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_ABSTRACT

We study the infrared behavior of the color smglet quark form factor in perl;w:batwe
QCD. We express the non-—leadmg fourth—order contributions in terms of an infrared
anomalous dimension, which characterizes the renormalization group equation describing
the long—distance behavior of the form factor. We discuss the important. features of this

function and comment on its beha.wor at high energy.
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I. INTRODUCTION

We aze concerned with dominant and subdominant infrared divergences occurting in
processes involving a color singlet quark—antiquark pair. These arise in the study of many
important high—energy reactions, like the Drell-Yan and the electron—positron
annihilation processes. In order to describe the asymptotic behavior in this domain, we
shall derive a’ renormalization—group equation in a form suggested sometime ago1 in
conpection with the process of quark scattering by an external potential. This approach
has been recently employedz_, with the help of more general results obtained to two—loop
order, to describe the infrared behavior of the quark form factor-in the space—like region.

The question which v;re address here is the derivation of an explicit -expression for
the anomalous dimension in the renormalization—group equation describing the infrared
proper't'ies of the form factor in the time-like region. We consider in what: follows the

reaction: -
; _ o S
7T = a+3 : : (1) -
which defines the color singlet quark—antiquark form factor in the timelike region.
Our approach takes advatage of the fact that the infrared singularities
characterizing this form factor canoel3_ when combined in the cross section o with the
corresponding ones resulting from the reaction:

7 g+ + soft gluons ) (2)

where soft gluon production up.to a maximum energy A is included.

The calculation simplifies considerably if we make use of the quantity A de/dA

- evaluated to order . gt in reference 4. In section IT we derive a connection relating, it fo




the infrared singularities occurring in process (2). We then find to this order a completely -

explicit expression for the infrared singular contributions, which is expressible in terms of
dilogarithmic and threelogarithmic functionsﬁ. In the high energy domain s ¥ m?, where
45 denotes the invariant energy of the massive q—Qg pair, these functions yield
contributions which behave respectively like 1n2(s/m?) and In3(s/m?2). Yet, in the final
result these cancel out, leaving a dominant contribution which behaves only like In(s/m?)
in this domain.

A physical reason for this behavior is given in section III. Here we also present the
renormalization group equation describing the long distance behavior of the form factor in
the time—like region. We show that apart from the renormalization group beta function,
the non—abelian effects can be expressed in terms of an effective infrared anomalous
dimension T By analytical continnation of the correspoﬁding explicit expression for Ty

we establish a connection with the results previously obtained in the space—like region.

II. RESULYS OF THE CALCULATIONS

In the process of caleulating the contributiong from the Feymman diagrams, two
Casimir operators C = Tr tata and C A6‘:(151':1bc fabd appear, where t, are the
representation matrices for the fermions and fabe are the structure constants associated
with the Yang--Mills theory. The fourth order terms are proportional to CE’, or CFC ar
the spectal case of QED being obtained by setting CF= 1 and C W= 0. Since QED results
are well lmowne, we concentrate in what follows on the terms proportional to CFC e We
work in the Feynmann gauge and use consistently dimensional regula,rizationT, in a
space—time dimension d = 4+%. In order to find the infrared behavior, we consider graphs

with eikenalized quarks and, to set up the notation, present in more detail the diagrams

() TS, |

shown in Fig. 1.

Fig. 1 - Fourth—order ,renormalization—groupy type diagrams.

The upper side of the graphs represent a contribution to the complex conjugate part
of the amplitude, and a sum over all other diagrams with similar topology is to be
understood. Thick lines are quarks {antiquarks) while this lines denote gluons. The black
blob represents the point where the virtual photon in eq. (2) .produces a pair gquark
antiquark, with momenta g and G, respectively. We begin by considering the diagram
(la) and denote by z the cosine of the angle between k and 4. Adding the complex

conjugate pari we obtain the following contribution:




_ G g gy W b 1)
©T e rge 1), ) (-7

) _[f”/” [(1+7/2) T(1-p) A} @)
RES 2D

Here J is the speed of the quark in the rest frame of the aatiquark and is related to s/m?

by the expression

1—';:# = [ﬁsﬂ_l]‘? (4)

In order to obtain eq. (3) we have renormalized the ultraviolet divergences of the
subdiagram by substracting the pole part times ,u",-‘-. which corresponds to using a
renormalized coupling constant s = g2/4r with dimension of (tength)”. Expanding the
integrand in powers of # and performing the =z integration we find an expression of the

form:

- oo Mgl

i vﬁ'here Pi(n)- and: Pa(y) are polynomial functions of #:

Pyn} = {—'l + [l.n 2+ %ln x—%] r;} B(lﬁ] +'. o .l (6)

+ {zm2—2—§ﬂ [1‘! - ‘“E‘g‘f‘i‘*ﬁ—_tg]-.‘L'Liz[EgJ]} ke

and

Po(n) = 1—[1+%1n r—%]n+ - _ (7)

In expression (6} B{S) represents the bremsstrahlung probability function:

B(f) = %,m[%_g] -2 (8)

Furthermore v denotes the Euler constant and Li; stands for the dilogarithmic
function®:

tiz(z) =~ R | | o
0 _ : -

Proceeding in a similar manner, we obtain corresponding to the graph {1b) a contribution

of the form:

2 7.0
G = (%] c,0, 4 Py B ()
where the polynomial P3(n) is given by:
P(n) =§[1+ [wln2—%lar+%+'g]ﬂ]B(ﬁ)+ (1)

}.{gfgmé+1—gﬁ[ln 2-1m%{§_iig[{-zg] + Lié[i%ﬂ]]} ,,.+‘

. Analogously, we obtain from diagram (1c) 2 result of the form:

12 2n ‘ S
G = (% ¢, fmPin - (12)




where the polynomial r4(n) can be expanded as:

Pn) = 3B O) W)

We now turn to the consideration of the remaining fourth order diagrams which yield

contributions with color factor C_C,. Typical graphs are shown in Fig. 2.

(NOY
7Y

Fig. 2 — Examples of QED and nonabelian type of bremsstrahiung diagrams.

{c)

Due to the antisymmetry of the 3—gluon vertex, it turns out that graphs like (2b)
are actually ultraviolet convergent in the Feynman gauge.. Furthermore, although these
graphs individually yield cubic and quadratic infrared divergences, these contributions
cancel in the sum of ail relevant fourth order diagrams. Consequently, the infrared

contribution associated with the above graphs has the general form:

G = (20,0, 8 e W

Sto determlne to order a% the infrared divergent

oontmbtztmns Gin oorrespondmg to reaction {2) With the help of equatmns (5—14} one

finds:
Gin = [%]2 CC, {WB(ﬂ) + (15)
+ 35 2 (OP0) - P;@ + é?;(o:) + P;(ﬂ). +P,0)
where
Py = P0) + nPY0) + o) S

In order to evaluate the non—leading infrared contributions we need to know, in
addition to the functions 'P1(77),.-P2(n)' aﬁ.i.i-P;(n)-. a,]re'a,dsr described, also P (0) and
P5(0). Sinee a direct attempt to calculate these functions is very laborious, we will instead
relate the right—hand side of the above equations to the quantity A’ds/dA which was
studied in reference 4. To this end we remark, with the help of eqs. (3—14), that

2 ' ,
ade - [gé] 00 A{—%).ik_;(A)B (8 + o
+{P (0)P1(0) + P(0) + PI(0) + P (O]}

Now we recall that the explicit form for A dg/dA is given by the expressions (14a) and




(14b) i reference 4. [We take this opportusity to mention that there is 4 correction in the
coefficient multiplying the bremsstfahlung function B(fS) appearing in eq. (12) of this
reference.  This has the effect of replacing -the factor #2/4 + 53/18, which occurs
multiplying B(8} in eq. (I4a), by #?/3 + 119/36]. Therefore, comparing eqgs. (15) and
(17) given above, we see that in order to determine the non—leading infrared cortributions
all is needed is to calculate, in addition, the part involving P;(D) - P;(U). It is easy to see,
using eqs. (6} and (11), that this yields:

PHO)—P)0) = F~g 2+ 5 [5-22m2— 11 In v+ 1L9JB() +

Gl ufi g w

By substituting this contribution, together with the one obtained from (17) into eq. (15),
we finally find:

on = (2,0, {3h B9 + L (o) 9)

where

G(ﬁ) % 111112—2%;—1;2-%[ ?173 I]ng[ —%]4—

+[“2[§, ﬁ]+g§ %1n2]3(ﬁ)+ _ A (20)

* i [t 1511 + ] ¢

+ [ﬂlp + 2%; 3] Liz [3%] - ﬂlﬂ Ligl1) + L o)
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Here Liz denotes the threelogarithmic fimetion®:

Lig(z) = J’ ? Lin(e) dz _ (21)
0

and O(1—f) represents a contribution expressed in terms of dilogarithmic and
threelogarithmic functions which vanishes 85 f-+1. It is given explicitly by eq. (14b) of

reference 4 as follows:

[ Lis [—g —ﬂELla[—-g} +%—1— ln?-i‘—ig—
i+8.. [1—
—-g[ Lis [—g WELI [~g]+)—ﬂéng[I+ +
. +mg [lﬂmgln—g-i' LIQ[‘g] +§]]12]_§ g‘z‘] +
1 BB TI48, L4f S

+ﬂ]n1:§[ n L2 1112] (22)
It is inﬁeresting to remark in the above equations, that individual contributions which yield
at high energies n3(1-8) and In%1—B) terms, are suppressed by a factor (1-8). Indeed, ‘

using the properties of the polylogarithmic functions? , we find in the high energy limit tha.t

the d_onunant contributions to G(f) are given by:
.
@@ 2 [-Swe-n . s (29)

The physical reason for this behavior will be given in the next section.
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ML DISCUSSION

We now turn to the amalysis of the infrared guark—antiquexk form factor T which

characterizes the virtual soft gluon exchanges in the amplitude associated with reaction (1). .

In general, this form factor will be a complex function in the timeike region. Our

method, which makes use of the fact that the infrared singularities cancel in thelinclusive

CPOSS geCtiom, determines only the real part of F. However, it is precisely this part of the

form factor which contributes to the cross section and is therefore of physical interest.
Typical examptes of fourth order graphs are illustrated in Fig. 3.

£
0l
£
£

(a) (h) - ()

(4) {e) (f)

Fiz. 8 — Feynmian diagrams contributing to the q§ form factor.
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The infrared form factor ¥, which is defined so that it includes exclusive_:ly the

infrared divergent corrections, hag an expansion of the form:

F(B,05m) = -1+%§f11%+[%} -[f22%5+f21%}+“‘ Cunoee o (24) -

where the factors f fm AT functions of the parameter B. In particular, fiy is given by:

C
fu(f) = —o-B(H) (25)

Furthermore, we find from eq. (19) that:

fa(f) = —CC, 55 B (26)
and
- C.C
talf) = ——CB (27

1t is convenient in what follows to express, via eq. (4), § as a function of s{m?
and to define &= —yl Then, it is straightforward to verify shat the farm factor

F(s/m?,g2t) satisfies the renormalization group equation:
D aind L o 0F , 20| Fls/mtaZi) =0 (28)
~ g+ B,(8) g5 + &8 g BG/m?) + 7,(s/m 87) | F(s/m?,g2t)
where 3,(g) 18 the renormalization group function: -

B8 = —qpmCugt o (29)
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and 7,(s/m?,g?) denotes the infrared anomalous dimension given by:

CeCh [
7,(8/m2,g2) = g*mﬁ;G[ﬁg] +e - (30)

It is important to notice here, with the help of eqs. (4) and (23), that in the high

energy domain 7, behaves to fourth order as follows:

7,(8/m%,62) = Té% CrCy [g_g - %} In [%7] , sym?, L)

The solution of the renormalization group eqﬁa.tion {28), sums up all the long
distance effects which contribute to the infrared form factor F(s/m2,g2t). It generalizes
the well known QED resultﬁ,.where the Qara.meters ﬂy Ty vanish and the infrared
singularities exponentiate in a simple way. Using the standard techmique employed in

8

solving the Callan—Symanzik eguation”, together with the boundary condition which

follows from the from (24):
‘ Fio/m2gri=] = 1 (32

we cbtain for the infrared form factor the following expression:

Fls/mtg2t] = exp ft{%g B[] e2(t) + 1, [, 20)] | av (33)

0

where g2(t) represents the effective coupling constant given by:

14

11 -t
g(t) = g2[1 + g Cy8%t) (34)

Before we procead let us remark that the expression for the form factor in the
space—like region, which is a real function, can be connected by analytical continuation to
the corresponding one in the timedike region. To this end we make the replacement
s-+Q2 where Q2 is the square of the 4-momentum transfer in the quark seattering
process. In general, due to the appearance of the threelogarithmic functions Lis{s/m?) in
7, via eq. (22}, this continuation will yield additional real contributions. However, i the
high energy domain where the leading conmtribution behaves only like In(s/m?), the
continuation is very simple. Indeed, in this case the corresponding expression for 7, ©an
be obtained directly by replacing s with Q2 in eq. (31). This agrees with the results
previously obtained! " in the space—like region.

The relevant features which characterize the non—abelian theory are the appearance
of the running coupling constant and that of the infrared anomalous dimension 7, Given
by eq. (30). Furthermore, as we have noticed following eq. (20), it is striking that although
G(s/m?) contains individual contributions which behave at high energies like 123(s/m2)
and 1n2(s/m?), these cancel out. ) ’

These features can be rﬁore clearly understood in physical ga.uge_sg. For instance, in
the axial gauge, the s—dependent part of the remormalized gluon self—energy shown in

figufes (3a) and (3d) is given by:

11 _. 2 nfa )
n, = WCAgznllE}z] -1] (8,5 =K k) (35)

which provides for the factor %5 C,g% connected with the running coupling constant
£2(t)-

In order to understand the reason why the infrared anomalous dimension T should
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behave to order g* only like In(s/m?) at high energies, let us recall that in physical
gauges the mass singularities are connected with configurations of gluons nearly collinear to
a given quark line. The leading singularities result when all gluons are simultaneously
parallel with the quark line. Hence for our purpose it 'is sufficient to concentrate on the
diagrams shown in figures (3d), (3e) and (3f). '

In order to estimate the behaviour of the leading contributions associited_ with
graph (3d}, we use the expression (35) for the gluon self—energy subdiagram and perform
the d-dimensional integration over the gluon momenta k. Using the Feynman
parametrization and denoting by z the cosine of the angle between i ang g, we are led

in the limit 8- 1 to integrals of the form:

. %
1 1 _anynfeta
I{e) = f d'r'r_1+'q+2af dw{ﬁ;}g (36)

o -1

where 7 denotes a Feynman parameter and o is given, froﬁ the first bracket in eq. {35),
respecti-vely by' n/2 or.zero.' The mass singularities appear by expanding the integrand in
powers of 7 and performing the =z integrﬁtion. This yields a factor involving
(7/2 + o)la(l—?) which after integration over z produces an (n/a+0o)ln2(1-4) mass
singularity coming from the region Where' £he gluon moménta. become collinear with that of
the. fermion. Performing also the 1 integration, we see that the ensuing infrared
singularity (%<4 2¢)? is promoted to & mass singuiarity behaving like [n2(1-f) as
4+ 1. However the coefficient multiplying it is a-independent, and consequently this
contribution will cancel in the.difference of the terms appearing in eq. (35).

We now turn fo the leading mass singularities associated with graphs (3e) and (3f).
A power counting analysis, similar to that discussed in the second work of reference 9,
shows that for fixed values of the magnitude of the gluon momenta, these diagrams can

yield single logarithmic mass singularities, However, when these momenta become

16

vanishing,there will apﬁea.r in addition single and double infrated poles. By the mechanism
described following eq. (36), one of these may be promoted into an additional mass
singulazity. In this way, individual grdphs like (3e) or (3f) can yield single infrared
divergent contributions which are multiplied by double mass.singula.rities. Let us denote
by I‘i(q,k) the part of the total quark—gluon vertex which is proportional to € y 16
corresponds to the sum of the subdiagrams shown in these graphs which are obtained by
opening the gluon line dencted by k. In the axial gauge, this vertex satisfies the simple

Ward identity:
kyT(@k) =0 _ ¢

which implies the cancellation of the dominant and most of the sub—dominant infrared
divergences. Consequently, the double mass singularity which is associated with the
promotion of an infrared divergence will similarly cancel out. '

These considerations car be extended to higher order in perturbative QUD. We
then obtain that, as a consequence of the Ward identity, the leading and many non—eading
powers of Ins/m? wiil cancel 6ut in the high—energy limit. One might suppose these
cancellagions to be sufficient to ensure that the infrared anomalous dimensions A is linear
in Ins/m?2, to arbitrary orders in perturbation theoryz. However, other possibilities could
arise in connection with the previously discﬁssed mechanism for the promotion of infrared
divergences into mass singularities. Since this important feature is often missed out in the

N+l order.

literature, we have presented in the Appendix an illustrative example to (g2}
We find that also in this case, the infrared divergent contributions proportional to lnp{s)
cancel out when p > 1. Due to these circumstances, and in view of the relevance of the
infrared anomalous dimension to the investigation of the Wilson loops, we believe that the

above conjecture deserves further study.
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APPENDIX

Here we will discugs the comtributions resulting in the Feynman gauge form the

graph shown in Fig. 4.

q B

Fig. 4 — Feyman Diagram for the N—gluon loops contributing to the qf infrared form

factor.

'The renormalization gluon {and ghost) self-energy loop yields the contribution:

1: f_
M0 = 8525 0,06, -k [ [5) " - mo)] (A1)

where:

H(r) = 277 & T (1on/2) [ (8+47) Bl2n/2, 240/2) + 21) B2, 1+0/2)]

(A.2)
10

and B(zy) denotes the Euler beta funetion
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In order to determine the contribution to the infrared form factor we need io

evaluate the infrared singuiar part of the integral:

_ N+1 4-3—?;' 1 .
1(y, ? ESAQ[P_ _r
() = (&) 0 f 12 kqu K ker2gk

L fx[)" -ro] (A3)

=3

A typical term in the above integrand contains the factor [%;} , where @ =r1 /2 with

r <N. To calculate its contribution-we combine derominators using the parametrization:

1 1
1 = L(3-0) ) . . . a3
A= pg F(l_ﬂ]J[; #{1—-2) a’dzJ‘; d){A + (C-A)s + (B C)zy] (A4)

We next perform the 447 dimensional k iﬁtegration and obtain for the corresponding

part of the integral a contribution proportional to:

T(1 - (r+1 m] (r+1)y

o) = Hlrtnl2) o) aa gy (45)

. fl dz x—l#—(r-ﬁ-l)ﬂ (i_z)—r /fa J.l dy [l + 2y(1—y) [%2_(1_ l”~—1+(r+1)ﬂ/z
0 0

In terms of J(r,n), the integral I{n,N) can be expressed as:

I(N) = ii)—)m;ﬂ“ Z( 0 [Y JmoN T iwn (A8)

20

Let us determine the asymptotic behavior of the infrared singular part of I(m,N} &t high
energies. To this end, we note from (A.5) that the infrated singularity in J{r,7) comes
éntirely from the s—integration which yieldﬁ10 B((r+1)ﬁ, I-r 7/2). The asymptotic
behavior J(r,n) results when performing the y—integration, from the regions y- 0 and
y= 1. Expanding the integrand in powers of # we then obtain as s- o the following

expression

e - Ep e

N+1

L (01”108 570 — 0Pms] - |
(1) 92:; P! [l (+8/u) = In -(m/”)]?L (A7)

where we have indicated explicitly only those terms which contribute to the infrared
divergent part of I{5N).

Consider now the infrared singular contributions to I{n,N) which are proportionai
to lnp(s) for 1<p<N+I. It is then straightforward to verify, with the help of the

algebraic identityl 0

" _
Y @ [f] R N>n>1] (A.8)
r=0 .

that the corresponding coefficients vanish identically, with the important exception of the -
case when p=1. This behavior is connected with the fact that for p > 1 (A.7) depends

upon u and a physical answer should be independent of this parameter.
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