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ABSTRACT

It is shown that the fluctuations of the order

parameter in the Curie-Weiss versions of the dilute antiferro-

magnet and of the Ising model with random magnetic field are

not equivaient under the mapping which establishes their

thermodynamical equivalence.
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I. INTRODUCTION

Considerable theoretical effort has been made in

recent years to understand the Ising model in the presence of a

[1-4]

random maghetic field (RMF) However, random [ields cannot

be directly produced in laboratories.

[5]

After the original paper
by Fishman and Aharony and the later one by Wong et‘al.[G],
there is a generalized belief that this model is related to site-dilute

antiferromagnet Ising models in the presence of an applied

uniform magnetic field (DAF), which are experimentally accessible

[7]. Particularly, the degree of dilution and the

systems
intensity of the field, which are supposed to be related to the

can be well controlled.

[8]

RMF parameters,

the works on this equivalence
[5,6,9]

" With a few exceptions
have been centered in the usual mean field-apprdximation

A complete mapping bétween the parameters and phase diagrams has

been obtained{TB}

{2.,10]

{or Curie-Weiss versions of both models, which

f11]

were solved by a method due te van Hemmen in spite

of being mean field models; the latter afe sciewhat subtler
from the probabilistic point of view. Rigorous work by Ellis

and Newman{lzl

studying large deviatiens in c¢lassical:Ising<like
Curie~Weiss models has shown that they display non-tgivial © -
[luctuations of the order parameter at criticality. These results
have been extended to disordered models such as-RMF[4] and . van

Hemmen's spin glass[11’?4].
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Tn this note we reconsider the question of equivalence

between the Curie-Weiss versions of the twa models as te show

that it does not hold at the more delicate level of fluctuations.

The mean field DAF model we use is described in a

finite volume Acz9 by the Hamiltecnian

.23 £ - '
H3AF = -h— Z &LEJ G-\G_J ~+ H ZELJL {1y

e by
jéﬂo vEA

where . A. = Ar1Zd , A = AI\Zd with Zd (Z
e Te 0 0 e

lattiCEudf'szd"for which the sum of coordinates.of ecach site

g) being the sub-

are even {odd) integers. The interaction is antiferromagnetic
(J>0) between sites in different sublattices. The random
variabhles ,eiE{G,1J describe the site.dilution and they are

taken to be independent and identically distributed, with

g, =1 ; probability p

0 7, Apfdb&siiity ‘T-p .“
The. spin variables: 95 are, for simplicity, . taken.
to be of ;singhtype::-oi =1, Thezextérpal.magnetic :ield é
is-uniform and-deterministie, and uny-denofes_the:n&ﬁber-of
points . in A . .
The Hamiltcnian (1) is slightly different and mére

[10]

natural ‘than that used in a previous work as no explicit

ferromagnetic. interaction inside the sublattices is necessary.

_,The-RMF,model to be compared to the .model. given by

(1) is described by the Hamiltonian,
b . .
H = - EL”;l*"qkﬁﬁ RIS )
Lien LeA o

where hi , 1 EA,.ﬁre indepéndén£, identiéaily distributed

random variables, being gqual-to th with probability ~%.
In the next secticn we show the equivalence of the

thermodynamics of the twe models, and in thé last one we make

an analysis of their f{luctuations and show them to be non-

equivalent.

¥I. THE THERMODYNAMICAL EQUIVALENCE

We compute, for both models, their [ree energy £,

" given by

pfebim -1 L(‘Z a".P")

o N irg

‘jhere B is the inverse of the temperature, {d}'.dénéﬁég:all.

the possible spins configurations, and H 'is'thg'namiltdhian.

ki = i write
Taking #H HDAF as in f1), ohe yay
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() e < OAR n v
Z’M = 2__ e 2n '{’c\m ;lxi_ Anp "Ml_ . (w\lr}}J
l'](,‘-} 9 2,

(f’.‘('-‘""a-‘i)= i Z *Qhw)L‘—((ﬁm-l‘J!E%- (LH)EJ'] +

N A,
+ L I Lin cale [(\fﬁm*&,{ﬁ‘}‘fpﬁ)e_{] -
n j&l\g |

Here we have, twice, made use of the identity

JEJ(P(&Z/Z) = —:ﬁ-]_. ]dx %r (-“__'1—;1-&1)

with a = 2J 1 { Z .0, t z: g, G } in ene case. and
n 2 171
3.EAe i€hg
aci/2.1, z £. 0, - Z €. 0, in the other, together
n 2 i i i~i ’ i
igA i€
& 0

' with a suitable change of the integration variables, -

{n)

~simce  Zpgo

ig real we have

Z;: . 2;‘-‘: . Idm Aqf m{n lff) w.[—i\ @;ﬂ {""‘-1}] .

where

1’7
? "mg) = 2
n ? 4 jehe

. XZ Q,u{mﬂ\l[(dﬁm - P} EJ'.} + m‘l(v’ﬁ? 9 ‘E_J'] -4 % T

. JZ% Ll e - (7 1) ‘ﬂ )

)| L it ple] 53 o

and

oNIEXTE i RECRY

{n}

E )

The asymptotic behaviour is then given by

Z;: 'u J.d‘” £y [-n ‘#}E::(moq

since the maximum of the integrand is attained at 9=0 for
any {ixed m and n. This can be seen from the faet that
A0 T
Y| Ve :
- 7 —_{__ ) l' . G.V\d m w 'Yﬂ (W\‘O) e 1 -
D'—} ‘i.:a :)-;} 226 L S
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The free energy can therefore be obtained from

where

Byfmer b e &t flatlB LedlPon)]

[4]

However, it is known that the same method as

applied to the RMF hamiltonian (2}, yields for the free energy

ﬁfﬂnpz ::;i ¢L£;“)

where
q&ﬂhp(m’ - v_v:{L - ‘i[QM @&Uﬁw—ﬁkﬁﬂ“mﬂ(ﬁﬁmtﬂﬂ\ﬂ (2)

From {3) and (4) follows that

b B = ?FPW(E?P R ) - (5),

and this establishes what we call the thermodynamical equivalence
of the two mcdels. The corféséonding phase diagfams are
knowntz'q].

There is a second order critical line defined by

the equation

. -
pp Tz ol poH
for Sc < Bt , where th«J = % defines a tricritiéal point,

and for Bc > Bt there is a first-order critical line.

III. FLUCTUATIONS

We shall now study the fluctuations of the order
parameter of the DAF, by discussing the large n asymptotics

of the probability distribution of the random variable

. ’ 7 ‘-‘-. D
j (w1 i %‘L(SeﬁS”) - W
DaE T P
(2
where
%
< . 2 ELW
€ tes tehei;
. o e 8o TS
m* is the equilibrium value of %MEE—— , and y 1is to be chosen
such that yég% has a non<trivial limiting distribution.
The probability distribution of yé;; for large n
is related to _‘¢lgg;_:.fi-in the Eollé&vinj; way“__z’]-. Lat w sbe a rafld_bm

variable independent of §, and §_ with a Gaussian distri-

bution with mean zero and variance 1 (what we denote by w ~ N(0Q,1)),




then for any real a and 0<vyx<

W b (e me P e ' '
- cezlone ﬂmpl-nql;&’ (”/rfc".")] da (6)

nj . L
( (+,0) around its minimum, say _mg -

Expanding . ¢DAF .

- which is in fact the only point to contribute in the compu-

Lalld]

tation of expectation values when .n - one chtains

=¥y
3

an .
. : o L ey
e«p[.n %(:; (%r *“.(’)] o Exp {’ %o NS q)w,jr(‘",""r‘”('* “A)_j (7

where

¢(?)' is the j=th order derivative of- ¢(n)* and
r

Az () : : (8)

To make the distribution (6) non-trivial in the

limit n-+®, we must chose vy = %"where k is the order of

the {irst non-zero derivative of ¢DAF at m* = %im m;. This
4o
choige‘qf Y is close}y related to the determination of the
.. (121 : : : i

critical exponents

Thereflore, taking a=m* and being

(n)

e e by

the probability distribution given in (6) will be, in the

i0.
limit n-+ e, proportional to
(\’V\*'g} AK d
- MRk 4
&xp 0 (9)

at criticality of order k/2, with k >2 (k must be even, since
o] tm*,0) = 0 for every odd k). Away from criticality or
DAF, k } .

at a first order phase transition, when k=2, one finds for

the probability distribution of YpaF that

9 N (x, -1, (10a)

¢MF I(M*,o}'

where

o w N (ol {%{’r?li@}s?‘mﬂp#ﬁ:542('%—7?5"'{’”)]') C (10b)

from (7), (8) and the Central Limit Theorem. In this situation,

[a]

the [luctuations are said to be non self averaging , since
their mean o is sample dependent, i.e., dependent upon the
dilution configuration.

141

It has been shown that a similar expansion holds
Tor the fluctuwations of the order parameter in. the RMF pniﬂemﬂ

The relevant variable in this case is

7;0.,7_ v
(T LV n M

Lur i-r
n




1

where p* is the equilibrium value of the magnetization per

spin, and similarly we have

w (n) 1 th)
LA et

In the limit n-sw, will have a self-averaging

Yrup

probability distribution proportional to

{(#) 4~
o (_ oy )0(4 (1)
! .
at a criticality of order k/2, k=>4. Again, away from

criticality and at first order criticality

-1 ) (12)

~ N (d

{
b/ 1 '
EHE *
o (4
where a is a random variable distributed just as in (10b).

Under the mapping (5) which establishes the thermo-

dynamical -equivalence of ‘the two models, the random variable

Ypap 2t values (B,J) of the external parameters, is mapped
. RMF _. - .
into s Y rur at’ (B,pJ).
¢ i Using (3) and (4}, ¢RMF and ¢DAF may be rewritten
as:

where

Yy s - ‘_Zlﬂ'wm& (xep#) + Lo carde (*“,/“H_/] -

so that
b0 g () (g )
i
ot (7 (-0) g (o0 F7) F e

ey
%Ae}(m A

Therefore, under the mapping (5),

One then finds for thé:probability distribution of

i;RMlF
g ~ Ay [-;é’i‘u“ C N Cia3)
enF PJ/;, _J.’ 7

where for j >2:; =9 “and for’ j:=2 & is a random variable
with distribution given by (10b).

Comparison of (13) with (9) and (10) shows that Tor
any j>2 the Aistributions are difﬁerent, £luq§uating less
in the RMF than in the DAF. o .

80, neither away f{rom critica:ity {(where j=2),

nor at a cfiticallty cf any order 3j/2 (j"évenl are the




.13,

fluctuacicns equivalent; their distributions are of the same

type, but their moments are different, except for the average.
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