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ABSTRACT

an analysis is made of the metion of a gquantum
particle in a gravitational field, and it is shown that a
geometric phase arises under certain conditions. The connection
of this result with the emergence of gravitational anomalies

is described.
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1. INTRODUCTION

Classical symmetries which do not exist at all at
the gquantum~mechanical level occur naturally in field theory,
but are rare in systems with a finite number of degrees of
freedom. These "anomalous symmetries" are always broken, because
the introduction of a regulator, indispensable for renpxmalization,
either spoils some symmetry or violates some other requisite,
such as unitarity. Anomalies appear under a varilety of guises [1]:
gauge and non-gauge, Abelian and ncn-Abelian, perturbative and
non-perturbative. Some, such as the axial U(1} in QCD and
certain non-perturbative ancmalies in string theofy f4], are
welcome, while others, like the axial gauge anomalies in the
standard model of electroweak interactions, are truly undesirable
Anomalies in the latter category render the theory inconsistent,
so their abseﬁce can be turned into a powerful criteriocon in
reducing the collection of renormalizable theories; indeed, the
conditicn of anomaly;freedom usually fixes, or at least restricts,
the value of an ctherwise arbitrary parameter in the theory [1].
On the other hand, there exists a class of model thecories (so
far all bidimensional) that can be consistently quantized in
the presence of anomalies, at the expense of gauge invariance [2]
or canonicallqpantization rules - {3]. Probably the last word has
not been said vet as to when it is inevitable to free oneself
from ancmalies.

In view of this prominent role played by anomalies

in quantum field theory, it is essential to understand them from
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a variety of viewpointé. Perhaps the most subtie and least
explored are the anomalies which arise in theories with
gravitational coﬁplings. These {gravitational) anomalies appear
in two versions - perturbafive [4] and global [5] - obstructing
the realization of spacetime symmetries. In refs. 3 and 4 a
number 0f interesting results concerning gravitational anomalies
were obtained with the La§rangian (or path-integral) formalism.
In this approach one examines the effective interaction induced
by integration over the fermionic sector, looking for explicit

symmetry breaking or ambiguities under global transformations.

An alternative approach, applied to chiral amomalies [5],

is the Hamiltonian or Hilbert space formulation. In this language
an anomaly occurs whenever the symmetry cannot be implemented

as a true representation, but only as a projective, or ray
representation; such cases involve topologically unremovable -
phases, which break the gauge invariance. Here, when one

examines the effective Hamiltonian for the bosonic fields one

finds [6,7] that the anomalous content of the theory is concisely

comprised in a phase whose crigin is purely geometric: the phase
acquired by the wavefunction of a system subject to tan adiabatic)
periodic potential [8].

In this note a study is begun of gravitational
anomalies which makes use of the Hamiltonian interpretation. It
is shown that a gquantum mechanical particle with spin and inter-
acting only ﬁith a gravitational field can develop a geometric

phase. The next section reviews Berry's results 8] on adiabatic
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phases and a generalization due to Aharonov and Anandam [9].
In the following section an analysis is made of the motion of
a spinning particle in curved space. Some other related issues

are touched upon in the concluding section.

2. GEOMETRIC PHASES

Let us review how a geometric phase arises in guantum
mechanics, beginning with the case of adiabatic evolutions.
Consider a system suhect to a "slowly" changing external field
é{t), so that it is meaningful to describe the state of the
system in terms of the eigenfunctions of the "momentary™

Hamiltonian, defined by

EQ(e)) [y (Qe))> - E () [v_ (o>
(2.1)
Wy @Oy @)y =8
Ag first pointed out bv Berry [8], the Adiabatic
theorem [10} is modified if the motion of the background field
Bty is periodic. The conventional wversion of the ﬁheorem
asserts that if the initial state vector is |¢Jn(Q(0))>r then

at a later time t it will have evolved into

ig (t)
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prov1ded the background changes slowly enough( *) that tran51tumﬁ
do not take place. The phase cé. is called dynamlcal because
it depends on the functlonal fcrm of H. In words, the system
remains in the "same" elgenstate labelled by E (Q(t)), rldlng
along with the background .

‘ However lf the background fleld resumes its lnltlal
conflguratlcn after a time T, 1.e., QjT} =Q(O}, the state vector
is 1nstead . N .

+i
Tn

: . i@h
[v,@0))> o :
where the extra phase L differently from By o depends only
on the geometry of the surface En(Q) in Q-space [8]. From
the time-dependent Schrddinger equation, one finds

T

v, = J at <y @) i S v toie))>

0
%'d6-<¢n(o)liﬁgl¢n(g)> o (2.2)
C

where C is the closed circuit in Q-space generated by the
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background moticn., The last expression shows that vy 1is a
functiona; of C, i.e., ;ndepenqent of the parametrizarion t.
When the circcit is open, it is possible to absorb
the extra phaserin ¢n' eince eqs.. (2.1} fix it only up to a
phase factor; this is no longer possible once the circuit closes,
because y is non-integrable.
From the viewPoinr of parameter space this means

(51}

there is a connection
- , =+

Aty = <h @) iV, v, @>
in terms of which

Y,1e]

j[_dé A .
C

An alternative expression follows from (2.1) and

(2.2}

Y. = - dE‘:-Imz <IPHWPQHI‘pm}x<1PmI_V>KVDH{wl‘f
5, () - 2_(0)7°

3 mn#n

The denominator provides a hint as to why a degeneracy'in
Q-space is a common feature of a large number of systems with

non-vanishing Y,

(§) The phase change Iw > > elX(Q){wn> induces An > Ah -V X .
F:A becomnes non—Abellan if level n is degenerate [{1].
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The paradigm of such systems is a degenerate two-
level system subject to an interaction linear in the external
field, namely Hint « E-é(t}. This class is very large indeed,
including certain triatomic molecules, the quantum Hall effects,
chirél ancmalies, and Skyrmicns [12]. Perhaps its simplest
version is a spin % particle in a cyclic magnetic field. See
figure 1. (Here, a(t) is the magnetic field vector.)

For this class of system, it can be shown that
yn[c] is proportional to the solid gngle 2 subtended by C
from the origin Q =0 (Figure 1). Since v 1is the flux of i
through ¢, this means there is a monopolar "magnetic" flux in
parameter (Q) space, as if there were a monopole sitting at
the origin. 1In particular, vy is unchanged by circuit de-
formations which preserve the solid angle. This property and
the fact that vy wvanishes for an open circuit are what make
it a t0pologicai guantity.

In principle, the only restriction on the value of

¥ is that it must be a real number (this follows from <¢n|wn>=1).

Under certain conditions even a sfstem made out of bosons can
have vy=7, in which case its wave function changes sign upon a
full rotation in coordinate space. Perhaps the most familiar
system exhibiting this property is the Skyrmion - a soliton in
a theory of purely bosonic fields, which is nevertheless a
fermion [12].

We conclude this summary on the adiabatic phase with

a brief remark on the connection between geometric phases and
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chiral anomalies. As mentioned in the introductory section, the
integration over the fermionic sector of an anomalous theory
induces in.the bosonic sector an interaction proportional to the
phase y. It turns out fhat the origin of this phase is very
much the same as in the example jﬁst described; it.is a property
of the degenerate fermioﬁic vacuum in the presence of a bosonic
background, which can be attributed to a magnetic flux in
parameter space. Since the parameters here afe the bosonic
fiélds, the anomaléus term will describe monopoles liviné in
the configuration space of bhosonic fields. But this is precisely
what Wess—Zumino terms are [13]. The geometric phase thus
provides an interesting stand peoint on ancomalies, tracing it in
the end to the fact that energy eigenfucntions acguire phases
during closed loop excursions in parameter space, or rather
they form twisted line bundles over S1 [6]1.

Now let us free the concept of the geometfic phase
from the restriction toc adiabatic evolutions, and consider
motions of the parameter 6 that are just periodic [2]. Let
P(t) be a normalized state vector in the Hilbert space H
evolving with the Schrddinger eguation i-E%éEl = H(Ey¢{t).

Suppose further that the motion is periodic, i.e., 3T =a(0),

s¢ that

piry = My, 2.3)

A real.

Consider now the space of rays PH associated with




H, obtained by identification.of all vectors which differ by a
complex number. In order to express the results in a concise
form it is convenient to define a mapping T which projects a

vector . Y. .onto its ray. @, namely.
w{¢)y = {P:y =29,z €C} ;

so. w_ projects. H onto. B,

Notice that each periocdic gveolution defines a sequence

T {H) =Py - .See figure 2.

of states in. H - a curve r:(0,T) » H .= that. begins and. ends

‘on ray B. Through the mapping # it defines also a clo;ed

curve [ 4in Py namely the projection #(T) = . see figure 2.
One defines the geometric phase £ as that piece

of the total phase A which is not dynamical:

T .
B = A+ J dt <¢(t) [H|ge)> .
o : '

Although B8 may seem to depend on the circuit [, it is é

function. of Iy -only. In other words, B is the same for all
curves [ in H which project onto the saﬁe curve f_: (T}
in PH' This assertion can be easily proved in two short steps.

First express B(l') in terms of @(t) =_eif(t)w(t);

with f so chosen that f(T) —£(0) = A, to find

T

8ir)y = Jdtqﬂig—t]w o
0
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Next we consider ancther curve [I'' such that
7{l[') =7{l} =F. This means that along T' there exists a

phase oz} such that

W (L) - éiu(t)w(t) eiu(t)+if(t} @(t) .
Now choosing o (t) so that a(?) = w(0), we have
vy = M) wien  £rem - £100) = &,
and
T T
BICT) = ¢+ Jdt<w'(t)|H|w'(t)> =Jdt<mi 1o =80 .
0 0

Hépce, B[fl is indepepdent of the Hamiltonian H, the phase 4,
and the parametrization t; it is a geometric property of closed
ioops in PH‘ An explicit calculation in the next section will
substantiate this feafure of B.

Not with standing this distinction, it is easy to
verify that @ reduces to vy when adiabatic conditions prevail [9].
Moreover, the B associated with a given evoluticn can be
calculated with the formula for v in terms of eigenfuncticns,
since an adiabatic Hamiltoniaﬂ can always be found that generates
the given motion, BAs our objective is just to show that a
nonfvanishing phase arises, the phasé B will prove more

conveniant.
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3. SPINNING PARTICLE IN A GRAVITATIONAL FIELD

As will become clear soon, it is interestingrto
consider the motion of a particle (with non—vénishing angular
momentum subject to a stationary gravitational field, that is
to say, one described by a metric which is xo(time}—independént,
and an_interval which is not invariant under time reversal
(x? % -x?j..

The spin vector 8, of a particle in free fall cheys
the.gqﬁations [14]

v
d. o dx 13- _
(3? - ET g )Su = 0 .

)
It is further constrained by the condition g% g%w = (0, expressing

the fact that only three of its components are independent. [In

the particle's rest frame, Su = (§,0) , S0 the spin is always
. ‘ o .
orthogonal to the velocity %%— = Yv“]. Using the constraint

to eliminate the component So' we are left with

© v .1l

io :i.kvk M v

R T P - .
= {rio r ik )Sj .
For our purposes it suffices to_solve the equations
within the Post-Newtonian approximation. BAccordingly, the
expansion of the metric in powers of the particle velocity v,

up to second order, gives [14]
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s 5 'I:l FTxDx + 2 o FHhe + 290G ) - T(Ws- ):l“s“ !

(3.1)

where [, = 0(v3) and ¢ = 0(v2) are defined by the amnmions(*)
i

- ' 5 : 4
9 = a;i+0(v) ' 99 = -1 -2¢0 + 0(v7) .

At this point one notices:that although the magnitude
of ¥ is not constant, there ig another wvector whose motion
is a pure precession:  Since the constant value of - Sascx is

proportional to
(1424132 = .82

one defines a new spin vector

3o a8 -5 @58 (3.2)
so that §2 = constant.
The vector 3 is the one that processes; differentiating

(3.2), we find

i

A N N RS

{*} For a éphere of mass M and angular momentum J at rest,

b = = GM/r , E:z—g}?xf.

r
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and a comparison with :{3.1): leads to

g - B3
with G o= -3 UxZT-2uxTy .

In order to see that a geometric phase arises in
thig situation, it . is simplest to consider first a spin %
particle at rest. If the gravitational field is stationary,
such-as.the one generated by a rotating body, then L 1is not
equal to.zeroc, and there is spin precession even for a particle
at rest. The Hamiltonian becomes -c¢ ﬁ-g with ¢ = 1+¢ . The
system is therefore analogous to a spin precessing in a uniform
magnetic field, and the geometric phase can be computed as in
ref. 9.

For convenience, let us choose the coordinate axes

so that # is along the z-axis, that is, H = -uﬂoz, with

W = const. and a, = (a 31). If the initial state is
cos8/2
[9to)> = , then
sin6/2 .
iuft
ithGz e cos8/2
fviey> = e [wioys = ) .
g iuit sinB/2

The spin vector <y|3|0> precesses at an angle 8 abouth the

z-axis with a period T =m/ufl. Insertion of |¢(t)> in the
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expression for B gives

™
n

{(1=-cos8}ult

After one period, B = (1-cos0)7m , thus confirming tha£ the
dynamical dependence drops out of 2(T}.

Once more the phase eguals half the solid angle
subtended by the curve traced by a vector; this is very much
like in the.adiabatic case; but while there the.vector was £he
magnetic field; here it is the spin.

When the particle is moving, the Hamiltonian becomes
-8.3 , where & depends on the position and velocity of the
particie, ana $ is given by (3.2). As a consequence, the
motion is more compiex, but the spin still precesses and formula
(2.3) remains valid, There is no a priori reason why # should

. ~
vanish for an arbitrary éircuit T.

4. CONCLUSIONS

The result of section 3 brings new members - those
with purely gravitational interactions — into the class of syétems
that display a geometric phase. This result is interesting
also because it provides a first quantized framework for one
to think about the elusive issue of anomalies. In analogy with
chiral anomalies; it suggests that a guantum field thecry of

fermions in a gravitational field may develop anomalies -~ a
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predicticn whiéh turns out to be true under certain conditions [4,5].
In order to avoid misunderstanding we emphasize that thig result
does not.imply symmetry breaking in the first-quantized system,
which has a finite number of degrees of freedom. As pointed out
in ref. 15, the connection between geometric phases and Wess-
Zumino terms in guantum mechanics is valid only under adiabatic
conditions; if transitions between spin states take place, Berry
phases with opposite signs add up to a vanishing net effect.
Several aspects of this work can be pursued further.
It would be interesting to treat the particle motion in more
generality; for this one needs a Hamiltonian description of a
spinning particle in general relativity. In the case of chiral
anomalies, the geometric phase can be expressed in terms of
indices of Dirac operators; what happens when gravitational
couplings are present? One can also investigate how the
anomalous terms affect the guantization of the gauge sector [7]}
Finally, it is perhaps worthwhile to call attention
to a point which arises in connection with the Lense-Thirring
effact of a spinning particle in the vicinity of a large rotating
mass. This effect indicates that it is the whole mass of
distant matter that selects, amongst all frames, those which
are inertial. On the other hand, short distance effects determine
whether spacetime symmetries Are realized at all. Seemingly,
these two disparate scales operate togethgr - one specifying
whether intertial frames exist; the other, who they are. It

would be interesting to investigate this point further, looking

.16,

for a possible connection between microscopic and cosmological
scales, which is otherwise expected only in the very early

stages of the universe.
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FLGURE CAPTIONS-

Fig. 1 - The vector 6(t) traces a curve C 1in Q-space which

subtends a solid angle from the origin,

Fig, 2-- H 1is the Hilbert space of wave-functions V¢, PH- the
space'of rays #, and w is the projection map (Y)Y =P,

a
I'’'is a curve in H, while T 1is a clesed curve in PH.

Fig. 3 - The spin vector <w(t)|3|¢(t)> traces a curve in R°

which determines a closed curve f in PH.
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