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ABSTRACT

We discussrthe interaction of 2—dimensr0nal bosons
with an electromagneticlfield, Quantizing the system via Direc
procedure. A quantum theory is.obtained However, due tc a
mass generated for the bosonic fleld, there is an 1ncompat1b111ty
between the chlral constralnt and Leorentz: symmetry, unless an

"a priori undetermlned" parameter a is flxed.

Work: partially suppofted by CNPq {(Brazill).

1. INTRODUCTION

Frequently, symmetries do not survive the quantization
procedure. A major example of such anomalous conservation law

(1)

is given by chiral gauge theories , where gauge invariance

is broken at the quantum level. In the case of 2-dimensional
spinor QED and QCD, there have been several proposalstz][B],
cancelling_anomalies_introducing Wess-Zumino terms[4]. Consistent
quantieation of the chiral Schwinger model has been achieved.by

[5]’

Jackiw and Rajaraman who showed the existence of a one
parameter family of chiral Schwinger models. Girotii; Rothe and
Rothe[6] quantized the bosonized theory. with the Wess-Zumino

[71]

term via Dirac procedure for_coestrained systems. Thus QEDZ
has been shown to depend on the velue of Jackiw-Rajaraman
parameter, and may be presented as two types ef theories, with
either two or four constreintse 7

The nonabelian case was considered in references
[8].and [9]. In the {ormer reference, the author based his
discuseion on Wittens 0] bosonization prescrlptlon uslng

11]

Coleman's arguments In the latter-work a “flrst prlnc1ple"

derlvatlon of the e[fectlve action 1nvolv1ng the WZ term is

‘given, and thereafter Dirac guantization. procedure was applxed

As in the abelian case there were two cases, involving either
2 or 4 constraints, the latter in a distinguished value of the

JR's a-parameter,




In the present paper we discuss the coupling of
chiral bosons te an abelian gauge field.
Chiral bosons have been recently studied by a number

[?2][13]. It has been consistently quantized[143

of authors
using a non-local Lagrangean and a local commutation rule, or
equivalently a local Lagraﬁgean but a non-local commutation

rule.

It was aléo shown that its gquantization presents
_the sdme problems as those found in string theories[15].

. In section 2 we consider the coupling to a gauge
field, writing the {classically) gauge invariant action, and
the constrainté.. In sectiocon 3, we derive the constrained
algebra{ and gquanhtize the theory via Dirac Brackets. For a
particuiar value of the arbitrary pérameter a we see that-
'fuither constraints arise. In section 4 we briefly review the
equatibns of motion, éndrdiséuss the full éolution of the

theory. Section 5 éondlu&es_the paper.

2. CHIRAL SCALAR QEDz -

‘A pure left'movinglbOSOHic fiegld ¢(x0-x1) may be

described by the Lagrangean

B T - o :
L = 5 8 waLlw (2.1)

with the constraint

which may be cancnically guantized, as far as we are able to

deal with the second class constraint

Qix) = wix) - ¢"(x) = 0

Some authors proposed to substitute the above
(12}

constraint by the first class constraint

Lix) = f0x)?

which is dealt by the action[16]

oLl o8, :
‘L= -5Y39 39309

with the gravity field truncated as

which leaves us with the expression

2

L o= -3,93_¢+ 33 (37

(2.2)

(2.3

(2.4)

(2.5)

(2.6}



wnere the doubly self dual [ield X~ reazlizes the first class
constraint. A descripticn of the model by means of the second

class constraint (2.2) is {easible using Dirac method. The

" constraint satisfies

a0, 2 = - 28(x-y) _ (2.7)

" which determines a . second class system (although the number of

(71

, 9going to a discretized version
(171,

constraints seems to be odd
of space one sees. that an antisymmetric matrix emerges

Thus one derives the commutato;[14]

oLtk e(y)] = - elxmy) . S (2.8
The interaction_of the_above'model with a gauge
field wag,pgdposeduin [t2], We write the Lagrange density

= - ‘ . - _i ._ H .
L 7—-_3+ rpa_ ] + A_ 3+._€P..A+,3l_.§p ry F\J\’ + 3 ah AU‘ (2,10},

where ;he last term has an arbitrary parameter a related to
the gauge symmetry bfeakih§: énd_sh§uld be put in, to take into

-.'acgount- the repormalization-arbitrariness.

3. DIRAC QUANTIZATICN COF THE MODEL

The primary constraints cof the theory appear as
follows: the lelt moving character of the bosonic field requires
£.(x) = ®wix) - ¢'(x) = 0 H {3.1)

and the absence of the time derivative of Aéx) in the action

which implies
Q(x) = m{x) = 0 C(3.2)
The momentum conjugate to Ar(X) is
T = gt B RESD
and the Hamiltonian is readily computable
B = dei{% n 00+ ag ) N R L 9 0”
TGO AL Gx) - gt Aglx) - 2a Al 1'a‘;‘L\Z}_' Y

The Poisson brackecs are given by-their_uéual

expressions, namely

{Q(x) ,ﬂ{x)} = 6(x1-y1) o .7 : (3.5a}




{a‘(x),m(x)} = six'-yh) ' (3.5b)
{Ao(x),no(x)} = six'-yhy . _ (3.5¢)

Further constraints arise from the time conservation

of 91(x) and ﬂz(x), and are given, respectively by
Qi(x) = {Q,(x},H} =
= = <dp'(x) - m(x) ~-A{x) - A (x)} (3.6a)
1 a i -
dx .
and
,(x) = {a,(x),B} =
= -a1n‘[x) + @' (x) + a-AD(x) (3.6b)

{71

In order to use Dirac gquantization. procedure

compute the constraints’ Poisson bracket matrix

Qij{x,y) = {Qi(X) ,ﬂj(y)} =

[-26--(x-y-) . 0 - 28" {x~y) 8" {x-y)
o} 0. -§'(x-y) -a6(x-y)
= : {3.7a)
26" (x-y) -8 {x-y) 28" (x-y) 0-
0 - a $'x-y) 0 0

.8.
‘whose inverse 1s given by
-1
Q (x,¥) =
2 .
a” el{x-y} . 2a6(x-y)
- 2a8 (x-y) - 28" (x-y)
_ 1
T 1+da :
-—;—(1+2a)|x—yi —5(l+2a)a(x—y)
%(1+2a)e(x—y) - 26(x-y}

o
5(1+2a)lx—y;

—i€l+2a)s(x—y)

2
2
—az—(x—y)za(x—y)
alz-y|

1 SN
§(1+2a)€(x-y}1

28 (x~y)

~afx-y|

e{x~y)

(3.7b}

With these results we compute -all relevant equal

[7]_

time commutators readily

. _ 2ia B
[eix), @ly)] = - 5555 8ix y)
- _ _ta_ _
[el{x) ,gly)] = T7as ©% y)
R | o
[pix)} ,Ao(y)] - 1T S{x~y)
_ . la/2 B
[o(x), n1(y)] = Ty elx-y)
lotx) A, ty)] = 35 Stx-y)
[A (x),A, (y)] = 21 §i{x-vy)
’ o £ 1+da

Nonzero commutators are

S (3.84)
(3.8b)
{3.8c)
(3.8d)
(3.86)_

(3.81}



. 1+2a
(mo(x), A (y)] = i 9057 Six-y) - {3.89)
a’ .
["‘(X.);'ﬂ?(‘j)] = 1 TI'E-EE{X*"Y) (3.8h)
Positive definitenéss requires. (seg 3,.8a) that

‘either a<,;%- or . a>0. Limiting cases have to be .studied

separately. 1In particular, if a =—5%f‘the determinant of ' Q

is zero, and the system is not second class. Further constraints

arise.. Time conservation of Q}f:givesﬂ

{9500 B} = -0 + R (x0) _ (3.9}

where ..

2, (x} ='n;_{x) | o (3.10)

whereas- conservation of Rn implies

. o - 1 . ’
. I = = ] I S ni - .
(%) a‘AT[x) w7 F Aptx) . (3.11)
~"These constraints.render the;gheory sécqnd_class.
Hoﬁeﬁer;-aanqnt;iéialgrgsq;tgig_ha;d;y forseeable, with so many

_constraints.,

10,

4. EQUATIONS OF MOQTION

The pair of Euler equations derived from {(2.10) [or

¢ and- A“ are

oV . ‘ . .
De + e, A = 0 , S (4:1)
¥ p Tl gl aa Y= 0 . EEREET -3

The solution to the first éﬁﬁation'iéItﬁé,éxﬁféésichr
of the gauge [ield in terms of ¢ and an érbitrary gauge
excitation

_ - v
A, = me Ve 43 n (4.3

which substituted in the second equation implies

v, .2 ) _ : _
e et caan = 0 L g

Thus ¢ is a massive [ield, with mass (a-1).

. However, since‘ ¢ is a purely left moving field,
it must be massless otherwise Lorentz invariance is broken.
Therefore we take a=1 {in this case ¢ is massless) and h
is a trivial constant. The gaugé Lield is constituted only by

gauge excitations.




5. CONCLUSIONS

We analyéed the coupling of left moving bosons to
an abelian gauge field. The resulting theory has been guantized
using the Dirac formalism, treating the left moving character
of the bosonic field as well as gauge invariance in terms of
constraints. Moreover a mass term for the gauge field was used
in the action, in order ﬁo take into-:account the non-gauge
invariance implied by the lelt moving bosonic field. Thus the
theory depends on a parameter 32 which is the coefficient of
the mass ternm.

All commutators camé cut after some computation.
However, the fiéld.equations implies a mass [or the bosonic
fieid, which is incompatible wi£h a Lorentz invariant left
moving,bésoh. In order that this mass vanishes, the arbitrary
parameter takes é fixed value, and the gaugé field turns but

to be a pure gauge excitation. The theory is (almost} trivial.
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