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ABSTRACT

Fundamental aspects of the gentilionic theory are reanalyzed and significant
modifications are introduced in this approa.ch We show that the state vector of three
gentileors: hias a spinor character. and-that its basic symmetry propertles are descr:bed by
the: interiiediate - S and SU(3) groups As an intermediate and natural result of our
theoretical. analysis, we show: how essential observed properties of composed ha.drons can be

predictecl f:rom first prmmples assmmng quarks as gentileons.

L. INTRODUCTION

In receﬁt pa.pers(l_a) we have proposed, according to thie postulates of
quanturn mechanics and the prihciple of indistinguishability, that three kinds .of-particles
could -exist in nature: bosons, fermions, and gentileons. In this paper fundamentai aspects
of the gentilionic theory are reanalyzed and significant modifications are introduced in our
approach.

(1-3) the following statement is taken as a principle (Statistical

In our theory
Principle): "Bosons, fermions and gentileons are represented by horizontal, vertical and
intermediate Young shapes, respectively”. Bosonic a.nd fermionic systems are described by’
one—dimensional totally symmetric ('IJS) and totally anti—symmetric (\ﬁ 1) wavefunctions,
respectively.  Gentilionic systems are described by wavefunctions (Y) with mixed
symmetries. Since they are represented by intermediate Young shapes only three or more
identical gentileons cén form a system of indistinguishable particles. This means that two
identical gentileons are prohibited for a system of indistinguishable particles. This suggests
that gentileons cannot appear freely, Indeed, if this were possible, two identical gentileons
could form a two—particle system in an occasional collision.

Let us indicate by YD(n,j) all possible different intermediate Young

diagrams (j = 1,2,3,...) that can be constructed for n—particle systems. For instance, for

.n=3 there is only one possibility YD(3,1) and for n=4 there are three possibilites

YD(4,j}, where j=1, 2 and 3. As is well known(*~7) there is a one—to—omne
correspondence between the Young diagrams YD{n,j) and the irreducible repi_esentat.ions
Y(n,j) of the permutation group in Hilbert spate. The state functions Y(é,j), Y(4,i),
Y(5,k)... have completely different symmetry properties that are defined by the
permutations and by the algebraic invarimts(2’3'4—7) associated with the symmetric
groups 8s, 84, Ss5,... . In an n—particle system represented by Y(n,j} sub—sysl;ems_ with

m particles do not have a Y{m,i) symmetry. From the above properiies very important




consequences are deduced:

(1) There is an inﬁ}u‘te number of different gentileoﬁs.' Indeed, if there were only one
kind of gent_'.ileon, F4,5... particles would form systems: represented by Y(3,j), Y{4,),
Y(5,k),--- r&spéctively. Thus, let us consider a given system composed of n gentileons
and let us divide it into sub—systems with m particles (m = n—1,n~2,...,5,4,3}. Since
these m  particles are indistinguishable ;hme sub—systems would be necessarily
represented by Y(m,i}, which is impossible. Consequently, there must be an infinite
number of different gentileons gy (k = 1,2,3,...). Gentileons gy would be associated with
YD(@E,1)=gn, & with YD(41)=gg, g with YD(42)=gon, g with

YD(4,3) = EG , and so on. In other words, gentileons g would form only 3—particle

systems rtepresented by Y(3,1), gz would form only 4—particle systems represented by
Y(4,1) and soon. .

(2) Gentilionic systems cannot coalesce. Two systems of n identical gentileons with

each one represented by Y(n,j) camnot form a system with 2n indistinguishable entities

that would be described by Y(2n,i). Indeed, if coalescence were possible it would be
possible to obtain from Y(2n,i) sub-gystems with n particles deseribed by Y(n,j), which
is prohibited. Thus, system A and B, {gg...g], and [gg...g], cannot coalesce into a system
into 'a system of indistinguishable particles [gess---8)- Only bound states
[eg...g] A—[gg...g]B could be formed. Then, gentileons from different systems must be
distinguishable which means that gentileon wavefunctions from different systems must be

non—overlapping.

(3) Gentileons are confined entities. To see this we must note that a system composed

of n gentileons [gggg...g] cannot be created step by step from vacuum because the

systems [g], [eg], [gzgl, .., [ggs...gl, with 1,2,3,...n—1 particles, respectively, are not .

allowed. By the same argument we see also that this system cannot be annihilated bj'

steps. This means that gentilionic systems must be created or anmihilated at once.
Consequently, no gentileon can escape from the system and no gentileon can enter the

system.

Taking into account non—coalescence and confinement properties we see that

no gentileons can be subtracted or added to a gentilionic sysiem and that it must have

sharp boundaries outside of which gentilionic wavefunctions vanish.

In the above quoted paper(l) .Ol.lly s;vstems of identical gentileons have been
considered Let us now consider systems composed of two different kinds of gentileons, g
and G. Taking into account the Statlstlcal Prmcxple we_must expect that systems like

[6G] are allowed. On the other hand, systems like [ggG] [gGG] and [ggGG]

prohtb:ted because [gg] and [GG} are not a.llowed Of coutse, non-ma.l%cence and ..

confinement properties are also valid for xmxed systems, as can he-easily venﬁed

Confinement and non—coalescence are intrinsic properties of gentileons, )
deduced from the Statistical Principle and from the symmetry properties of the.

intermediate states Y(n,j), not depending on their physical interpretation. Thus, they

could correspond to real particles or fo dynamical entities as quantum collective
excitatioﬁs. However if gentileons were real particles there must be some Kind of
mechanism to explain these properties: a very peculiar interaction potential, an
impermeable bag or something else. But any acceptable mechanism must be concejved
under i;he imposition of agreeing exactly with the intermediate symmetry. It is difficult to
understand gentiledns as real particles; they seem to be some kind of quantum collective
excitation.

In section 2 we present a detailed study of the symmetry properties of the

state vector Y(3,1) representing [gigig] systems. It i3 shown that Y(3,1) has a spinor




character.
As well known, half—odd—integral and integral spin particles are described,
from the point of view of the Lorentz group, by spinorial and tensorial irreducible

(8-10) if creation

rep:eseﬁtaﬁons','respectively.' According to the celebrated Pauli theorem
and annibilation particle operators obey -bilinear commutative - (anti—commutative)
relations’ these particles have integral (half-odd—integral) spin. By using bi-linear
commutative or anti—commutative relations, consistent local, Lorentz invariant quantum
field theories are developed. In section 3 commutations relations for gentileons g are
analysed in order to establish a connection between spin and statistics. It is seen, in
Pauli's context, that gentileons g; are half—odd—integral spin particles.

In section 4 we show that the fundamental symmetry properties of the state
vector Y(3,1) are described by the Sz and SU(3) growps. In section 5 we summarize
the basic features predicted for the {gigigs] systems. In section. 6, assuming quarks as g

ge'uti]eoﬁs,‘-:burzthedretical..app_roa.ch_j is applied ‘to investigate some agpects of hadronic

physics: - Finally, in section 7 & quantum chromodynamics is i:)ro;gos‘ed ‘where, Tstead of-

" fermions, g gent{ileens interact with gluons.

2. SYMMETRY PROPERTIES OF THE GENTILIONIC STATE VECTOR Y(3,1)

We present in this section a detailed study of the symmetry properties of the

state vector Y(3,1) of a systemn composed of three first kind gentileons g;. Thus,

according to our general result.s(l) the syminetry properties of Y(3,1), also indicated by

Y(123), is completely described in terms of three quantum states o, § and 4. In terms of

@, f# and v the g system will be represented by Y,(3,1) or Y.(3,1); two equivalent:

irreducible representations of the symmetric group(s_ﬁ’u) Ss,

Y.31) = Yi(ay) = Y.23) = L[ V)
«\ = ¢ = + = =
’ V2 | Y2(123)
' ‘ 2.1)
. Y3(123)
Y(3]1) = Y. = v, = L
(3,1) () (123) 7 [Y4(123)
where
Yi(123) = (|afr> + |Bar> — |10f> ~ |1fa>)/VE
Y2(123) = (|afy> +2|arf> = |Bay> +. | yaf> — 2| fya> — | vBa>) /{12
Y3(123) = (= |abr> + 2| arB> — {Bor> ~ [ 106> + 2{fre> — |vBa>) /12

and Y4(128) = (| afy> = | far> — | vef> + [18a>)/ VA .

In preceding papers(s'm) the state function Y(3,1) was taken a5 a

"bi-spinor” in Dirac's sense Y(3,1) = [&] Although it is a possible interpretation for
the state function Y{3,1) it has no rigorous support within the framework of group theory.
Thus, in what follows, the g system will be represented by Y,(123) or Y.(123),
indicated simply by Y(123). It is worthwhile to note that, in this context, our theory
differs drastically(®) from parastatistics. '

Our intention in this section is to show explicitly the spinor character of




Y(123)  and to establish fundamental properties of the g system that can be deduced
from thig spinor character. In this way we remember that, due to the six permutation
.operators Py of the group Sg, the Y (123) are transformed to:(l)

Y =Y =PY, =Y, (2.2)

where " (i=123,.,6) are 2x2 matrices given by,

. (10 ' -1/2 43/2
vl el (G S
(12 a2 1o |
o v I B I
ey [N B 3] _ [~1/2 B2
= (i3] = VIR o=l - ~B2 172

The spinor character of Y{(123), as scen in Eqs. (2.3), is obvious since the
matrices s 11'2 and n have det = +1 and a1, and T det = -1. We will show
that it is correct interpreting the transformation of Y in terms of rotations of an
equilateral triangle in an Euclidean space E;. That is, we assume E; as a space where
the quantum states that can be occupied by g1 are defined by three orthogonal
coordinates (X,Y,Z). It is also assumed that, in Es, the states o, § and 9 occupy the
vertices of an equilateral triangle t.ak;n in the (X,Y) plane, as seen in Fig. 1. The unit
vectors along the X, Y and Z axes are indicated, as usual, by f, ] and k. In Fig. 1, the
unit vectors rhy, thy and rhg are given by, thy= k&, my= —(\/3/2)T + (1/2)k and
ths = (v3/2)1 + (1/2)k , respectively.

(INSERT FIGURE 1)

We represent b& Y(123) - the state whose particles 1, 2 and 3 occupy the
vertices a, f and- 7, respectively: Thus, we see that the true- permutations,.(312) and
(231), are obtained from (123} under rotations by angles. #==2x/3 around:the.unit
vector }; As one can easily verify, the matrices m, and -113, -that. correspond to.these

permutations are represented by:

~1/2 + i/3/2)ay = explil-3(8/2)) - and-

=
I

(2.4):

=3
il

—1/2 - i(3/2)ay-= explij-2(0/2)]: .

where oy, oy and o, are Pauli matrices. ) T el e
Similarly, the. transpositions (213), (132)..and.(321).are:obtained. under.
rotations by angles #=+7 around the axis 1he,.fhs . and - thg, respectively. . The

corresponding matrices are given by:

= 0 = 1exp[i ﬁl4'a(§/2)] L]

n, = WB2)e—(1/D0s = iexplits-3E/2]  snd 25)
5, = = (B[2ox—(1/2)0s = § expli the-3(8/2)]

2,3)

According to our preceding pa,pers( there is an algebraic invariant,

K{z’” , with a zero eigenvalue, associated with the S gentilionic states. In analogy with

continuous groups, this invariant will be named "AS; Casimir". For permutations




represented by matrices with det = 41, the invariant is given by Kot = o+t
For transpositions for which matrices have det = —1, it i8 given by Kiav= n, + g + (x
Taking into account thy, ths and 1thg and Egs. (2.5) we see that,
Kinv = n, + A + N = (thy + My + thg) - & = 0. This means that the invariant Kjqy can
be represented: geometrically, in the plaie (X,Y), by M=ty + rhy + thg = 0, and that
the equilateral triangle symmetry of the 53 reptesentation is an intrinsic property of
Kinv =40. :
' Eqgs. (2.4) and (2.5) permit us to interpret Y, and Y. a3 spinors. Here, by

(3:12) we show that this interpretation is correct. It is well

using another arguments,
known that the non—relativistic spinor can be introduced in several ways.(13) The
interrelation of the various approaches is not obvious and can 1eé.ci to misconbe;itions. In
order to overcome the necessity of enumerating several approaches, let us stick to a
geometrical image, recalling the very fundamental result of group isomorphism:(M)
Sz ~ PSLy(F2), where PSLy(Fs) is the projective group associated with the special group
SLy defined over a field | with only two elements. Obvicusly,
. PSLy(F3) ~SLa(F2)/SLy(F2) N Z , where the group in the denominator is the centre of SLg
and corresponds to the central homotheties, since Zg is the intersection of the collineation

group with SLs . -
| H we consider the matrices (2.3) as representing transformations in a

 two—dimensional Icomplex gpace characterized by homogeneous coordinates Y; and Ys,
ab Y[
' (2.6}
¢ dJiYe
where p is an arbitrary complex constant and the latin letters substitute the coefficients

taken from (2.3), it is clear that (2.3) constitute a homographic (or projective) group.

Making use of definition (2.6) we can see from (2.3) that, apart from the
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identity #, the two matrices m and 73, which have det = +1, are elliptic
homographies with fixed points #i. If we translate tﬁese values to-the variables of Ejz, we
see that 7 and 73 correspond to finite rotations around the ] axis by an angle
#==+2r/3, agrecing thus with Egs. (2.4). The remaining matrices 0o 7 and 1, are
elliptic involutions, with det = —1. They correspond to space inversions in Eg, considered
as rotations of #x around the three axis rhy, ths and 1thg, respectively. These matrices
completely define the axis of inversion and the angle +x, as is seen from Eqs. (2.5). It is
an elementary task to establish the correspondence, via sterecgraphic projection, between
the transformations in the two spaces Y,.(Y.} and Ej.

A topological image can help us to see the 47 invarianceof Y, and Y._. i
we consider the rotation angle #(%) as the variable describing an Euclidean disc, the
covering space associated with this disc is 2 Moebius strip.(ls) Adjusting correctly the
position of the triangles we have a vivid picture of the rotation properties for each axis. .
This construction allow us to visualize the double covering of the transformation in Ej
and is a convincing demonstration of the spinor link between E; and Y, .

We observe that the same transformation properties of Y, and Y. can be

obtained if, instead of the equilateral triangle shown in Fig. 1, we consider the triangle

drawn in Fig. 2.
(INSERT FIGURE 2)

In the vertices of the equilateral triangle of Fig. 2 we have the states o, §*
and 7*. The unit vectors i, % and h} are given by hi = —h} K i = -m; .and .
th§ =—hg. This means that, in this case, Kiny i3 represented geometrically by
M* = thi +f + 5 =0. This two fold possibility for depicting the triangle

corresponds, as will be seen in Section 4, to the 3 and 3* Tepresentations, r%pectiveli’ of

the SU(3) group.
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‘ When two particles occupy the same state as a = f, for instance, we
verify(l’n that there is only one 2-dimensional irreducible sub—space associated with

gentileons that are now represented by y{123),

(2.7)

(123)
123) = =L { h 1
¥y(123) = y(ooy) v

y2(123)

where, y(123) = (| er> ~ |vee=)/v2 and
y2(123) = (2| oo — |oay> — [yaa>) A6 .

Since the y(123) transformations due to the permutation operator P; are
given by the same matrices nj (1=1,2,..,6) defined by Eqs. {2.3) we can conclude tha:
{a} y(123) is a spinor and {b) ¥(123) and y(123) are associated with the same ASz
Cagimir.

In this degenerate case (a = f) it is not possible to represent pefmutations as
rotations in Es. Consequently it is not possible to get a geometrical interpretation for the
ASs3. Casimir as was seen for gentileons occupying three different states o, § abd 5.

In a preceding paper(m) we have showﬁ that gentilionic, bosonic and
fermionuic states have completely different topological properties. In particular it was
shown that the topological properties of the Y(3,1) = Y(123) symmetries are clearly
exhibited by a T? torus generated by two angular variables ¢ and 4 that appear in
discrete totations, R{4)-R(6) = iexplith-2$] expli -3 2], given by Egs. (2.4) and
(2.5). From this work(®) we can see that different state vectors Y{n,j) present different

topological properties.
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3. SPIN AND STATISTICS

In this section the commutation relations for creation _(é.;)_:__.andfgnni_ljjzlgtion,
(a.a) operators for g, gentileons are analysed in order to.establish a conngction;;i_getwegn-
spin and statistics in Pauli's context.(s__m) It is very important to re;na,rk=:thag;:._aggo?&ing
to the Statistical Principle, the number of particles in,f_he.. [E1g121] :syste_ﬁ; is constant,

Thus, commutation relations for a; and a_ and matrix elements involving gentilionic

(4
states are c;alculated(l) taking into account this fundamenta.l property. . We show that
when gentileons occupy three different quantum states, aZ and a‘; obey bilinear
anti—commutative relations. Indeed, when two gentileons do not occupy the'sa.me
quantum state, that is, when a# 8¢ v# o, we see that the gentilionic oomrﬁuta.tion

relations are given by:(l)

[a,; 3 a'j]+ = aij : [a"i;a a?]e- = [a-i5ai]+ =0,

ajajay = a.aa.ﬂa,y ﬂ[%;] z_md o (3.1}

x ok ok fafy] % ox

ajajag = "[ijk 3,352,

where the indices i, j and k can assume the values @, f§ and v and g5{(---) atre the
2 = 2 matrices shown in Eqs. (2.3). From the above tri—linear relations one can deduce the '

bilinear relations seen bo.alo_'wr applied on gentilionic states Y,
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X=X L gVl =[] Yoo
ag2q V(o) = [ YO0 agag V(e =_n[§gﬂ ¥(00)
aﬁaaY(ﬂa'r) oo ]Y(OU'Y):__ 1 3g2pY(de = Y(009)
353, Y(108) = o[ 190 YO0 . aqa Y(ra) = o 28] vio0)
sgoa Y010) = 1[{J5] YO0) a3y Ym0 = 1[315] vooon 22)
353, Y(1h0) = [gg ] Yoy, a&ft 'Y(vﬂa)%:n_[ggﬁ] VY(OO'r)
g Y(00) = n[G57] V(o) . agap V(00 = Y(apy)
a.Ea.ZY(O-yO):n[ ) YD) 3:!3;Y(070}=7?[§g$] Y(a7)

ﬂaav(-foo)—n[ ¥(epr) and  agap¥(0) = o[ 759 Y(apn) |

remembering that thereare six intermediate states Y(efy), Y(fav), Y{(1of), Y(ﬁﬁr),
Y{et) and ?(7,6&) that can be assumed by the g system. The above bi—linear
relations have been written in order to calculate the non—null matrix elements of the
operators A* = [a; ) aE], and A= [a.a R 3,3]'« .

Since the six different state vectors Y are equivalent for representing the
system, all them must be taljen into account to calculate the A and A matrix elements.
Thus using Egs. (3.2), the n(---} matrices and remembering that Yj, Ys, Y3 and Y,

' are orthonormal functions(l), we verify that the expected values <A*> and <A> are

equal to zero. That is, for a# 43, <{a; ,aE],) = <[a. o aﬁ],> =0. As only the exl')ected
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values <A*> and <A> have a physical meaning we see, according to the above results
and to the bilinear terms of Eqgs. (3.1), that the following bilinear commutation relations

can be taken a3 valid for g gentileons in the framework of a quantum field theory,

a1, ads = G and
(3.3)

[a*i‘ ) a'?]+ = '[ai :a'j}» =0 ,

where the indices i, j and k can assume the values &, # and 7.

As g gentileons obey bilinear anti-commutative relations defined by

Egs. (3.3) it is possible to construct for these gentileons a consistent local,

Lorentz—invariant quantum field theory. Moreover, we conclude from Eqs:-(3.3) and the
vse of Pauli's f;hec:n"em(8 10) that g; gentileons must be half-odd—integral spin pa.rt.lcles

It is important to note that the above results have been obtained assuming

that gentileons occupy three different quantum states, o#f0#+#«. When two

gentiieons occupy the same quarntum state, as one can easily verify(l), the operators AZ

and a, do not obey bilinear anti—commutative or commutative relations. Thus, integral

or half-odd-integral spin gentileons could not be represented, by state vectors Y{nnm),

where n,m = @, fand y. Consequently these states are prohibited in Pauli's context.
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4. THE Sy SYMMETRY AND THE SU(3) EIGENSTATES

In section 2 we have shown that it was possible to interpret the
Y(123) = Y{afy) in terms of rotations, in an Euclidean space Eg, of only two equilateral
triangles with vertices occupied by three privileged states a(a*), A(5%) and 7(7*). The
Y must constitute symmetry adapted kets for S3. In other words, their disposition in the
plane of the triangle must agree with the imposition made by the AS; Casimir.

According to Fig. 1, these states are defined by, a= iy = {—/3/2, 1/2),

B=ths=(¥3/2,1/2) and 7= thy = (0,-1), and according to Fig. 2, o* = th% = ~ hg, 4

f" =ih§=—1the and 7*= %= —1hy. The equilateral triangle symmetry for Ss plays
a fundamental role in Ej, allowing us to obtain a very simple and elegant geometrical
interpréta.tion for the invariant Kjpy = 0. Indeed, since the Sy symmetry, according to
section 2, implies that M= ihy + thg + thg =0 (1\71* =t} + i + the = 0}, we conciude
that M =0 (Ir/[* = b), pictured in Eg, is a null constant of moticn.

At this point we compare our states & § and 7 with the SU(3)

: eigenstata(”_w)

[n>, |p> and |A>. These states are eigenstates of the 'hypercha.rge
Y and of the isospin Is, both dizgonal generators of the algebra of the SU(3). The
cigenstates  |o>, |p> and  |A>  are written as o> = |-1/2,1/3>,
|p> = |1/2,1/3> and |)>=|0,—2/3>. .
Remembering that the SU(3) and the inbérmediate S3 fundamental
Synuneiries are defined by equilateral triangles, it is quite apparent that the states |e>,
{#> and |7> can be represented by eigenstates of I3 and Y. Indeed, assuming that
the axes X and Z (see Fig. 1} correspond to the axes I3y and Y, respectively, and
adopting the units along these axes as the éide and the height of the tria.ngle,(ls) we verify
that o>, |f> and |[y>  would be given by, je> = |n>=|-1/2,1/3>;
18> =|p>=|1/2,1/3> and [9>=|A>=|0,~2/3>. If we have considered the

states |a*>, |§*> and |7*>, seen in Fig. 2, we should verify that these states would
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correspond to the states |o*>, |p*> and |A*> of the 3* representation. _

Thus, if we assume that the states [a>, |#> and [y> mrrespoﬁ& to [n>,
|p> and [A>, respectively, each unit vector th; (j= 4, 5 and 6} is reﬁresented, in the
plane (I3,Y) by the operator q=1I3 + Y/2. This means that the veétor IUI will be
represented by the operator M = qu + g + g3, where the indices 1, 2 and 3 rg{er to the
three gentileons of the system. Thus, 'a.'dbptiing the SU(3) cigenvalues we see that the
expected values <M> =0, for the 3 and 3* representations, must be a coustant of
oticn. . . S R

We conclude that the fundamental symmetry properties of the state function
Y(aﬂ'{) are described by the intermediate S3 and SU(3) groups. h .

' We intend to analyse in a forthcoming paper systems composed of four
identical gentileons. Our intention is to determine wﬁat kind of groups, besides the
intermediate S, are necessary to describe the fundamental symmetry properties of these

systems. Topological features of these systems will be also studied.
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5. FUNDAMENTAL PROPERTIES OF g SYSTEMS

Let us summarize the fundamental properties predicted for the g; systems:
" (1) Gentileons g are not permitted to form systems with more than three entities.
Only [gime:] systems can be formed.
" (2) Two systems [gigig] and [g,glgl] cannot coalesce, that is, cannot form a system
composed by six mdlstmgulshable partlcles [g1g1g1g1g1g1]
" (3) The state function Y(3,1) = Y(123) has a spinor character.
" (4) Gentileons g are half~odd-integral entities represented by the state vector
Y(123') = Y(&ﬁ‘r) where a, § and ¥ é.re three different quaﬂtum states. _
" {5) The “fundamental Symmel;ry prOpertm of Y(afy) are described by the
intermediate S and SU(3) groups. . o '
(6) There must exist some conserved physical .c.lua.ntit.y associated with the ASy
Casimir <M> =0 . '
As pointed out before, confinement and non—coalescence are intrinsic
- properties of gentileons: tiiey‘ could correspond fo real'p'articla or’ to dynénﬁca.l entities as
quantum collective excitations. If gentileons g were real particle there must be some
kind of mechanism to explain these properties: a very peculiar interaction potential, an
impermeable bag or something else. It seéms reasonable to expect that this mechanism is
intimateiy related with or is a consequence of the local SU(S) symmetry. If.these
astonishing predictions had been done about 30 years ago probably the gentilionic states
wouid be taken as non—physma.l representatlons of the permutation group in quantum
mechamcs a.nd promptly discarded. Today, however, this situation is somewhat modified
since, as will bg: shown in next section, basic hadronic properties will be explained assuming

quarks as g: gentileons.
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6. THE GENTILIONIC HADRONS

Since g; gentileons are spin 1/2 confined entities that cannot form systems
with .more than three indistinguishable particles and their systems, with symmetry
properties described by the SU(3) group, are non—coalescent it seems natural to think
quarks q s g gentileons. With this hypothesis we can show that baryons [qqq], that
are composed. of three indistinguishable gentileons in color space, are represented by
wavefunctions(2’3) = p-Y(brg) . The state = (SU{6) x Oz)symnetric cOrTesponds,
according to the symmetric quark model of baryons, to a totally symmetric state. The
state function Y(brg) corresponds to the intermediate state Y(123) written in térms of
the SU(3)cotor eigenstates blue (b), red {r} and green (g). This function that can be
taken as Y,(Brg) or Y_(brg), shown in section 2, will be named "colorspi_nor".(s)

From the above results and observing section 4 we see that jn the gentilionic

formalism one possibility is to define the individeal quark charge as,

0 =q+§ = (ls+Y/2)+ s+ ¥/2) (6.1)
where Q= I3 + Y/2 refers to flavor charge ¢ = ATy + ¥/2) refers to color charge and
A Is a constant parameter. With this definition, tke total color baryon charge @ is given
by Q=A<M>, where N = + & + &3, following section 4. Remembering that the
expected value <M> i3 a constant of motion equal to szero, that is,
<M> = constant = 0, as shown in section 4 for the state Y{brg), we see that the
generalized Gell-Mann—Nishijima relation is automatically satisﬁes(z'g) independently of
the A value. However, we ‘must noie that to preserve the gentilionic chara,cter-of the
quarks 1t is necessary to put A = 0. Thus, in our approach quarks have fractional charges,
in agreement with Gell-Mann resuits. We see that the baryon color charge Q is the

physical conserved quantity associated with the AS; Casimir <M> =0 that is named
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"color Ca.simir".(z’a)

(1-3) mesons are composed of a quark—antiquark pair [qa).

_ In our approach
Acoording to thé statistical principle (see Introduction), systems like g, [qq], [qad] and
[aqGq), for instance, are prohibited. Of course baryons with more than three quarks g are
also prohibited. Thus, only the systems [qd] and [qqq] are allowed in the gentilionic
theory.

Since g and 4 are different particles in color space we can conclude, in
agreement with our general mults,(l) that mesons [qg] are represented by
one—dimensional state functions. This implies, remembering that q and & are spin 1/2
particles, that the system [q4] i3 represented in fermionic and gentilionic theories by the
same state vector. .

According to the gentilionic theory protom must be stable.(1"3) This
stability, predicted as a selection rule, is a consequence of the spinor character of the
baryon states: proton decay is forbidden because the spinor character of the initial current
(proton) would not be present i the final eurrent.

From the above analysis we see that fundamental properties of hadrons can
be explained assuming quarks as g1 gentileons. In spite of our stimulating general results,
there remains the crucial problem of determining the intrinsic nature of the quarks and
their dynamical properties. In the next section t;aking quarks as g; gentileons, a quantum

chromodynamics is proposed where, instead of fermions, gentileons interact with gluons.
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7. A QUANTUM CHROMODYNAMICS FOR GENTILIONIC HADRONS

To construct a quantum field theory for hadrons assuming quarks as. g
gentileons we must take into account the SU{(3)eoior and 53 symmetries and réﬁ_iembef,
according to section 3, that the creation and annihilation operatofs for g gggtil_egns-,obey
bilinear anti—commutative relations. The gentilioni.c field approach must be:;_k_'o_;m_a:;:laféd in
order to predict, as conservation laws or se]ection rules, the hadmn_ic-pmpert_i@‘deduced in
section 6: (a)only [gf] and Jqqq] hadrons can exist in nature, (b} quark—confinernent,
(c) non—coalescence of hadrons, (d) proton stability and (e).the hadron colbr ccharge.is a
constant of motion equal to zero. This is a very ambitions and extremely difficult. task.
Since we were not able, up to now, to develop such a formahsm an- alternative one will bef_

proposed. In this way, let us suggest as a first a.ppromeatmn the following . La.gra.ngla.n

density for gentxhomc quarks mtera.ctmg with gluons,

]abl‘b

L = ;[iq;vﬁ ; q +gq 7"[%—1

JA} BAl
1 v iak. L .
"I[ax" -ag- +gfijkA;‘Ay] See 1)

where the summation is over the flavors f=u,d,s,¢.)" The summation over repeated
indices a,b,..., referring to color is understood. The Ai i the ‘gé.u'ge'—ﬁ'eid”}\'='--/2 “are'the
3 =3 matrix representation of:'the - SU(3)esiis - algebra. Eenerators, - sansfymg the'
commutation relations. [A;, Ajf = ifiji Af2, where’ i aré the SU(3) ' stritcture
constants. The flavor symmetry is only broken by the Iack of degeneracy in the quark
magses. Finally, the quark free fields q(x) are expanded in terms of positive and negative

frequency solutions, ¢x-(x) and @y (x), of Dirac's equation, '
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q(x) = 2 { ak, Pr.(x) + ay. ag-(x) } e
k

\'i'rl.lefé"'é..-" ‘and’ 'a’ii‘ .obéj'("femiii)ni;: commutation relations,

With the abovg assumptions, both theories, the usual QCD and the
gentilioﬁic QCD, indicated by QCDG, will have the same gluons and the same Lagrangian
dénsity: In both approaches the previousty mentioned properties {a), (b),... and (e) appear
as. additional conditions. In these circurnstances, both theories will give identical
predictions for hadronic properties. In spite of this we note that they are not equivalent.
Indeed, in QCDG, the five conditions cited above zppear naturally, deducéd from first
principles, whereas in QCD they are imposed "ad hoc".

. Since in QCDG quarks are taken as real particles it must exist, according to
section 5, some kied of mechanism intimately related with the SU(3)goler Symmetry that
would be responsible for the confinement and non—coalescence properties. Hopes for a
theoretical explanation of quark confinement are pinned on the non—Abelian nature of the
‘ SU(3)color group which is the gauge invariance group of the quantum chromodynamics. In
" spite of considerable efforts only indications for confinement have been found. Since no
rigorous proof for confinement has been obtained, this problem has been considered, by way
of a mathematical analogy, as the "Fermat" theorem of the contemporary paft‘.icle

theory.(%)

'Finally let us consider hadronic matter in the high density domain that -

occurs at ultra relativistic hadronic collisions, at the core of neutron stars and at the early
stages of the universe. If in these extreme conditions permutation symmetries are
preserved we must expect, due to the non—coalescence property of gentilionic systems, that
the hadron structure is maintained. That is, hadrons will not be destroyed but only highly
compressed.  Thus, in these conditions quarks will be so closely packed 'that._ the

interactions between them will be weak due to the assymptotic freedom. This méaﬁs that,
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according to the gentilionic theory, the dense hadronic matter would be constituted of free
quarks. These quarks however are confined inside compressed hadrons and not forining an

ideal gas (ﬁua.rk plasma) as predicted by the fermionic approach.
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