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ABSTRACT

A spinning particle in a g;avitational field is
shown to display a geometric phase. Thi; provides a first-guantized
example of a topoiogical phase in a system with purely gravitational
interactions. The connection with gravitational anomalies is

brefly mentioned.

*
( )Research suppoteu by FAPESP, contract # 87/3196-7.

INTRODUCTION

The number of systéms displayiné‘a qﬁﬁntﬁm mechaﬁical
geometric phase [1] is by now quite large [2]. Initially défiﬁed.
within the adiabatic approximation, this concept was later.
generalized to cyclic [3] and.non-linear eveolutions [4]. In this-
note it is pointed out the existence of a new class of systems,.
namely those with purely gravitational interactions, whicﬁ
display geometric phases in certain cifcumsténces. An analysié
is made of the motion of a spinning particle in curved.sﬁacé,aﬂd
it is shown that a geometric phase arises in this case.

Geometric phases are knéwn to spoil symmetries, making
them anomalous [5]. For example, in the case of: chiral symmetry -the
geometric phase is precisely the Wess-Zumino tenn LG]. Our__res;ult._ shows
the emergence of these topological phases in_a_very simple antext,
and may help understand gravitationél anomalies from a_point of
view somewhat different from the one explored so fa; [7?;

After reviewing a definition of the geomeﬁric‘pﬁasé“
which is not restricted to adiabatic evolutioné [3], we show that
the equation‘of motion of a spinning particle in a gravitatiqnal
field can be cast in a form which is kaown fo lead to geémeffic

phases.

2. GEOMETRIC PHASE FOR SPINNING PARTICLES

For the purposes of this paper, it is convenient- to

make use of a definition of the geometric phase Que to Aharonov and
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Anandam [3]. ‘Its relaticn to Berry's phase is discussed in [3,8].
It generalizes Berry's phase to any g¢yclic evolution, i,e., one

in which the waﬁe_function w(;,t) satisfies
$(2,T) = 29(Z,0)

fdrwé=time T _and'feal A

The: phase: B.. is defined as that piece of the total phase &

_3ﬁhich.isfnot-gfﬁémical, namnely

'_3=A+]dt<1b(t)!ﬂl¢(f)>

" where. & is'thefHamiltonian.

. _ As defined, B is a préperty of the space Py of
rayé '$ rathéf than the SPace' H of states Y. Indeed, each
cyclié'gﬁdlution defines .a curves T in H that begins and
equ_oniﬁhe_saﬁé ray;-it also defines a closed curve .f in PH'
namely . the pIOjECthD of I‘ It is easy to show that B8 is a function
of .ft only; Uﬂdefiadiébatic conditions for #(t}, B reduces
to:ﬁgrry's phase‘t3]. 7 .

B ‘Now:we shaw ﬁhét <he motion of a spihhing'particle
in a.gfaQitétianal field can be castAin a form which clearly
gives rise to.a,geometric phase.

The spin vector Su of a particle in free fall obeys

the equafions [9]

L4,

d dx¥ -
——T TP =
(& ~Tovgr d )S‘f 0
' o dx”
d1

For our purposes, it suffices to sclve the equations

and is further constrained by 'the condition & 0.
within the Post-Newtonian approximation. The expansion .of -the
metric in powers of the partiélé velocity, up to second order,

leads to [9]
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where

S=(+8d- %(J-S')s“

i

f=-t9xi-

[

%K_ ﬁxﬁ¢

and  G=0(%, ¢=0(*) are given by . .

g =-1-2¢ 4+ 0", gon=GHORR)

In order to see that a geometric phase arises in
this situation, it is simplest to consider first a spin %
particle at rest., If the gravitational field is stationary,
i.e., the metric is time independent, but the interval is not

invariant under time reversal - such as the one generated by a

_ rotating body - then E is not .equal to zero .and there is

spin precession even for a particle at rest.
- -
The Hamiltonian then becomes - ch-5 , with
c=1+¢ = const, and the system is analogous to a spin precessing

in a uniform magnetic field. The phase can be conmputed exactly




.5,

as in {31. Choosing the coocrdinate axes so that & is along
the z-axis, #H = -ufg, , with u =const and 9, = G’ lﬁ]. If

i . _ {cosl8/2)
the initial state is |¢(0}> = (sin(e/zl] , then

| 9(2) >= o<t | ) = ( Zi‘:‘m ;;;gg,f;; )

The spin vector <i|G|¢> precesses at an angle @
about the z-axis with a peried T = w/uf} . Insertion of <P(t)>
in the expression for £ gives

B(2) = (1 — cosf) it

After one pericd, B = (i1 -cosf@jm , showing that the dynamical
dependence drops out of. B(T}. The phase is equal to half the
s0¢lid angle subtended by the curve traced by the spin vector.
When the particle. is moving, the Hamiltonian becomes
-§.§, where § now depends on the position and velocity of the
parficl@,'and 3 is given by (3.2). As a conseguence, the
motion becomes quite complex, but the spin still precesses, and
formula (2.3) remains valid. There is no a prio£i reason why

B - should: vanish for an drbitrary circuit I .

3. CONCLUSION:

The result brings new members to the class of systems

that display a geometric phase: those with purely gravitational

.6

interactions., It is interesting also because it provides.a
first-quantized framework for the elusive issue of anomalies.
Analogy with chiral symmetry Qcﬁld'suggest-that a guantum field
thedry of fermions in a gravitational field may develop ancmalies.
This turns out to be the case [7], but the-analogyuisjnqg;zgfect;
as pointed out in [10], the connection_between:geométﬁié phases
and’ anomalies in quantum mechanics holds. only in the:adiabatic
regime. This connection is, however, different in field-theory,
in as ﬁuch as it-is ihdepehdent of the adiabatic approximation.
Several aspects of this work can be pursued‘further;_
a more general treatment of the particle motion; in guantum
field theory, the geométric pﬁases should be related to indiceé
of Dirac opératcrs; an investigation of the effect of anomalous
terms on the quantization of the gauﬁe.séctor;' We sha;l address

thése topics in a future publication.
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