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Abstraet
We perfdrm a NSQmiglassical- aﬁalysis of the $S0(3,1) S-matrizx. 1In
partlcular, we discuss the near-far components of the amplitude and describe

the nugleaf rainbownscattering. We use the semiclassical inverse scattering

theory to obtain the undgflying potential, which 1s found to béhave-as A

g-r/a at 1arge separations,

March 1988.

L. Intreduction

During the last few years an algebraic approach to quantal scattering
problems has been developed by one of us together with Alhassid, Glrsey and
others [l}. In this approach, $§-matrices are derived ﬁrum general group-
thecretic considerations. One. of these, based on thg-algebra of 50(3;1),

has the general form

T{L+1+iv(f,k))
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and promi#es to provide a useful toel in the analysis.of "experimental data -
{2}. For each particular problem, one chooses a function v(£,k), computes
Si(k) and from it the differential cross séction, do/dfl. The function
v(1l,k), called the "algebraic potential" is taken .to be real fo; aen-
absorptive scattering and complex for absorptive scattering. Sinéé the
algebraic approach is formulated at the level of S-matrices, it is not-clégr'
vhat is the underlying physics in a Schrédinger picture. 1In order to find a
potential that, inserted in the Schrédinger equation, produces the. same §-
matrix, one needs to solve the inverse scattering problem. - This is,  in
general, rather complicated. The solution is much siﬁpler when a
semiclassicall approximation is taken, In this larficle. we  perform %

semiclasslcal analysis of the scattering matriz (1).




2. Semlclassical Analysis of the 50(3,1) Matrix

We consider the case of an absorption-free S-matrix. The key
ingredient is the classical deflection function o(L) = 2d5£/d£, where
S)Znexp'(ZiE'e). Sinee, for v(?,k} real, an explicit form exists for S5y in
terms oflE [2}, the classical deflecticlm function can be calculated exactly
Ain numerical form, I-i.owever., sin.ce we are interested in general properties,
we conside:.; -an - approximate form (very accurate for large #) obtained by

using the following asymptotic form of the 'I‘~functions[3.] appearing in (1),

rzy = (22 o2 (212

(2)
iz = B+IEV(E,K)
" This glves -
2;3£re,%_Arcﬁanf{zﬁfikl}'+ (2414 (2,5)) ln(e+l+iv(2, k)
L (L2, K)) In(-1v(L,k)) - 2iv(2,k) Y

The classical: deflg_g'tibn function obtains immediately from (3} by taking the
derivative with :Eespec_:t to £, negleeting 1/2 compared with £ and introducing

A=i41/2,

a{X) = 2 arctan [V(Aik)] + dv(:tik) ln[,\z-!-v()t.k)z] (4}

Gne can see from (4) that a parametrization of v{£,k) provides a simple
parametrization of the classical deflection function © (A} which can in turn
be used to analyze the data, We consider now in particular the form of

v{Z,k) used to analyze heavy-ion scattering [2],

V(& kY = v (8,%k) + vg({f k) =

lezezﬂ Vo (k)
-5+ — e (5)
7%k ltexp[(2-2y(k))/Aa(k))

.E‘or pure Coulomb scattering, viE, k) mn = lezegp/fzzk and the second term 111

(4) vanishes identieally, leaving the_ famous Rutherford deflection Ffunction,
The presence of nuclear scattering changes the :Ej.rst term in (4) slightly
but gives xise to a sharply lotalized second térm, which is x':xegati.ve for
positive v, _We.show in Fig.l a typical deflecti_on function, ,Thi#
deflection function exhibits several interesting features, The nifcl_ear
rainbow {(minimum in ©(A)) comes directly from the second term (dv/dx). ﬁ:’he
first’ term in ©(\) is 2 modified GCoulomb def_lection_n funetion, which, at
small impact parameters (A+0) behaves as 1r-—2A/(q+v0). This behaviof,
howevér, is appro;ﬁfiate tc.> the .approximate deflection_function and is
different from the exact result,

Another Interesting feature is that the parafnetriz;tion (5). does mnot
exhibit exact orbiting, i.e., the deflection functic;n never goes to -w.
However, for large vg or small A, the deflection function becomes more and
more mnegative, Exact orbiting can be obtained only by wusing a
parametrization of v(2,k) which is a discontinuous function of £.

We now turn to a discussion of the scattering awplitude., This can be




obtained from [4]

goy = £y + £970) ~ =L (100 - 1100
: SR i . |sin£?

. o '
1e8) = . e_l‘.n‘/ﬁ 1 di Al/2 COOFL 240w {0, K)) ixg (6)
SILEY = - e do T(AL1/2-1v(h. k) © :

where f(*)-(t?)' and £(")g: répl;_esént the near--and‘- far-side compuneﬁl’:s of £{#).
It -.is . clear from the'structu;:e of thé deflection funetiom, Fig.l, that
g0 (8} is purely.Coulomb at very small angles and very clese to Coulomb at
angles:close: to.m. At intermedlate angles it is affected strongly by the
nuclear: interaction. The interesting feature of f(+)(9) is its back—angie

behavior. - With . 'the: ald. of. the stationary phase method, we are able to

evaluate: the amplitudé in this angle region. If we assume that (k) /alk)>>1

in-(3):{a condition usually met in hea'iry-ion scattering),  then

d\)"S (2, k)

CYeAk) g vkl e . A%

orv (O]
o ] )

B ymy 2 atc:t::—;,n[-_-—-i-—-
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which reduces to the Rutherford formula when vp = 0.

.As far as the far-side amplitude is concerned, the structure of &(X)
clearly indicates that it will be predeminantly composed of nuclear rainbow
scattering. In facé:, o-r;e ‘can see that the second term in o{A), Eq.(4),
dominates f(‘)(ﬁ). As an example of behavior of If(')(ﬁ‘)lz we show, in the
lower art of Fig. 1, results obtained with the paramétrization of the upper
part. The nuclear rainbow hete 1s structureless owing to the narrow nature
of @(A). We have repeated the calculation for different wvalues olf the
parameters, as shown in Fig. 2. The fax-side cross section show_s clearly in
this case well-developed Airy's oscillations, owing to ‘the bro;-xd na-tur.c_e of
().

Having discussed briefly the: semicla;ssical limit of the SD(73,1) 5-
matrix, we turn now te the question of determj_'.ning~ the underlying potential
in r-space. This -can' be done by using the semiclassical in.ver_se s.cat;::ering
method {5]. Knowing the defle-ction function ©(A), one can obtain tB:s'

potential ‘V(r) by computing the integral

.o

: -1/2 ’
T{s,k} = % J (Az-kzsz) ® (A) dX ()
~ ks

The potential V(r) is given by.




Vir) = E {1-exp [«2T(s,k)]} V (10)
with & obtained by inverting
r(s) = s exp [T(s,k)) (11)

and E = kzﬁz/Zp. From the above equations one can obtain numerically the
potential V(x). For large r, the equations can be solved approximately.

Large r corresponds semiclassically to large A. In this reg.ion,
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where )\0—26-!-1/2.' Ope then obtains,

Vo) 32 2 /() o [ ks
T(s,k) =t - e I(KTsTet) 078N _,Ko[m] , (13

where Kg 1s the modified Bessel Function. Using the asymptotic form of Ky

and expT=1+T, yieids

: = (ks=Ag) /8(K)
V(r) = %’cﬁ - IE%E)* Evy (k) 1a(kZsZiq2) s

Jks

with s = r . From Eq.(1l4), one can see.that the pot.en.tial- V:(r.). (;o.nsists of
the Coulomb potential, 2yE/kr, and a nuclear potential which varies with r,
for 'large r, as ln(kr)exp[-kr/A)/fkr. A Woods-Saxen w_.e'll in ¢, 2V o = .
Vo/[1+exp((x-145}/6)], would produce a behavior as. exp[-t/§], very similar to
that obtained iﬁ Eq.(l4). One notes that if the surface diffuseness § is
constant in r space, Eq.(l4) .implies that the surface diffuseness 4 in A
space should inerease with k.  We have ‘also checked the accuracy of Eg.(13). -
by direct nu.mefical evaluation . of the .integrals. — We. nqt:‘e'-that:, if we |
neglect the slowly varying logarithm .term, the S50(3,1) :S-matrix-»withf the -
parametrization (5) produces a potential, f'l/z e'kr/A, which is.different
from that obtained using the eikonal.approximation.for an S$0(3,2) S-matrix.
with the same parametrization, 1:"5/2 e'kr/‘h [a]. This is due .-_t:_o the
diffé;ent forin of the S-matrix. The eikonal analysis of .Amado: and S.parr'ow :
would produce the same résult as our analysis if applied to the S50(3,1)
amplitude.

.In conclusion, we have.performed a semiclassical analyls of the S0(3,1)
amplitude with the parametrizatien (3) which exposes the correct physical
behavior, _of the model when applied to heaw'ry—ion“,s'cat_.t"ering.“ C)Li);‘_'.axllalysﬁi-s
has been limited to absorption-free scattering and shgﬁuld be repeated for
absorptive scattering. In the latter.casg one coi_xld use the,mfe__tl_iod__ rgc_:_ently
developed by two of us in order to relate the absorption-modified'-z_a.mi:l_i'tudg_:
to the absorption free amplitude [7}. Conversely, ome could directly

construct absorption modified amplitudes by making the "algebraiq potential®




v(2,k} complex as discussed in Ref.[2].

Apart from elucidating the physical nature of the S50(3,1) amplitude,
the analysis presented here could bé of practical interest in those
situations where the semiclassical approximation is a pgood one. In
particular we have in mind here molecular scattering dgta. In this case the
pQEential v{L,k} can be taken to be:real and an appropriate parametrization
of it would produce a patametrization Qf the deflection function ©(A) which
is of practical importance. Results of the analysis of atom-atom, atom-
molecule andr molecule-molecule colliéinnS' using this method will be
presented elsewhere.

This work was supported in part by the CNPq,CCInt. and under the U.§.
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Figure Captions:

Fig. 1. . The classical deflection function (a) and the far-side
contribution to the elastic scattering cross section (b}
for the case, n = 12.58, E-= 20.0 MeV, k ~ 3.12 fa ",

Vo = b4, Ay = 14 and A = 2.

Fig. 2. Same as- Fig. 1 with p = 18,22, E = 100,0 MeV,

k= 7.63 fu"', v, =12, A, = 30 and & = 8,
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