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ABSTRACTS: We consider bidimensional noneutonomous dissipative systems subjected to
delte: peaks periodic forcing, such thet the unperturbed systems are integrable. We study

numerically the related maps and analyse the existence and stability of their fized points.

In the study of non—linear oscillators there are some systems which show equilibrium
solutions, even when perturbed by periodic forces. As an exa.mple[li, the harmonic damped
oscillator settles down in a fixed point (in phase space} after some time. If 3 periodically
applied force acts upon this system, a new equilibrium solution arises, namely a limit cycle.
This kind of periodic behaviour can evolve to a chaotic regime in a variety of ways, as

control parameters are changed.

Limit—cycle systems are not very common, and its study can help us to
understand many physical systems of interest. In a recent paper[zl, two of us proposed the

following bidimensional model with delta—peaked forcing:
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where Y stands for [YIJ and M , N are nonlinear matrices, the former being chosen so. that
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the unperturbed system is integrable between the pulses.

In order to investigate the dynamical behaviour of this model we use an
amalytical Poincaré (stroboscopic) map. This is feasible when the forcing is modelled by
simple functions, like in eq. (1}, where the pulses are represented by a sequence of deita

functions with period T.

We construct, this map by using:

Yn= l-l; Itl)l { Y(t=mt—e} + _ST N [Y(t=mt—e)] Y{t=mi—e) +

+ =5 N [Y(t=mT+¢)] Y(t=mT+¢)} (2)




In our' case; namely when there: are distributions in- the coefficients of the related
differential equation, the solutions themselves depend at a certain extent on the nature of

the jumps involved (Kurzweil's theorem)[s]. This fact ailows us to redefine the map

assuming different. conditions for the approach to the solution. We have pursued this task

and results will be published elsewhere.

_ There is- another methed to know the behaviour of the systems such as given
by eq.(l)*that- does not make use of a recurrent map but instead of the so called "Tsochrone
portrai ."[41 that: has: beerr used in some nonlinear oscillators driven by a seguence of

impulsive: forces.

Using polar coordinates (such that y; = r cos #and y, = rsin 4 } to uncouple

' equations we-study the following case:
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A ﬁrst‘ choice ﬁo be considered is:
i =af-r® and  gn)=oar+4 (4)

In this case; eq. (1) without forcing has a stable Hmit cycle at r=a. When c#0 one obtains

from eq..(2) the map:

o Lt oap _
l'11+1=‘f I8 + a +n (5)

gn+1 =4, — T {mod. 27)
where

0= tanh (2T) ®)
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We restrict- ourselves to. the range 0 < ca < 4 for the perturbation strengfh
such that the map (5) is weﬂ—deﬁned[s]. Fig. I shows a phase portrait of this map for a

given initial condition. In this case the points of the limit cycle form & circle of radius:

1/2
=gt lznga’ + 2 (IA_/e-2a.T) S (9)
where '
A=(1- {a)2 1+ e—2aT)2 + (52 n2'+ 4£a) (1 —e-"'-2aT)2 +
+ [260 (1 — £a) + 4262y (1 —e~4T) (10)

This stable fixed point depends monotonically on the strength as well as the period of
forcing (see fig. 2). As ce approaches 4.0, the radius grows to + «. This is also the case |
when the period between the pulses is very short. The large period limit is a constant

value.




Other interesting class of limit—cycle system occurs when

fir) =({a—r1) (b—1) (a>b>0)and

g} = ar+ § ' (11)
The- unperturbed case has. two limit cycles: a stable and an unstable one, located at r=b

and r=a, respectively. Considering the kicks we need (o analyse- the map for radial

coordinate:
r [ b — aX ] -3
1 B | a{l — A}
LA £ +7 (12)
ro— b [ 3."l— bX J
where:- .

X =exp [T (b— 1) and £, paredefined before.

Within the intervals T > 0.02 and —0.26 < ¢ < 0, eq. (12) is well-defined and

_furnishes two Iimit'_:cycles (one of them at least is stable) whose radii are given by:

F=_— ad [&b + 7)
Za
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-EE-H :}i(a.+r;)+biﬂ (13)

with:
= (aA[&(b + 7) + 1] — Gala + 1) = b} —4a%¢ (1 — \)[€an + b — bA (& + 1)]
' (14)
and;showiné;_a similar (and still monotonic) variation with both ¢ and T (see fig. 3).
As far: as our-investigation was concerned we did not find any kind of chaotic
behav:our, ’I‘tus is partially-explained when one considers the maps (5) and {12). They
show- no: quadratic or higher power maxima in order to generate period m—tupling

cascades[ﬁf-"a-ﬂd neither they are likely to generate intermittent behaviour.

Nevertheless we have proved that, for the systems considered in- this note,
limit—cycle solutions can survive even under a periodic forcing (except, of course, when

there are no longer attractors, for ¢ ~« and T - 0).
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FIGURE CAPTIONS -

Fig. 1:

Fig. 2:

Fig. 3:

Phase portrait of map (5} witha = 8=1, ¢ = 0.5, ¢ = 0.01, T = 0.001 and
(rg» By) = (0.1;0).

Radius of limit cycles for map (5) witha = §=1, a = 0.5.

a) As a function of ¢ with T = 0.5; b} As a function of T with c=1.

Radii of limit cycles for map {12) witha = 8= 1, @ = b = 0.5. The solid and
dashed lines represent stable and unstable atiractots, respectively. a) As a

function of ¢ with T = 1; b) As a function of T with ¢ = —0.01.
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