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ABSTRACT

We perfom a qualitative analysis of the resuits of an Sp(1,R) calculation for
8Be, in a deformed harmonic oscillator basis. The model basis of states is given by the

angular momentum projection of deformed phonon states, determined by the method of

variation after projection. These deformed phonons are associated to glant monopole and

quadrupole resonances.
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INTRODUCTION

During the past decade a significant progress has been made in our
understanding of collective phenomena in nﬂcrdscbpic terms, {(Rowe 1985). The
microscopic models show what kinds of collective motions are compatible with the many
nucleon structure of the nucleus. It exposes the relationships between the various kinds of
collective motions, notably rotaf.ibns. and quadrupole and monopole vibrations, and it
reveals what shell model configurations are necessary for a microscopic calculation of
collective states, that is, expresses the coilective model as a suBmodel of the nuclear sheil
model.

The symplectic collective model (SCM), is a microscopic collective model
constructed to describe rotations and quadrupele and monapole vibrations of nuclei. Fhe
SCM is an algebraic model where the collective operators are a basis of the sp(3.R)
algebra and are expressed in microscopic terms. The collective subspace is identified with
an irreducible representation (TR} space of Sp(3,R) which, in turn, is a subspace of the
spherical harmenic oscillator shell model space. The col]ect_ive hamiltonian is identified
with the restriction of the nuclear many—bady hamiltontan to the collective subspace.

A basis of the sp(3,R) algebra (Rowe 1985), is given by the six cartesian

components of the quadrupole tensor

A-1
Q, = E £i% : (1.1—e)
= :

the six generators of monopole and quadrupole deformations

A . By + By X0
D, =y 4247 % i (1.1-b)




the angular momentum operators

c_ N B B R D) .
= 2‘1 - | (1.1-¢)
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and the six cartesian components of the quadrupole tensor of the momentum

K, = Zf)m by - (1.1-d)

In eqs. (1.1), the )"c#i are a set of Jacobi coordinates and p i its associated
canonical momenta, where 4 indicates spatial directions and 1 is a "Jacobi” particle
index. The consituction of a basis of states in a S5p(3,R) IR space is easier in Fock space,

(Rowe 1985). We defing the annihilation and creation operators of oscillator quanta,

[5&+~5& | | (L2-3)

é'#i(bﬂ) =

iﬁlF—‘

oo = [0 )" | (12-5)

where by is the harmonic oscillator size parameter. The expression of the sp(3.R)
0perators, eqs. (1.1), in terms of the creation and annihilatic_)n operators, eqs. (1.2), gives

the new hagis:

4
AL : _ Shr
2 bo) a* bg) raising operators {1.3—a)
A1 .
B, (00) = 2 B4(bo) &5(00) lowering operators  © (1.3-b)
i=1
C (b)) = 1 2 “1{bo) & :{bo) + & ,(bo} &7 (b ) U(3)} operators {1.3—)
. 3 0 0 0 0 .
The U(3} operators are further su.‘.l')d-ivided into raising, lowering and weight
operators

¢ r p>v o raisiﬂg 6perators ' (1.4—a)
¢ aw p<v lowerig oberators (1.4-b)
¢ " weight operators C o (14—)

A basis of states in the IR~ {f} = {fi,ff3} of Sp(3,R) is given by the
repeated action of the operators AW(bg) on a basis states |{f};a> of the U(3)

lowest—weight IR {f}, which satisfy
Bl (Me> = 0, (15)
where o indexes the basis of states.

In turn, & basig of states in the U(3) TR {f} is given by the repeated dctic_m.

of the U(3) raising operators, eq. (1.4—a), on the U(3) lowest—weight state, which obey




the equations

- ALY '

= 1.6—
G (DLW> [f“+—2—] [{f} LW> (1.6—a)
é,,,,!{f},LW> =0 E<v (1.6-D)

where fy is the number of oscillator quanta in the direction p, of the state [{f},LW> .
This state, which satisfies eq. (1.5), is an 8p(3,R) lowest—weight state.

Thus we see that the SCM is & generalization of the SU(3) model of Elliott
(Elliott 1958). In the Elliott model the basis states, |{f},¢>, have the same harmonic
oscillator emergy. In the SCM, besides these states, the basis states carry states of
excitation enefgy equal to 2nfw, n # 0 with respeci to the states of the Elliott model. The
configuration of these states are given by the suecessive addition of two oscillator quanta,
by the action of the operators A W(bgj, to the states of the EIliott. model.

. Due to the complexity of the SCM, microscopic calculations have been
restricted to submodels of the complete model. In these subrmodels we supress sorﬁé of the
degrees of freedom of the SCM. For prolate {oblate) nuclei one successful submodel is the
Sp(1,R) model which, in the intrinsic_ frame, considers only oseillations parallel
(perpendicular) to the direction of axial symmetry, (Arickx et al. 1979, Arickx ef al. 1982).

An analysis of the results of the application of the Sp(1,R} model in the
description of the properties of the states in the ground state band in 20Ne, demonstrates
the importance of the excited states, n#0, (Okhrimenko and Steshenko 1981). For
exarmple, in the model ground state, basis states with n <3 are equally probable, basis
states with 1<n <4 give the dominant contribution to the BE2 betiveen the first 2+
and 0% states, and to achieve numerical convergence, one. has to use up to n > 20 basis
states. - All these facts are a consequence of the strong correlations due fo the deformation

which is described in the spherical harmonic oscillator basis only by the inclusion of these

excited basis states. This fact canceals the physical interpretation of the effects due to the
deformation and raises difficulties to the extension of these calculations to include mixture
of Sp(3,R) .IR spaces.

Given the basis of operators 1.3 of the sp(B,R—) algebra and the basis states
in the IR space, we can find equivalent basis of operators and of states by symplectic
unitary transformations. One of these sympleétic unitary transformations is a change of

scale in the direction g, whose infinitesimal generator is the operator D m {Rowe 1985}

—a D +ie D o
o HOb ai(b0) © W _ B i(boe *y
The action of this unitary transformation in the basis states replaces the spherical

harmonic oscillator wave furctions by deformed harmonic oseillator wave functions of size

parameters by ea‘”, #=123. As is well known, the basis constructed in terms of .
deformed harmonic oscillator wave functions is, from a variational point of view, the
optimal one.

In our paper we present a qualitative analysis of the results of an Sp(1,R)
caleulation in 8Be, in an optimized deformed harmonic oscillator basis. Our purpose is not
only to show that the physical interpretation of the effects due to the deformation is more
transparent in this basis, but also to demonstrate that a numerical calculation in this basis
is feasible. The first steps in this direction has already been taken by Arickx et al. 1982,
from g slightly different point of view. Our paper elaborate further and advance this
program.

Our pa.per is organized as follows: In section II we discuss briefly the results
of an Sp(1,R) calculation for 3Be, in the spherical harmonic oscillator basis. In section
[l we show how to construct the deformed harmonic oscillator basis by the method of

variation after projection and we present the results of an Sp(LLR) calculation for $Be in




this basis. Our conclusions and final remarks are the subject of section four.

IL THE Sp.(1,R) CALCULATION IN Be

A basis of states of the Spu(1,R) model for prolate nuclei is given by the
angular momentum prejection of states defined in an Sp(1,R} IR space.

The spu(1,R) algebrs is spanned by the operators {Arickx et al. 1979)

A1

Au(bo) = 3 3 a4;(00) if;(bo) (2.1-a)
i=1 '
A1

Bu(bo) = £ ¥, y;(b0) dy;(bo) (2.1-D)
i=1
A-1

Gulbo) = 1Y [ a1500) ayyft0) + by (o0) 350000 (21¢)
i=1

which corresponds to longitudinal vibrations (in the direction of axial symmetry).
A lowest weight state of Spu{1,R) is a state annihilated by B.(bg) and an
cigenstate of Cu(bo),
Bu (Do) | 300> = 0 €(bo) | 0sbo> = Ka|Oibo>
where K, labels the Sp,(L,R) IR.

Trom the above definition, we see that a lowest weight siate of the Sp(3,R)

TR {fo} is a lowest weight state of the IR K, = {fol + 5“5—1 1/2 of sp}.(l,R):

Given the lowest weight state, we can construct a basis in an irfeducible

representation space by the repeated action of Ay(bg) on |0;bo> ,

. T{2K.)
[mbo> = Ay(bo)"[05bg> | ———— (2.2)
I'(n+1) T'(2K,+n)

where |m;bo> are called stretiched states (Arickx et al. 1979).
Since an Sp(3,R) lowest weight state is also an SU(3) lowest weight state,
it follows that 10;be> is a lowest weight state of the SU{3) IR (Ao,i),

Ap = for—fo2 Copo = fp g =0

As a cons.équehce, the stretched states |n;bg> " are lowest weéight states of the” SU(3)" IR
()\0 + 21‘1,0).
A basis in the Spu(1,R)  model is given by the angular momentum

projection of the stretched states
|nLM;bo> = Pogglmbo> (2.3)

where PI{‘/IO is the angular momentum projection cperator and, as the stretched states are
axially symmetric, we can project only K =0 states.

The basis states (2.3) are orthogonal, since they are cigenstates of the
spheriﬁal harmonic oscillator hamiltonian in the center of mass frame with eigenvalue
{No+2n)hay , NO' = fo1 + foo + foa + QIA'—Ell, and they span the (A + 2n,0) SU{(3} IR
spaces. '

The stretched states have ‘a° very simple interpretation in- terms of ‘the

spu(1,R) Holstein—Primakoif bosons, 3.:(b0) and 8.(bg} , defined only in the- IR space




Ku , of $pu(1,R) (Arickx et al: 1982, Broeckhove et al 1084)

Au(b) = 8u(b0)(2K + Su(bo) Su(bn))/2 (2.4-a)
1A3u(b()) = (2K,| + é:(bo) gu(bo))ug Su(bo) (2.4'-.1))
Cu(bo) = Ky + g;(bo) gu(bu) . (2.4—(:)

From eqgs. (2.4) one deduces that S:{bo) and §,(bo) act on the basis states

in canonical faghion

§1(bo) {mbo> (+DY? |n+1;be>

If

Su(bo}|msbe> = n'/? |n—1;b5>
[Bu(bo) , Su(bo)] [mjbo> = |msbo>

As a consequence the stretched states can be written as

85 (bo) ) :
|n;bo> = vr—r |0;b0> S..(bo)lg;b0> =0

.

where |0;bo> is the longitudinal boson vacuum and Injbe> the n—longitudinal boson
state. In the case of B8Be, the state 10;bg> is the intrinsic component of the Slater

determinant

| ¥,b0> =Védep (000)* (100)" L (@)
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where (mungny) is the harmonic oscillator wave function in the cartesian basis. This state.
is non-spurious, has permutation symmetry [44] and T =8 = 0.

it can be easily shown that this state is, respectively, a lowest weight state of
ihe (4,0,0) Sp(3,R) TR and of the 12 $p,(1,R) IR.

The model states are determined by diagomalization of a microscopic
hamiltonian in the basis of eq. (2.3). In our calculation we use the Brink—Boeker
hamiltonian (Brink 1967). Matrix elements of the hamiltonian and of the collective
operators are calculated by the generating function method {Arickx et al. 1979) and by is
fixed &t the value which minimizes the model ground ssate energy. To achieve convergence
we must use b.asis states up to npax ~ 30 .

Our results agree with Arickx et al. 1979 and have the same qualitative
behaviour of the 20Ne calculations of Okhrimenko et al. 1981, Vassanji et al. 1983, Figs. 1
and 2 demonstrates the importance of the excited basis states. These figures are a graph of
the partial contribution of the excited basis states to the BE2(2E+»08) and to the
quadrupole moment of the first 2 state {Okhrimenko et al. 1981}. The values of these
quantities, considering states up to n, is given by the sum of the previous blocks pius the
block which starts at the point n. From these figures, it is evident the importance of the
excited basis states. The explanation of this behaviour is well known. The spherical
harmonic oscillator basis is not optimized with respect to the deformation. This fact
suggests a qualitative study of an Sp,{1,R) calculation in an equivalent basis optimized

by variational methods.
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. Spy(1,R) CALCULATIONS IN A DEFORMED HARMONIC OSCILLATOR. BASIS

Given the stretched states 2.2, constructed in terms of spherical harmonic
oscillator wave functions, we can find equivalent basis by  Spu(l,R)  unitary
transformations. One of those is a scale transformation in the longit'udinal direction, whose

generator is D11 y

Dl]_ (A{ ) Bll(bﬂ)} . (3-1)

The longitudinal scale transformation of the stretched states,

=1 %ﬂ f’n
[n;bybe> = e 0 [ 300> (3.2.a)
and of the operators 2.3,
A,.(b,,) An(bo)
. "-ifIl'b—Du . +i£n%9D11
Bu(bu) =e B“(bn) e {3.‘2—b)
Cu(bu) Colbo)

leads to:

12

1;0iDo ||(b||} lo,b"b0>
P(u+1) T(2Ka+n)

Au(bn) = %2 5*:’[i(bll) éﬂii(b") H

Bu(bu) = '2];2 é'll(b”) é‘ll(b"}
i

Gub) = £ Y, (8100 g ba) + o) a0 |

The operators A, {by), Bu(bu), Cu{by) are an equivalent basis for the sp..(l,R) algebra,
(2.1). Equally well, the states |n;bybo> are an equivalent basis of states in the Spu(1,R)
IR space labeiled by K, . The effect of the scale i;ransformatioﬁ of |n,bg> is to replace
the spherical harmonic oscillator wave functions with bz =by= by ="ho by deformed
harmonic oscillator wave functions with bx =hy="bp and bz="bu.

The states |n;bubo> have the same properties and physical interpretation
as the states |n;bg>, only now in terms of an equivalent basis of operators, given by the
scaling transformation of the operators {1.3). Analogous to thé gpherical case, the states -
|m;bybe> can be interpreted as u—defoi*me.r.l iongitudin&] phonon states, where the
deformed longitudinal boson, é:(b..), is given by the scaling transformation, eq. (3.2}, of
the spherical boson é;(bu) .

The coefficients of the expansion of |m;bybe>> in the spherical boson states

|mbo> 4

{mbybo> = 2 {n'bo> U (3.3)

1.1l

can be calculated explicitly:
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: b 1
. . -ifn Dg]_ . Ky
U, = <nobg| e 2 inbo> = L (n+1)l(n'"+1) [(l - Tﬁ)}
o _ _ P{n+2K.)I{n"+2K,)
. ' .
« {n,.n } . I'(2Ky+n'+n-1) (T 1_11+I1'——2r
= Tlo—r+1) T{n'-r+1) Tr+1) L0

where T is the deformation parameter

Projecting states of good angular momentum we can find the relation

between the equivalent basis of the Sp,(1,R} model:

[DLMbube> = Y [wEMbo> Uy (3.4)

nf

The states |[nLM;bybo> are not orthogonal and for L > Ay they are
linearly dependent, the number of states linearly dependent beiag equal to ng = % .

The equivalent basis of stat.és depends on a parameter, b, , which is the
oscillator size parameter in the direction of axial symmetry. We fixed it by the methad of
variation after projection, imposing that the expectation value of the hamiltonian in the

vacyum of the deformed phonon, projected into angular momentum L, be a minjrmum:

<OLM ; bybo|H|OLM;bybg>

Bb" <OLM;bubg | OLM ; bybe>

14

This condition is equivalent to impose that the matrix element between the .
L projected vacuum and one deformed phonon state, orthogonalized by the method of

Gram—Schmidt, vanishes:
o5 <OLM;bubo | H[1LM;bubo> 4 = 0
where

|0LM;b..bo>GS = |OLM;b,be>

<OLM;b,bo| LLM;byby>

|1LM;bubo> = {1LM;bybo> — |0LM;bybo>
<ULM;b||b0| 0LM,b||b0>

Given the states |nLM;b,bg>, an orthonormal basis |nLM;b..b9>~0GS , Lan be
constructed by the method of Gram—Schmidt.

In our paper, we calculated the matrix eleﬁlents of the operators in the
deformed harmonic oscillator basis in terms of the ones in the spherical hmonic osciltator
basis, truncating the expansion (3.4) at nnl1ax = 30, and orthonormalizing the basis states
by the method of Gram—S8chmids. We have verified that this trurcation does not affect the
matrix elements of the observables of interest, for the states up to four phonons. This
procedure is an extension to n # & of a method proposed by Asherova et al. 1981. Table I
shows the values of by(L) which minimizes the expectation value of the hamiltonian for
L=0,24,6. The probability of finding in the first two states of a given L, the L
projected vacuum, one and {wo deformed phonon state, orthonormalized by the method of
Gram—Schmidt, is shown in Table IL.

For the states in the ground state band we show in figs. 3 and 4 the

contribution of the basis states |nLM;b,be>

ogs b0 the BE2(-28 - 05) and to the electric
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quadrupole moment of the first 2" state. To investigate the behaviour of the states in an
excited band we present in fig. 5 an identical graph for the monopole transition between
the first two 0 states. Finally the excitation energy and the geometrical characteristics
of the states in the ground band, calculated by diagonalizing the hamiltonian in a basis

truncated at Npax = 0—4 are given in Table IIL.

Iv. DISCUSSION OF THE RESULTS AND CONCLUDING REMARKS

Table II shows that the first two states of a given L are dominated,
respectively, by the L' projected vacuum and one deformed phonon state. This dominance
is reflected in the matrix elements of ihe collective observables as shown in figs. 3 and 4.

The contribution of the projected vacuum for the BEZ(ZE - 03) and for Qet’Q is greater
+
g!]

than 99%. This dominance is not so overwhelming when we consider states in the first
excited band as shown in fig. 5. In this case the contribution of the vacuum and one
deformed phonon state is greater than 90%. In all cases, the contribution coming from

states with more than four phonons is negligeable.

This is further demonstrated in Table III. We truneate the basis states (3.3}

at Nmax = 0—4. At each npax we diagonalize the hamiltonian and we calculate the
excitation energy and the geometrical characteristics of the states in the ground band. We
see that the {runcation at the two deforined phonon state gives resulis practically identical
to the exact ones, the BE2 being the most sensible observable. For the lower L, this is
true, even when we only consider the projection of the vacuum.

To conclude, we see that the states in the ground band is well described by

the angular momentum projection of a single L dependent state, the vacuum of the

18

deformed phonon,  §,(by(L)). Tﬁese deformed phonons are associated to the giant
monopole and quadrupole resonances. The addition of & few more states, the projection of
one and tﬁo deformed phonon states, leads to results practically identical to the exact
ones. Thus, the Sp(1,R) model can be view as an improvement of the variation after
projection deformed harmonic oscillasor model (Abgrall et al. 1969, Bouten et al. 1981).
The fast 'convergence and the feasibility of aumerical calculations in the
deformed basis, opens up the possibility of performing microscopic Sp(3,R} calculations
with mixture of Sp(3,R} IR (Carvalbo et al. 1987}, in a scheme that s & generalization of
the work of Bouten et al. 1981. This improves the predictions of the symplectic collective
model as suggested below. The symplectic shell model decomposes the Hilbert space of the
harmenic oscillator shell model into symplectic shells (Rowe 1985). Bach symplectic shell
carries an  Sp(3,R) IR and the symplectic collective model is restricted to a single
Sp(3,R) IR. By construction, there is no quadrupole and monopole transitions between
states belonging to different symplectic shells. However experimental quadrupole and
monopole transitions between low—lying states having domirant components in different
symplectic shells, {examplés are the first two 0" states in 12C and 60), indicates the
importance of mixture of symplectic shells. This mixture is also important to solve the

problem of excessive collectivity of a single Sp(3,R} IR calcufation (Vassanii et al. 1983).
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TABLE CAPTIONS

TableI — Values of by(L) which minimizes the expectation value of the hamiltonian in
the vacuum of the deformed phonon, projected to angular momentum L.
by = 1.39 fm.

Table II — Probability of finding the states |nLM;b,{L)bo> n=9,1,2, in the exact

068 °

model states, for the first two states of L =0-6, | CK(L) | 2.

= | <VLM/|DLM,bu(L)bo> o g |

Table ITI — Excitation energy and the geometrical characteristics of the states in the
ground band calculated by diagonalizing the hamiltonian in a basis
truncated at nypax = 0—4 . The energies are given in Mev and <rs? iy

fermis. The BE2 and the electric quadrupole moment are given,

respectively, in &2 fm? and & fm?.
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FIGURE CAPTIONS

Fig. 1 — Partial contribution to the BE2{23 - 0;), from a systematic inclusion, in the

Npax :

expansion |/LM> = 2 C¥(L)[nLM;bg> , of the basis states |nLM:ibg> . The

n=0
value of the BE2 at point n is found by considering, in the above expansion, the

contribution of all terms up to n, inclusive.
’ +
Fig. 2 — As in fig. 1, for the electric quadrupole moment of the first 2 state.

Fig. 3 — As in fig. 1. 'The only difference is that the expansion is in the basis states

|BLM;bu(L) bo> g, JPLM> = Z TY(L) |nLM;bu(L)be>
n

06s * Notice the

change of scale.
Fig. 4 — As in fig. 3, for the electric quadrupole morment of the first 2" state.

Fig. 5 — As in fig. 3, for the monopole fransition M(UI - 0;) .

TABLE I

L=20 L=2 L=4 L=4§
by (fm) 2.27 017 250

223 °




TABLE I

TABLE II.
Aoy o2 AV, 2 Aoy 2
1Ca(0] 1CL2)] (G4l 1CL(6)]
v :

0 1 0 1 0 1 o 1
0.999 - 0.998 - 0.988 | 0.001 | 0:992 | 0.001
L 0.954 - 0.941 - 0.921 - 0.920

- 0.037 | 0.00r | 0.044 | 0011 0.031 0.007 | 0.043

EXACT VACUUM
L | EXCE |<>!? | BE2 | qQ_, (EXCE |<i®>'? | pEp Qo
0 - 2.48 - - - 2.48 - -
2 3.15 2,48 20.12 - 9.09_ 3.14 2.48 20.07 :— .04
4 11.15 2.50 29.05 |-11.88 11.39 2.49 28.81 }11.70
K] - 25.62 2.87 41.50 | —19.41 25.72 2.36 37.13 | -19.18
2 — PHONON 3 - PHONON
L | EXCE |<>M2 | BR2 | g o |EXCE |<z>'? | BE2 Qy
0 - 2.48 - - - 2.49 - -
2 3.11 2.48 20.16 | —9.09 3.13 2.48 20.28 |'—9.14
4 11.09 2.50 29.12 [—11.92 11.12 2.50 29.13 -—11.87
6 25.55 | 2.87 | 4162 [-19.44 | 2558 | 287 | 41.13 { -19.40
4~ PHONON
L | EXCE |<r2>Y?| B2 Qyy
0 - 248 | - -
2 3.14 248 | 2020 | —9.10
4 11.12 2.5[_) 2008 | -11.89
6 25.59 2.87 £1.62 | -19.41




00

.l|]|ll'l‘lll

8

0 12 14 16 18 20

N

FIG. 1

FiG. 2

22 !]ll-"llllt
20 —
~F
£
S
™~
L))
go
; 10 -
+ ©Q
N
“ON
)
m
0 :lL|;|||
0 6 8 10 12 14 16 18 20
n




E 20.00F
. 19.90—
bO
Joooo
N : ]
N
L 0.10—
m L
0.06""'
0.02p—
.00
~-0.02

llll!illlli

—
"

|1y

9.1 I [T
N [ 1
* 9.0 _
¢ _ :
@ r _ 'JJ{
- B _
0.05— —
0.03|— | ]
0,01~ e ]
0.00

-0.01 | I I
0 2 3 4 5 10

N




190.0f

170.0
“e

- 150,0
o
o

4 f
* <«
O

=Z 10,0

5.0

0.0

_5.0

T o

~J

12






