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Abstract
We prove the local existence of the Borel trensform of a two dimensional field theoretical

model characterized by the rational interaction iﬁ';;—:,
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Ina récent paper, [1], we proved the Borel summability of the perturbative series
for the energies of the quantum mechanical system characterized by the non-polynomial
interaction

2,6
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The proof of Borel summability was done by establishing that the perturbative spectrom
is strongly asymptotic and then applying a modified version of Nevanlinna's theorem 2
Here we want to extend these studies considering {1) as the self interaction of a quantum
field. To achieve renarmalizability, due to the nonpolynomial character of the interaction
(1}, we shall restrict our analysis to two dimensions. We are then able to prove the iocal
existence of the Borel. transform of the Schwinger functions of the Euclidean theory. This
is a first step towards a complete proof of Borel summability.

The physical motivation for considering the interaction {1) comes from laser theory
models where the reduction of the Fokker-Planck to the Schrodinger equation produces
interactions similar to the above one (see for example {3] and the references mentioned
therein} . Besides that, the study of (1) has its own merits for, as it is a rational function,
the perturbative series is singular both due to the bad behaviour at x large and to the
poles occurring in the denominator of the potential.

Basically, there are two reasons why in general the perturbative series is divergent.
Firstly, the number of diagrams can grow too fastly (tipically with n!) with the order n of
perturbation and, secondly, some individual diagrams dominate giving too large contribu-
tions, '?he second reason ia peculiar to renormalizable theories whereas the first phenom-

€03 occurr also in superrenormalizable models like ours. We will have to find therefore
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bounds in the number of diagrams which contribute at a given order. An important result

concerning this is the following Lemma,

Lemma 1. The number, 4(n), of connected diagrams with V vertices contributing to

order 1 to the E point Schwinger function of the two dimensional model with Lagrangian

L= 18,0000 4 Lt 4 £ 2
= gouedte+ gmiet+ T o @

satisfies the inequality
A(n) < 2" (a) (V)n® (3)

To prove (3}, is convenient to collect some combinatoric relations valid for a generic

connected graph G of our model.

Lemma 2. In a graph G contributing to the Schwinger functions of the model (2), the

following relations are valid:

CYL=I-V+1
Yn=4T k=",
n=I+§-v.
EAS 32

SIn=L~1+%§ Thusn=L{fE=2
6 L<dn-§+2.
Ni<$n-E+1<intl

Sl I<3nifE=2

9) TkVi = E 421,

10) 6V < YKV < 3n.
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where L = number of loops; E = number of external lines; I = number of internal lines;
|14 = number of vertices.

1) Is jusl; Euler's relation expressing the number of Ioops of a diagram In terins of the

nember of internal lines and vertices. To verify the other relations, we use

o= Y @

A k-vertex is a vertex in which k lines are met. From (4] a k-vertex has a factor gh/2-1,
Thus if the graph has V}, k.vertices then the diagram will be of arder n = LWl — Vi =
% ¥ kVi ~ V, which proves 2). 3) is proven using 2} and the relation { " #V; = I+ E/2
obtained by counting the number of Hne endings in G. Now, since at 2 given vertex there
are at least 6 lines, n = T, (£ — 1)Vi S 270, Vi = 2V, ﬁving 4). The other relations are
proven similarly. ' .

The counting of the number of diagrams is greatly facilitated by a method developed
in ref. [4]. Let G be a proper diagram. We can always draw it so that all its vertices are
on a circunference. Therefore two lines of any given vertex of G are used to link it to other
two vertices. To some vertices will be also attached eifernal lines. The nmb& of ;va.j;s of
distributing ¥ external lines in V" vertices is cefta.inly Ieés t'han. VE (imﬁgihe puttmg three
stones in four boxes).

After having distributed the external lines there will be still 2 number / of f_iélds to
be contracted. These contractions will prodl}ce -1 graﬁhs. The number of diagl_‘ams
with V vertices has also factor V! ¢ oming from the permutations of the vertices. Putting

all this torether we arrive to the conclusion that the number of diagrams with V- veriices




is bounded by
g=VIvE({ -1 (5)
The number ! can be written in terms of n and E, | = 2n — E. Indeed, from its definition

I=2I—-2V = 2n - E, where 3) in the Lemma 2 has been used. Then
—_ Egn—& E E an
g=VIer=F(n— 5)! < VIVEang! {8)

This number bounds: the. number of graphs having # fixed, {Viik > 6}, configuration of
vertioeé. The result {3} follows from relation 4) of lemma 2. _

The perturbative expansion for the Schwinger functions are obtained from (1) by
expanding it in powers of 4. The only divergences that are found in this process are
associated. to tadpole diagrams (graphs having just one loop and one internal line) which
areTemoved by Wick ordering the interaction Lagrangian with respect to the mass . In

this situation it can be. proven, [5], that in order n individual amplitudes are bounded, i.

€.,

A, < K™ (1)

where K is a constant independent of the topology of the associated diagram. Now, the

order n total amplitude, G1Z/, is defined as

o) = (1P T T @)

where the som z’ is over all possible assignements {Vi}; & > 6 to the vertices such that

T -1 = An v} i3 the sum of all possible graphs corresponding to a given
assignement. [t can be casily seen that, in'a given order n, there are 2° configurations

satisfying (& - 1}Vie = n.

5
" From {7}, (8) and (3) we have therefore that the order n total amplitude is bounded
by

pEn sup{——-——H:’ i,k,]K' " 9

where the supremum is to be taken over all configurations satisfying 3°(% — 1)Vi = n.

This supremum is bounded by a positive constant to the power n. Wo have therefore
GLE) < 4P (nl)nFHLK C (1)

This equation implies that the perturbative series has a Borel transform free of sin-
gularities within a ball of radius § with center at the origin of the Borel plane.

We can now enunciate cur main result.

Theorem. The expansion

E)
EB,.b", B, =G:’:! (11)

for the Borel transform of the E point Schwinger functions of the theory (2) converges
within a circle of radius 1/K where it defines an analytic functior of b.

To go further, having proved the local existence of the Borel transform, we noed now to

extend its domain of analiticity to a neighborhood of the positive real axis in the complex

Borel plane. Work in this direction is in progress.
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