant, and
there are no further constraints in the non abelian piece. Only

abelian pieces are arbitrary.
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4. VERTICES AND STRING THEORY

Vertices in compactified string theory have been discus-
sed in detail by Gépner and witten(18}, ag st turns out, a vertice
is a- product of  the Minkowski - space vertex and the:compactified

plece. Let us discuss the simplest case of the tachyon. The product

- R Ll @)
Vi) - 43 . e P X .
. i 0 wmp. € .
where )ﬂktl)., P =@,..- , B+ are the uncompactified wvariables,

'Pﬂ. the momentum and 4330“'? is a représentatiop of the group ac-
ting on the compactified manifold. The latter is also an &lement 6f
the Verma module cbrresponding to the Kac-Moody algebra, Thus it
may’ be represented hy the WZW field %gi . Or else, since
it is of the form exp & K> X (3, %) . it may be well des—
cribed by (3.23), namely a bound state of the previously dJefined
fermion, or simply an expression as (3.17), which is the own fer-
mion. The only requirement is that of modular invariance, as we
discussed previously. Correlators have a product form, of the Min-
kowski piece by the compactified part. Consgider as an example
a bound state

3““(}) = N ['?’“(f) 'Wb?f)] |

(4.1}

We have an explicit formula for
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P ra) Pip Yol dred>

(4.2)
given by (2.38). We compute the above for €, ¢/ so , using
F(-_L,i_,i-r_w_,;.x)di_ x (4.3)
X X X (ntX) '

9(.—._--7\1-10

In the above limit we hawve

<rq/m(f1-e) “P”(g) qpr.*'(s.) wi(g# €) > =

- H1-2A ‘
50,5 gc.d. (€ ¢') 24 + { [_e__@’__"_ ] (gﬂ-béccl__' ngﬂ.t’.gbcl-)

(-1
i-248
ab o od ac <« bd
—(S §°T _kem .~ 1S3 (e€) R (4.4)
whk (ntk) (f’ %
The first contribution is trivial, and should be sub-
tracted. For k# 4 | the second contribution is the only one

remaining after renormalization is performed. We have

SN (¥ )y N (¥ 9) () > -

ST (P w.s)

(57 ¥ )=
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aalrb
Therefore we have for 3“bs N C? 'w f) an ancmalous

dimension

¥ 1

P ) (4.6)

For k=414 , we have ‘g.:o , and the dimension 3, of

is canonical, _Ukz-d.. In this case we have

-84 /. ab
<j‘”’{§) 3"‘"(5')> = $ _m
(§-¢9 wlrs)

A
st (4.7)

Therefore the problem is non trivial for k-* i . rThe

case k.=4 has the values of free field theory for the dimensions.
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5. CONCLUSIONS

We analysed-the igsue .of .eguivalence between bosons and
fermions at the level of Green functions, concluding that the. non.
abelian Thirring model .at critical.coupling presents:as a defining
field a representation of the conformal algebra, whose bound state
is the bosonic W2ZW field, the level of both representatives
being the same (k) .- .

Therefore, uéing this result we may study vertex  oper-
ators of compactified bosonic string theories,which turns out to be

the elementary field operator. in the fermionic language. Thus,  .a-

: . fxx N P
fermion operator Yo e of spin % /4 correspends  to . .a

vertex operator of momentum & . Bound states of _WVrobeying mo=-
dular invariance can :be..computed, and,in-the:case.Lk#ui_, anoma-—
lous dimensions arise naturally, as discussed in the:last section.

At last, in the non abelian theory, the number - -of free
parameters is. very much reduced, contrary to.:the abelian case,
where, compactification radii are completely uncorrelated. The non
abelian symmetry group, being connected correlates all radii; .:and.
the only freedom left is-in the abelian piece. This property:::-can

have some non trivial role in further: developments.
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