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(0) INTRODUCTION

For the past few decades, the mathematical basis of classical mechan-
ics has been going through a process of reformulation (take for instance
Whittaker’s work[?! as opposed to the work of Abraham and Marsden’s!3! )

We aim here at expanding this reformulation to the deduction of La-
grange's equations, which is found in his renowed treatise “Mécanique
Analityque™tl, With this book, Lagrange laid the foundations of analyti-
cal mechanics, which was later developed by Hamilton, Jacobi, Poisson and
others, That work is still important today for it relates the basic concepts of
clagsical mechanics —space, time, mass, force— to those found in analytical
formulations (Lagrangian and Hamiltonian mechanics}). N

Wa will procede as follows: in section (1) we summarize the basic
notions of Newtonian mechanics in a few definitions and propositions. In.
section (2) we introduce the concept of constraint {holonomic) on a system
of particles and then we “classify” the various forces of constraint using
theorem 2.5. This theorem gives us three important corollaries: the first
one (2.6) enables us to define the d’ Alembertian force of constraint (the one
specified in the classical formalism by d’Alembert’s principle); the second
(2.14) establishes one of the several versions of Lagrange's equations; and
the third {2.15) is an expression for the force of constraint which does
not require the use of Lagrange’s multipliers (remark 2.17). Finally, in
section (3} we analyze the case of conservative forces, which completes the
deduction of Lagrange’s equations from Newtonian mechanics.

(1) NEWTONIAN MECHANICS

We will now gather a few basic concepta of Newtonian mechanics —
space, mags points and force fields— in a definition that suits our objectives.




CONVENTION. We assume all objects and mappings dealt with

here to be of class £, Moreover, we shall omit inciusions in the
compositions of mappings.

1.1 Definition. We say that (N,g, M, F) is o system of particles if:

{i) (N,g) i an Euclidean space—ikatl is, an affinc manifold N of
finite dimension, with & Riemannian metric g that is invariant through
affine translations;

(i) M:TN — TN is o tensor on N, symmetric, positive definite —
vig g— and invariant through affine tronslations; end

(#) F:TN — TN is a mapping (not necessarily tensorial} that preserves
the base point (TvoF = 1y, where i TN — N is the tangent bundle of N ).

1.2 Proposition. Jf (N,g, M, F) is a system of particlea then the ten-
sor m defined by m(X,V) = g[X,M(Y)] ts an Euclidean metric on N.

Proof. It follows from the fact that M is g-symmetric, positive definite
and invariant through affine translations. #

1.3 Definition. Given a system of particles (N,g, M, F), define its ki-
netic energy K:TN - R by K(v) = im(v,v).

1.4 Propasition. Let (N, g, M, F) be e_i system of particles and ¢:(~&,€) =
N acurve on N. If vi(—6,6) = TN is the velocity of ¢ and a:(—s,5) —
TN s the acceleration of ¢, then:

(i} &(Mov)=Moa; end

(i) if Fov=Moa then $(Kov)= g(u,Fov)
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Proof. (i} follows from the fact that M is invariant through affine trans-
lations; (ii) follows from the definition of K:

FU o0 = g [gmlo:0)] = mire) = gl Mo0) = g, Fov).

These definitions and propositions can be better understood with ex-
ample 1.5 below. In general, if (N,g,M,F) is a system of particles, we
call N the space of configurations (of the system), M the mass fensor
(for it assigns a velocity v € TN to the momentum M(v) € TN), F the
force field (these force depend on the position and on the velocity of the
aystem), and K the (total) kinetic energy of the system. This way, propo-
sition 1.4{i1) states that if the motion ¢ of the system satisfies Newton’s law
(Fov = M oa), then the temporal variation of the kinetic energy is equal
to the work g(v, F o v) of force F on the system.

1.5 Example. In definition 1.1, if we take:

(i) (Mg)= R with its usual metric;

(ii) M(i‘l’-uo,i‘“,i‘l,l--’;ﬂ) = (i’[,.--.,i‘n,ml;!‘,..-,mn;ﬂ,), Whe!'e :

my, mz,..., My, are real, positive constants; and

(nd) F R — RO 5 mapping from TN into TN { TR o ") such '

o d -
that (xl,...,fn,‘?l,...,?n) = (x;,...,i‘n,fl,...fn);

_ then (N, g, M, F) is a system of particles, in whick

K (f}, )gnlvls ’?n) z mﬂllv“"z

i=}

and, for any curve e:{—¢,e) N ,

(Foy=Moa) <= (f,-:m,-é',-, i=1,...,n).
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Proposition 1.2 shows that we are dealing simultaneously with two
metrica on N (which are differents, unless M ia the identity). This is sne-
vitable and the two metrics (g and m, according to our notation) must not
be mistaken: the first one —g, which we call spatial meiric— gives us the
work g(v, f) of a force f € TN on a state v € T,N (z € N); and the
second metric —m, which we call meiric of masses— gives us the kinetic

encrgy K of the system ( K(v) = im(v,v),v € TN ).

(2) CONSTRAINED SYSTEMS

We need some notation before we mtroduce the definition of camtramt

{holonomic) on a system of particles.

2.1 Notation. Let {N,g) an Euclidean space, @ C N s submanifold
(boundaryless) of N, and e:(~e,6) = @ a curve on Q. Let TN|Q denote
the union of the TyN, with ¢ € Q; and m:TN|Q — Q denote the vee-
tor bundle defined in the obvius way, As previously stated by convention,
we shall omit inclusions (:Q — N, Te:TQ — TN, ¢:TQ — TN|Q,
" TN|Q — TN, cic) in the composstions and, moreover, we will use
v:(—¢,6) = TQ and a:(—e,e) = TN|Q to indicate the velocity and
the acceleration (respec.) of a curve c:(—5,6) = QC N,

2.2 Definition. A pasr (Q, ch) 18 ¢ constraint on a system of particles
(M, g, M, Fers) if:

(i} @ C N is a boundaryless submanifold of N (not necessarily of codi-
menston 1); and

(1) Feon:TQ — TN|Q i3 a mapping that preserves the base point

(7 0 Feon = 1q) and such that for any given vo € TQ there is a curve
c:{~6,6) =+ @ with v(0) =vg. and (Foop+ Fops) ov=Moa.

If (Q, Feon) t5 o consirasnt, then we say that F.op 5 a fofce_ of con-
straint on Q.

Our current aim is theorem 2.5.

2.8 Definition. Let (N,h} be an Buclidean space (h € {g,m}} and @ C
N be a submensfold (boundaryless) of N. Define [[M:TN|Q — TQ by the
orthogonal projection —vic h— of Ty N onto T,Q (g € Q) and 1% TN|Q —
TN|Q by the projection —via h— of TyN onte (T, Q)+ C T,N (g € Q).
In other words, vectors ||*(X) and LP(X) are the components of vector
X € TyN that are, respectively, parallel and normal to T,Q, via meiric h.

2.4 Notation. If Q s a manifold, let X(Q) denote the set of vectors
flelds on Q (sections of 1q:TQ — Q), and k3 {Q) denote the set of vector
flelde that depend on the velocity on Q, that is:

Q) = {X:TQ -+ TQ| g0 X =1g}.
We will now state the main theorem of this presentation.

2.5 Theorem. Let (N,g, M, F.;:) be o system of particles and Q C N a
submamfold of N [not necessardly of codimension 1). For each field X €
¥ (Q) there is one, and only ane, force of constraint Fipn:TQ — TNIQ
such that {j9 o Fopn = X .

Note that theorem 2.5 above “parametrizes”, through set ¥ (@), the
space of all forces of constraint on @ (including those associated to the var-
ious forms of friction and viscous forces, dependent or not on the velocity),
which are determined by their component that is tangent —via metric g—
o submanifold ¢); that is, by their component that is able to do work on
the system (prop. 1.4).




2.6 Corollafy. If (N, g, M, Fozt) is a system of particles ondQCNa
submanifold of N then there is one, and only one, force of constrasnt Fo,,
‘on Q such that |90 Fepn = 0.

2.7 Definition. ~ We call the d’ Alembertian force of constraint on Q
the one determined by corollary 2.8 above. We will also say that {Q, Fion)
i ¢ @’Alembertian constraint if Fi,p, i the d’Alembertian force of con-
strasnt on Q; that 15, if |9 0 Fppn =0,

The d’Alembertion consiraints are the only constraints studied in the
classical formalism/!]l, where the principle of d’Alembert and the principle of
virtual velocities are used to determine the d’Alembertian force of constraini
on a given restriction of constraint (see remark 2.16 ahead).

The rest of this section will be dedicated to proving theorem 2.5 (which
depends on a sequency of lemmas) and other related results.

2.8 Notation. If (N, k) ¢s on Euclidean space (h € {g,m}] and Q C N
i a submanifold of N, let k denote the Riemannsian metric defined over Q
by inclusion and let i*:T*N|Q — T*Q denote the pull-back of covectors
by the inclusion ©:Q — N. Moreover, in o manifold M (M € {N,Q})
with Ricmannian metric k (h € {g,m,g,m}), let WTM — T*M and
h:T*M — TM  denote the mappings defined by [R{X)(Y) = A({X,Y)
and bt = (k") (lowering and raising —respectively— of indices, via h).

The following proposition iz well known in differential geometry and
will be stated (without proof) just to establish the notation.

2.9 Proposition,. FQC Nisa éubma_nifold of an Euclidean space (N, h)
ond c:(—6,5) = Q a curve on @, then —with v and a defined as in 2.1—
we have:

fi) |Poa=Vhy, and

(i) Lhoe=Abkov,
where VA i3 the Levi-Civita connection (on Q) of E,.and ARTQ '_—r TN IQ
is ¢ mapping defined only by metric b and by the inclusion @ C N (does
not depend on curve c).

2.10 Definitlon. Let (N,g, M, F..;) be a system of particles endQCN
a submanifold of N. Besides the melrics ¢ and m induced on Q according
to 2.8, we also define tensor M:TQ »TQ by M =90 (M|rq).

2.11 Lemma, Tensor M has the following properties:
i} M=g'om’, and
() o (Mlznig)=Mol™.
Proof. Note that [ =g'0i* o ¢*lryio). Then we have, for item (i), |

- M=|fo(Mlrg) _
=gloito (g*zmq) © (Mlrq)
=740 o (m'lzg)

=glom,
and for item (ii): |

17 o (Mlzwi@) = 3% 0 i* o (¢} rivig) © (Mlrwiq)
=7" o o (m*|zwiq)
=gto(m om") o5 o (mlrwiq)
=(7'em") o™
=Mol|™,
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2.12 Lemma. If (N,g, M, Fezt) 8 a syatcm of parttclca, QCNisa
'submamfold of N and e (<€,8) > Q 5 8 curve on Q, then.we have thal:
(i) PoMoa=MoV®y,and _ o
(i} LPoMoa=MoA™ov+EoMoVmy,
ahere STQ TN s thetenor deined by E = (Mo}~ ~ dro).

Proof. ... To prove (i), we use previous lemma (2.11(ii)):
(P eM)oa= (o) oa=Io(|" o) = o VFo.
"~ To prove item (it} recall that * + L* = idryiq (b€ {g, m}); therefore

J-’°M°ﬂ“('drmq—ll")°M°“
=(M-|oM)o{Ll™on+|™oa)
= (M=~ Mo|™yo(A™ov + VFy)
 =MoAmoy+ (M- M)oViy
- .'=-_M_.0A.m,ov+(MQE"I—;@Q)OHOVT”:

where we used ["oA™ =0, ||?|pq = = idrQ , and we assumed tha.t B—J"
_exista (lemma 2. 11(1) guarantees that Mis m\rertlble because ' and "
are). W

We are ready to prove theorem 2.5, but before we do that we would like
to invite the reader to compare the way proposition 2.9 and lemma 2.12 were
stated. Note that in 2.12(3) we projected vector M oa orthogonally over
TQ via metric g, but we obtained, as a result, M applied to the covariant
derivative 'Vy defined from metric m {induced on @ by m). Moreover,
in 2.9(ii}, the normal component | *oa of the acceleration was determined
only by the velocity vector v of the curve at this point; whereas in 2.12(i)
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the normal component (via g) of M o a depends also on the tangential
acceleration Vv (unless E vanishes at the point being considered, which
usually does not happen, as stated in proposition 2.19 ahead).

2.13 Proof (of theorem 2.5). We shall prove initially the umqueness
of a force of constraint F,,, such that [foFeon =X, where X € X (Q)isa
given field. If ¢: ( g,e) —+Q is a curve that obeys (Foon+Fezt)ov = Moa
then -
“"oMoa=“’o t.,f,,,r:w-li-]]":>F'm1_;01,1',-a.nd (1)

J_ﬂoMoa=J_“onnov-{-L“OF,,f,ov, : (2)

taking lemma 2.12(3i) to equation (2):
1oF,,ov =MOAmov+30ﬁo-V?v~J_'oFmov,
by lemma 2.12(i) we have that |
190 Fymov=MoAMov+Eo(|foMoa)— Lo Fyov,
then equation (1) guamnteesrtha.t
1o Fpnov=MoAmov+Bo(lff o Fepnov+||? 0 Foppov) — 190 Fyypov,

recalling that [[f o K., = X, and that for any given vg € TQ there is a
curve ¢:(-&,e} = @ with v(0) = vo and (Feon + Fezt) ov = Moa, we
conclude that

igoFcan=M°Am+E°(x+”g° azt)"J-go ext - (3)

This expression for the zormal component of F,,,, proves its uniqueness.

10




To prove the existence, assume a given X € ¥ (Q) and define
Faan = X'I"-Lgc'Fcon,

with 19 o F,,, given by (3). This Fpp is a force of constraint because for
any vp € TQ there is a curve ¢:(—¢,€) — @ that satisfies v(0) =vo and

MDV”‘U—(X-E-II"OE,g)ov

| (and besides, it is unique if we fix one of the «'s small enough}; this curve ¢
also satisfies equation (2) above (just invert the deduction of (3) from (2});
and finally, equations (1) and (2) together guarantee that (Feon+Fezs)ov =
Moa. B

2.14 Corollary. If (@, Foon) 18 a constraint on (N,g, M, Foyi) then o
curve ¢:(—¢,&) = Q satisfies (Foopn + Feoze) ov=Moa if and only if
‘m oV:‘v'-:: 0g" 0 (Feon + Feat)0v.
Proof. In the previous proof (2.13) the equivalence between equation
(Feon + Fext)ov=Moa and
 MoVPu= | o (Feon+ Feat) 0

was established, then it’s enough to recall that M= E' om’ and o=

g'oi o (Plrwig) . ®
2.16 Corollary. For any force of constraini Foon we have that
J_’oFam—- MoA™ +Eollfo{ Foon+ Fozt) — 190 Fopy s
particularly, for any d’Alembertian force of constraind,
Feon=MoA™+EollfoFpuy— 190 Feps.

Proof. The first expression ia exactly the same as equation (3) deduced
in proof .18, and the second expression follows easily from the definition
of d’Alembertian force of constraint {2.7). B

1

" The first corollary {2.14) establishes Lagrange’s equation in it’s form

‘prior to the introduction of the force- potentla.l["‘] and will be discussed in

the next section.
We have t]:u'ee remarks to make about coro]]a.ry 2.16:

2.16 Remark. Cumparlng the exprem:ona stated in corollary 2 15, we
see that the norma] component of any given force of constraint Feon on a
system of particles (N,g, M, F.z;) is identical to the d’Alembertion force
of constraint {on the same submamfold) on another system of partu:les.
(N,g,M, F!,,) where Fl,, = Fops + f, with flrg = [|? © Feon - In other

- words, we can always consider the component {|70 F;,, of anon d’_Ale_mber-

tian force of constraint Fuop a8 “external force”, and then identify L9oFeon
with the d’Alembertian force of constra.int of the “new” system of particles.

2.17 Remark. The d’Alembertlan force of couatra.mt is usually described

in terms of the Lagrange’s multspl:era, which are variables determined with
the help of the equations of motion. Coro]]ary 2.15 explicitly gives us the
force of constraint as a function of the state v & TQ of the constrained
gystem, | '

2.18 Remark. Corollary 2.15 descnbee the normal component of a.ny

given force of constraint K;,, sa a sum of three terms:

Fy=MoA™
F. _Qonﬂo( can+Fezt)
F —190F,

The “interpretation” of the terms Fy and Fj is clear: F) is the centripe-
tal force —dependent on the velocity, on the mass, and on the curvature
of Q in the direction of the motion— and Fj is the part of the force of
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constraint that compensates for the component of the external force that
tends to remove the system from the restriction of constraint @ C N.

" The “origin” of the term F, in turn, is not so clear since it usually
vanishes in “simple” systems (in example 1.5, if all masses m, are equal then
Fz = 0; this follows easily from proposition 2.19 below). The several forces
of constraint on a manifold differ, in what regards their normal component,
because of term Fy (which is the only term that depends on || 0 Fupp ).
The following proposition establishes the conditions in which the term F; of
‘the several forces of constraint on a manifold vanishes in a given point, and
example 2.20 presents a d’Alembertian constraint in wich Fyopn = F3 #0.

2.19 Proposition. Let (N, g, M, F,z;) be o system of particles, QC N a
submanifold of N and g € @ any given posnt of Q). The normal components
190 Fyop (via g} of the forces of consiraint on Q coincide af point ¢ if and
ondy if T Q 7] mvarmnt through M ch ~ ; that i, if and only if M(T}Q) C
T,q.

Proof. By corollary 2.15, the normal compdngnts of the forces of con-
straint coincide at point ¢ € @ if and only if E|r,g = 0; since & =

(MoM 1_{drq) {lemma 2.12(ii)}, this condition is equivalent to M lrg="

Mir,q , which is the same as M(T;Q) C T;Q {from the definition of M =
oo (Mlzg)). &

2.20 Example. Consider the system of particles defined by a pair of mass
points with different masses (m; 3 ma), that move along a straight line; a
constant force (along the line} acts on both mass points:

(i} (¥,g) = B with its usual Fuclidean metric —(z!,z%) € B? is the
configuration in which the particles are dlspoaed z! and 2? (respec.) unite
of length from a fixed origin;
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(i) M(z!,22,0! vz) (z!, 2:2 ym1vl,mav?) ,where m; and ms are rea.]
positive constants, different from one another; and '

(ili) Fers(z';2%,v1,0%) = (2%,22, f, f), where f is & real, nonzero con-
stant. '

Consider now submanifold Q of N = R? defined by the constraint
condition 2! - 2% = ¢ (£ &€ Ry); which describes, for instance, an
“ideal rod” {nonextendable and with no mass) of length £ connected to the
particles. _

The tangent spaces to manifold @ (manifold of the constrained config-
urations) are, obviously, not invariant through M; and therefore the several
forces of constraint on @ have not all normal components (via g) coinci-
dental. Moreover, the external forces acting on the particles guarantee that
the term Fy (remark 2.18) of the d’Alembertian force of constraint is not
gero; and so, for this force: '

Fi=F3=0 and Fon=F#0.

(3) LAGRANGIAN MECHANICS

We ahall now consider systems of particles subject to eonservative for-
cesi®],

8.1 Definition. A system of particles (N, g, M, Foz1) is conservative if
there 9 V: N — R such that Fope = ~glodV ory . Fiz one of the functions
V, called potential energy, and define the total energy E:TN — R
of the sysiem by E=K +V ory.

3.2 Proposition (conservation of the energy). Iet (N,g, M, Fuze)
be a conservative syslem of particles with potential energy V. and total
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energy E. If c:(- e,e) —+ N s a curve on N that aatwﬁea F,,tou = M oa
then RI(E ov) =90.

P_roof. Just take Fops = —glodV o1y to proposition L4{ii):

%(KOU) ='Q(U,ngfov) = g(v,—g‘ odV oTN O’U) = —%(V oc)’

therefore %(EO v) = %(KOU) + KJE[V 00) =0. &

3.3 Proposition. Let (@, Foon) 6 d’Alembertion constraint on a conser-
vative sysiem of particlea (N, g, M, Fyz:) with potentiol energy V:N — R.
A curve c:(~c,e) = Q@ satisfies (Foon + Feze) ov=Moa if and only if

mloVPy=—dVoc, where V=Vlg.

Proof. By corollary 2.14 , we need only to prove the equivalence between
the above equation and

ﬁ.b onv =¢ 00‘0 (Fcon'l‘Fost) ou,
which is.eusy because ||[? o F.;, =0 and F.zy = —gl 0 dV o ry tmply that
i*ogb O(Fcan+Fazt)°v =-i* og”ogu odVoryov
=—t"odVoc
=-dVoe. ®
The condition obtained in the proposition above, sn which meiric g
i5 not present, is equivalent to Lagrange’s equation Xg € ¥(TQ) for the
lagrangion system (Q, L = K|rq = V 01g). The proof of this statement
can be found in Abraham and Marsden!®), as well as the definitions and
results necessary for its precise formulation,
The correspondence established by proposition 3.3 above between the

‘Newtonian and Lagrangian formalisms for classical mechanics concludes the
program described in the introduction.
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