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ABSTRACT: The existence of limit cycles of two—dimentional autonomous integrable
systems periodically perturbe-d'by delta—peaks is discussed. For that, Poincaré maps are

introduced considering analytical solutions between successive pulses.

Nonconconservative non—linear oécilla,ting systems have under certain
conditions periodic solutions.'Sﬁch solut-ions are called limit cycles and are classified as
 attractors or repellors according to their stability. They appear in the mathematical
analysis of non—linear phenomena.(l). Among these are the theory of laser and plasma,
biochemical oscillations, circadian rhythms, and many engineering applications in
particular electrorics. One well known example is the Van der Pol equéﬁon which serves
as a basic model of sélf;excited _oscillat.ions(z). Another important example is the

Brusselator(g).
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For large systems of an exiended Van der Pol type, Lyapunov functions

were found yielding a 'good estimate of the location of the kigh dimention limit cycles(s).
These estimations can still be done if the systems are perturbed by specific bounded

driven excitations.

Various limit cycle system in the plane with an external periodic
excitation were numerically investigated from the point of view of chaotic béha{rior(4).
For certain values of the control parameters, some of thése sysiems show mode-locking

and period—doubling cascades.

Limit cycles occur also in the descriptions of driven and damped
oscillations  which 'caﬁ model several physica.l(g), chemical(s) and biological
phenomen&(ﬁ). Different models have been examined nutﬁerica.lly to investigate periodic
behavior in two—dimensional autonomous oscillators, pericdically forced by discrete

Jjumps in state space(7).

This report investigates the existence of limit cycles (and their
bifurcations leading eventually to chaos) of autonomous integrable systems periodically -
perturbed by delta—peaks. The considered two—dimensional systems were reduced, in the
polar coordinate system, to single—variable continous systems periodically driven by a.
sequénce of delta—peaks. The unperturbed systems can be solved between two successive
pulses and analytical recurrence relations are obtained for the radial variable and used to
define Poincaré maps. By using these maps, it was possible to find analytically modified
limit cyeles or to show, for high perturbation amplitudes and jump periods, that the

solutions either escape or are attracted by a fixed point. However, in general, it is difficult
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— even having analytical recurrence relations — to find analytically how the systems
behave. A high number of iterations has to be done in order to determine the long time
behavior. This can be easily done numerically by using the maps presented here and will

be the continuation of this work.

The following two—dimensional nonautonomous systems with periodic

foreing were considered:

Y=MY+ I c_ §t—mDINY (1)
m=1
where
Y—[h} . M=MYyT+72) @
Yo N = N{4 y12+y2’)

Cn = (1) or +1;
M and N are non—linear 2 x 2 matrices.
The unperturbed system
Y=MY _ ' T3
is integrable and Y(Yg,t) can be obtained (betwéen the kicks). The operator M was

chosen such that the unperturbed system has limit cycles a5 atéractors and repellors.

If the jurps are repeated with a period T, the system can be described by

m m~1 ' 4)

where F is a non—linear operator depending on the period T and ‘
Y =lim{Y(t=mT—¢+_1 ¢ N[Y(t=mT—¢)] Y(t=mT—¢)+
m e 3 ™
(8)
1 B

ol e N[Y(t—mT+e)Ye=nT+e)} .

The considered systems can be integrated {for e = 0) in the poldr coordinate system:

¥y =1 cosf Yg=rsind . (6)
a) For
1. . a.
—1
Vyi+ yI-
M= 1 2 1 ,
—a _— 4
5T ¥ vZ
HAEE |
(M
1 0
N= [ VYT + ¥
1
1] _—
Yy Y]
and
7 Cp=c"
the system (1) can be reduced to
e .
f=—14+14¢ T {t-mTy . 8
. m=1 - LT !
f=—a
which leads to the following map
_1 .
T4l =@ (g, D41+ . (9)




This gives the radial coordinater , ; immeadiatly after each kick.

There is still a limit cycle because

. c -
I:mrn m._) 1+:—T

-0
b) For
N+ ) 1
M =
-1 f(ﬁ-“1 F ygl
g(#Yf +-y§ ) 0
JYE F yF
N = 1 2 ]
. s(VyT +777)
SHER
and
Cp=C

the system (1) can be reduced to
[
t=1flr) +cglr) £ &t —mD)
’ m==]
] =-1
In the case
f(r} = a2 — 12 )

(16)

(11)

(12)

(13)

r = a is a limit cycle of the integrable system (c=0) and

a-tr
n 2aT
c ( ) a ﬁ e a .
T - ——8lr =
n+1 2 n+1 atr. g, + 1
a—T .
(14)
atr
n 2aT )
c a =, e a
T8 |
a—rn e?aT + 1
n
In the case
) = (a—1) b-1) | (13)
¢ = a s & stable limit cycle and r = b an unstable one of the unperturbed system (c=0).
The map is
b —
n
a g eT(H) - b
c . n
L™ 8 gy )= — +
n| JT(b-a) -1
a — r_
(1)
[b T T | T(v—a)
a a —r
c
n| T(b—a) -
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For sufficiently larges T and ‘¢ there are no limit cycles. However, varying
these parameters, it may be possible, by using the maps introduced here, to find

nurmerical regions for which periodic solutions exist and to determine the basins of the

eventually found attractors. This will be the continuation of the present work as

mentioned before.
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