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ABSTRACT

Based on the analysis of the free energies of topological defects we develop further
the study of phase transitions in field theory_ at finite temperature. In the case of strings
we-have shown how one can get, in the dilute gas approximation, explicit expressions for
the length of the string as well as the density contrast in terms of the free energy per unit
lengti of the string. In the high temperature limit one can get explieit expressions for all
relevant quantities up to one-loop approximation. When applied to the SO(10} model we
get good phenomenological results. In particular we derive, in a simple manner, the scale

Independent Zel'dovich spectrum with the right order of magnitude.
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L INTRGDUCTION

The large scale structure of the Universe is a feature whose explanation requires the
existence; in some stage of its evolution, of small fluctuations in the density of :m otherwise
homogeneous Universe. The scenarios proposed for explaining this structure evokes
processes, for the origin of the inhomogeheities, that take place soon after the moment of
creation of the Universe. The inhomogeneities acted as seeds in the formation of structures
that becomes effective only after the decoupling of photons from ordinary matter.

The most relevant question in this context, and as yet not settled, is the one related
to the nature of the inhomogeneities. One possibility is the existence of massive particles,
different from the ordinary barions, in various stages of the Universe. Fluctuations in the
density of these particles in space acts as seeds responsible for structure formation. Thig
possibility has been exploited by a very large number of researchers(!} .

' Among the physical processes that gives rise to inhomogeneities we would like to
emphasize the role of phase transitions. As pointed out by Kibble(z) topological defects
ariges in cosmological phase transitions making them natural candidates for seeds that
emerges in the very early Universe. Among these defects it seems that strings are one of
the best candidates. Strings ma.& give rise to density perturbations from' which galaxies
evolve(a) (4).

In this paper we rwil! be concerned with the relevance of defects in phase transitions
and their possible role in Symmetry restoration. We will be concerned only with
topologically stable defects.

Our motivation for theé study of the role of topological defects in phase transitions is
twofold. In the first place because this study, in the context of finite temperature field
theory, has never been explored in a systematic way, and in the second place, because one
can argue, as will be shown_ later, that phase transitions might be induced by the

condensation of defects as a result of thermal fluctuations. When one takes into account




the role of defects one gets a novel picture for the phase transition. “This picture might be
relevant, in field theory ai finite temperature, to the understanding of the large scale
structure of the universe. '

There are two basic questions to be answered in any string based scenario for

structure formation. These questions are the loop formation (sizes, structure and density)

and the string evolution. In Vilenkin's approa.ch(s), for instance, the formation process of -

gmall closed loop seems to play a crucial role. The evolution of strings has been studied by
Kibblel® and Vilenkin(®).

In this paper we will be concerned only with string formation in the early Universe.
Our analysis differs from previous ones in the fact that we have studied string formation as
result of thermal fluctuations. We will Qhow that thermal fluctuations induces the
production of a large number of strings. As a matter of fact, above a critical temperature
(T.} even infinite strings (of the Nielsen—Olesen type) can be produced. Under this
circumstances- the system goes to a new phase for T > T,. In this phase there is
condensation of strings. Our conclusior is that thermal fluctuations are extremely relevent
in any string driven structure formation.

The thermodynamical argument on which we have based our argument is the so
called Kosterlitz—Thouless picture of phase tra.usitionm. As a matter of fact in their
classical paper Kosterlitz and Thouless were analysing spin configurations called vortices
which are configurations analogous to infinite strings studied here.

The plan of our paper is the following: TIn section I we establish the general
framework. In section III we give formal expressions, in field theory at finite temperatures,
for the free energy of topological defects. These expression are fairly sinmple in the high
temperature limit. In section IV we consider the case of strings. We determine the free
energy of the Nielsen—Olesen string in the high temperature limit and determine the
condensation .t;emperature of such strings. In section V we give the results for the SO(10)

model. Section. VI is particularly relevant for cosmological jmplications since in this

section we give explicit expressions fQ.r. the lengeh of strings and the contrast density in the
dilute gas appro:n'métion, When applied to cosmology our results seems to lead fo
observationally compatible results for the contrast density induced by strings, since it gives
results with the proper order of ma.gnitﬁde. Furthermore the contrast density is practically
temperature (time) independent. That is, we get Zel'dovich's "constant curvature'

spectrum.
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H. FREE ENERGY OF TOPOLOGICAL DEFECTS

~ In order to study the probiem of symmetry breaking we shall employ the so called
Variational method'®). Let ; be a solution (herewith we will call them background field

configurations} of the following Variational problem
(e, TY _ - ' .
T =0 (2.1}

where' T is a Group—invariant functional depending a.lso on external parameters that we
are labeling by T. Let us assume for the moment that Ty, T) represents the free energy

of the system in the presence of the background field ;. Let us designate by ¢, the .

solution of (2.1) independent of z (the vacuum of the theory).
The study of phase transitions can then be pursyed by analysing the difference
between: free energies associated to different backgrounds (ome of them we take as the

Vacuunt), that is, we analyse the difference
Flg,T) = T T) — (9, T) . - (22)

In the.case of the field theory at finite temperature, T is the temperature and, as

we shall see in the following, [ is the effective action defined by

=V (o g ds o
r=dm f f Ao s T x) P0x) Py T i) 23)
)1

where I'™) i3 the one-particle irreducible Green functions of the theory.
In the case in which, as in the semiclassical method, ¢; corresponds to a

topological defect ((pD}, then we define

F(WD:T) e P(V’D,T) - F((pva) 7 | (2'4)

as the free energy associated to a topological defect.

We wouid like to stress the difference between the approach that we propose here
and the so called effective potential method. From (2.2) it is very easy to see the
difference. In fact, the effective potential is a thermodynamic functional analogous to
F(gaD,T) except for the subst.itution‘ Y+ where P is the generic space—time

independent field configuration. That is

=T
Vettp) = 13 7@ Vo] (2)

Like in the phenomenological Landau theory of phase trausition(g) one looks for the
extrema, Eq. (2.1), ;}f the thermodynamic potential V (T). Assume that at T, the
absolute minimum of V is at ¢0. The different minima of theories. with spontaneous
symmetry varies with T . Assume that at some temperature T, other minina (yp;}.
become equal to that at @y, i.e., Voy(120,Tg) = V(e Ty) a6 T, and becomes the new
absolute minimum when T < T,. This situation describes a first~order phase transition.

The point that we would like to stress is that the effective potential gives a

description of the phase transition in terms of space—time independent field theoretical

configurations. We believe that a better description is achieved by computing the free
energies associated to other background fietds1? 1 this section we will analyse the
expression of the Gibbs energies for nontrivial background felds.

In the following we will justify expressions that give the (Gibbs) 'free eneigies for
non trivial backgrounds(ll). Although, within the one-loop approximation, our expressions
give results that are by now standard and can be found in text books(m), we present this

derivation due to the fact that it is fairly general and is an extension, to finite temperature,




of the background field modet{!3).

-Assume- that ¢, is.a generic field configuration and let us compute the
thermodynamical properties of the system in the presence of such a background field. This
should be inferred from the functional Z{J,p,] defined by

20 = ID[sa] St R (26)
By means of a change of variables one can write
— F,ﬂfﬂdrfd“‘ﬁ(z)%(z) o)
From (2.7) it follows-that
8
WOT g = WII} -t f dr f &2 J(2) gol2) (2.8)
0

where WO(W), Z%Z) stands for the thermodynamical functions evaluated with (without)

the background field.
By using the definition {2.4) it foliows that the Gibbs free energy in the presence of

the background field {i,) is given by

: i)

ol = WO, —,mf er. &t J—ngfW; s) (2.9)
: x
: 0

where P= i(_lgjw_o)_ .

" By substituting (2.8) into {2.9) it follow§ thag -~

8
Mgl = Wil [ ar [ @2ia@el (2.10)
: .
consequently if one derives (2.9) with regard to- J one obtains

Wt (2.11)

Being W[J] and T[g] the generating functionals in the absence of the background

field one gets, from (2.11), the following relationship
Bo=P—w - I (2.12)

If one substitutes (2.13) into (2.16) one then obtains
g . .
Mg = WoI-6* [ ar [ @210 9(a) = 1061 = Tl - 223
0

Expresston (2.13) is weii known within the coutexﬁ of the baﬁkéoﬁn& ﬁéid method — ‘
that is, the generating function for the theory in the presence of the background can be
obtained from the generating functional without the background field computed just by
making the replacement @~ g+, .

The free energy in the presence of the background field is

-

-
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) = lim W) - }i%l[r°(¢°,w°)+ﬁ‘ 6[ dr f &t () %] . @)

Finally, one notes-that-if - g5 is-a particular:solution of the classical equation (2.1) -

i

= 0 ) (2.15)
o % =9
that is i

Vo=@ =9 - (2.16)

then in the imit J-+0 (2.16) leads:te @, =0. Under this circumstance it follows from
(2.13) and (2.12) that

F(f0) = Igd ' (2.17)

i.e the froe energy of the system in the presence of the background field g, satisfying the
classical equation (2.15) is given by effective action computed at this configuration. If T
is computed at the zero loop level, (2.15) corresponds to the classical Euler—Lagrange
equations. This is precisely the situation that we are interested in the semiclassical

approximation.
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OI. FORMAL EXPRESSION FOR DEFECT FREE ENERGY- - -

The partition function for a given gauge theory, whose Euclidean Lagrangean-

density is L , may be expressed as a functional integral(l4)'

8
Z(6) = N f D] ep {~ J' ar [ % [L-3) 4] | « pauge txing terms |
- ,
(3.1)

where 7 is the Euclidean time; ¢ stands for all fields in the theory and the integral over

the fields is subject to the following boundary conditionin :

w30 = (3,5
and A0} = — (2.8

for bosonic fields

for fermionic fields

N is a normalization constant which may be chosen such that Z{w) = 1.

The free energy of the system is defined through the following eqqal:ions(m) :

FO) = -Fmz., ()
- (e O | .
M) ) = - (33
il
T(BM,) = F(8J) + 5 f er‘ %M, (2) I(2) 3.4
0

F(ﬁ,MJ) is the generating functional of one—particle irreducible Green's functions and is
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the free energy of the field configuration .M; . The effective potential method analyzes T

for constant field configurations M, in order to obtain the phase diagram of the

model( 14)

One can define the free energies of the different types of topolognca.l :

defocts(1O1115) 1y
z
= —pt ln{zl;—‘ . (3.5)
o [Zg
FS = - hl Z; ] . (3‘6)
Z
W
and Fy = -é—m[z-‘-’- : 3.7

where: F_, Fo and F,. are, respectively, the free energy for domain walls, strings and’
magnetic meonopoles. Usually a given model does pot exhibit all the three different
topological defects, se one must consider only the relevant ones. ZM, ZS and ZW stands
for the partition function of the system evaluated when one imposes boundary conditions
that force the existence of a magnetic monopole, string, and domain wall defect in the
gystem, while Z, i the partition function obtained using topologically trivial boundary
conditions (vacuum sector). L is the size of the system.

: 'The various thermodynamical functions can be written, in the one loop
éppfoxima.tion, 25 shown in the Section II, as differences of the effectivé action of the
theory- evaluated at certain field configurations. Let I'(y) be the effective action of the
theory and Py be the consta.n.t-ﬁeld configuration associated to the vacuum of the theory.

In terms of the effective action one can write the effective potential

12

Vege =

r@-re) @9

g

whete the bar stands for constant field configurations.
_ Whereas for the defects that we are concerned in GUTS: (monopele, string and walt)-
one has(u)

Py = [Pl 1) | @9
Fs = £ [Te) —Tioy)] (3.10)
and o ",F'w - #[F(.gow)—r(so‘})] o (311)

that is, all thermodynamical parameters can be written: as differences between the effective

action computed at some special field theoretical configurations and those associated to the

vacuum of the theory. These special field theoretical configurations, within the
serniclassical * scheme, are the defects associated to the _cla_ssic solutions to the
Euler—Lagrange equations of the model.

The general structure of T[3, u,aD(z)] is

n o
MBoal = 3 a1 I f dr,-fd**zj )| TP rtyredy)  (312)

n=1

where F(“)(riil,...,rni:n) are the one—particle irreducible Green's functions,. g, stands

for the fields associated to the defect. If one uses the Fourier transform of I‘(”); given by
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™3, ..t =

Z  d3%; -"().-_ o
o "_fn(wl;,...,wi)x
=1 nX I(2:r)3 s
T

I

x exp|—i z (wprpt il LIS S (31

where' wt'= 2745t and remembering that transiational symmetry allows us to set
SOk = 6@ KBy P TPk @

then, for static field conﬁguratlons (those with which we will be concerned in this paper),
theg;eneml structure of I'(ﬂ,tpn) is

o

Ty = ﬁz %r I j'.dsij@(fif) Moy o) (1)

n—-l

“The- graphs that contribute to T'™®F will involve suins over the discrete w; which,
once performed, yield a term independent of temperature plus one which has the full T

dependence.. This separation can always b& implemented if one uses identities of the form

[ 1

Y sl L )

S R

One can then-split ™ snto two parts -

POEe=0)) = EMEn + P (hw=0) G

14

where the second term contains ajl the T—dependence. The gemeral structure of this
dependence can be inferred by mé.kixig a cﬁange in all internal momenta. integration
variables. This change is just a replacement p-P' =pPpF. After this scaling in the
internal momenta one can predict, from pure dimensional analysis, that f‘.%.“) ({f:i,wiz()})

have the following st.ructm:e;( 14)

-

f:{\n)({ii}’wizﬂ) = 2 Tdn) G7n[ :TI ’%] | (#19)

Ta

where d(7,) is the superficial degree of divergence of a graph <, contributing to ' and

G ¥ is dimensionless. Putting (3.15), (3.17) and (3.18) together, we have
1} . . . .

T(f,e,) = ro(w,,)+z

n=}

. | k; .
J‘ d3kj— @D(__kj) Z Td(')’n) G'Yn[:i-:‘l , E] ﬁ-‘(&j)

Tn

where I'u(rpn} is the effective action computed at the background field ¥p at zero
temperature,

Using (3.9)—(3.11) and (3.19), the free energies of the various topological defects can

then be written ag

O n . .
FD{ﬁ). = [rotep) ~Toliy)] ETrE) X jglf &k Gy (-ky)

n=1




. (zk;) Z ) G‘Yn.[? ' ?] - Z Lot Z i) G’m[.ﬂ’%‘l] Y
7[! Tn 7!1
| (3.20)

where o isap index that, in accordance to (3.9)~{3.11), runs from 0 to 2.

To: get & formal series for the free emergy from any solution associated to a
particular defect, we just introduce it in (3.20). 7

Just for the sake of completeness, we w-:iife the expression for the effective potential.

From (3.8) and (3.19} it follows that

Verd® = $[rota) o] + 3, by ooy 16 [0,2]
n=1 Tn

(3.21)

From expression (3.20) one can see that, in the high temperature limit, the leading
contributions comes from graphs that have higher superficial degree of divergence. As we
will show in the next example, these graphs up to a given order in the semiclassical

expansion, are easy to isolate.

16 .

IV. THE STRING FREE-ENERGY(.S)

In this section we will be concerned with strings at finite temperature(ln.- The ones
we will be discussing were'obt-ained explicitly, in the U{l)-gauge model with spontaneous
symmetry breakdown, by Nielsen and OIesen(”). _

Within the classical context, the energy per unit length associated to the setring is
positive. Since the ones we will consider:a:e,ipﬁgitgly extended, one might argue that such
a structure cannot be present in the system, as its cost, in emergy, is infinite. Quantum
effects, however, might change this plctnre In fact, as has been pomi:ed out by Bricmont
and Frohhch( 5) there is a certain reglon in para.meter space for which the cost in energy
is zero. This implies that one has reached, for these values of the parameters, another
phase of the theory — the one in which the condensation of defects takes place. We will_,
show that, for high enough temperatures, the defect free eﬁergy becomes zero, thuﬁ
signaling a transition temperature.

We would like to stress that our approach is particularly convenient when ‘we are
interested in the production of strings as a result of thermal fluctuations within the usual
framework of Field Theory at finite temperature (and consequently thermal equilibrium).
The picture that we propose for the role of strings in phase transitions is inspired in, the so
called Kosterlitz—Thouless pictare of phase t_;ans_it-_iio_n(?} - In their classical paper they have .,
dealt with vortices which, in the model studied by Kostérlitz—ThouI&es, are configurations
analogous to strings. _ :

In the case of strings, the argument of Kosterlitz and Thouless:-'can be stated in the
following way(T): the Free Energy per unit length.assoéi:.s.ted to .a given string can be
written as _ L o "

Forring (T) = M—TS(T) ' BERNTRY

where M is the mass per unit lex-";gth ét'zero'te.mper'ature and S'("'I‘}, to be identified later,
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is arentiopy terme.

Assuming thas M is pesitive (as in the case at classical level) there is no chance,

for low temperatures, t6 the appearance of strings in the system since the energy cost for

the introduction of a string in the systém is infinite. ' Houwever as the temperature

increases, as will be shown later, the entropy term takes over the mass term, so that for a '

critical temperature we will have

Foring (T) = 0 . ' (4.2)

That is, the cost in energy for introducing one infinite string is zero. In this way for -

temperatures high enough there i a' condensation of strings. The system goes to a phase in
which there iz a.condensate of strings. This entails a new phase of the system. ‘
* In:the case of the string solution one writes from (3.10) and (3.20}

QO

_ | ' Cw e L
Foiiag (T) = .[I‘n(‘i’s)-ro(ﬂov)] %—% E %r jI_=I1 f &%k (k) G(2k;)

ZT"("")G [i

In the high temperature limit (T » w&-’,!kl m) the expression above depends only

on the zero momentum character of G - One can then wnte, in this limit, Fotriog '
- . n

under the form (4.1) where Mg is the energy per unit length of the strmg

My = 'E [Fé(ws)—'ro(wv)] - 0 (44

and

] 21 (pYZTd 7“)(; [ X ] .‘ .'__.(.4_.3)..

18

f a%k (ps(—k ) 63(2 &) Z Td’fn G, (0.0)

- T a=1 =1 Ty
"-f%!(pVZTdT“G (nn) By . (4.45)
7n T

_Within the one loop approximation the gré.phs with higher superficial divergence will

dominate in the high T limit. The superficial divergence has index two, so that, in the
high temperature limit one can predict the general structure of the free energy per unit

length, independently of the model, as

an—ing (T) = . M+ T2 Z £:(0,0) A; (4.5)

where A; is 2 constant that depends on the model, M is the classical energy per unit

length, and gl(o 0} is the i~th conmbutmn of a graph that has superficial degree of

_ dwergence 2.

Tn this Way one Can predlct that, mdependently of the model

M . :
T, = {—mmm— . : (4.6)
‘ i— & Bi { UIU)Ai .

In order to give explicit examples, in field theory, of the structure predicted by {4.5)
we will work with two models. The first model is scalar electrodynamics at finite

temperature. Its Lagrangean density is written as:

R S LW I (@
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The partition function for the theory may be expressed as a functional integral -

involving the Euclidean Lagrangean density, Lo ,- and imaginary fimes, v =it :
: VI |
Z(# = Nt § [de][dA p] ——J’ drdiz L ¢ x (gauge fixing terms) (4.8)
0 .

1 2 . It p .
LE = _IFWFW+ %Dﬂ‘?i + Alo 4’-¢3) COA=IAg L (4.9)
The integral over the fields is subject to boundary conditions in r:

HE0) = ¢(2H)
ASES) = A (55)

The normalizing constant. N is such that N{w} =1.. _

In order to fix the gauge we have to add to Ly, in (4.8) a Gauge Fixing term. In
the Fermi Gauge we just add a term —%E(T”Ay)ﬁ. We shall see that, although the
individual graphs depends on @ (that is, on the Gauge} the Free Energy per unit length is
independenﬁ of @ (that is, Gauge independent}.

Vortices are static solutions of the classical equations and that have finite energy
per unit length. For static solution, the Euler Lagrange equation associated to the modal

(4:9) i the Coulomb gauge (V-A = 0} are
(P-27"9)A = 19"V - (4.10)

Fried) = 270" 02) - (4.11)

By employing cilindrical coordinates (r.8,3) and looking for 3 iﬁdepen_denz solution -

with cilindrical symmetry one writes:

A = 1A() _B%gx;ptr)], - (__442)

Hi

P(r,8) = alr) einﬂ - - - | o (4"13)

Where n is the topological charge associated to the classical solution and should be
an integer number in order that ¢{(#) = ¢(#+2x).
The asymptotic conditions imposed by the finite energy requirement are .

B0

I # o
T =2 @ | = .

In the high t{emperature limit the graphs with highest superficial degree of
divergence can be easily identified. So that, in the high temperature limit the expression

for the string free energy can be written in the Fermi gauge, as

Fuing = — T {T(BA) ~T(8,.0)}

=L18(3.A,) —s(6 ,0)—[+Qﬂ?'+ & +



%} fmfd%[;&;’—ﬁh
—{-;O—r-_* “Q“r‘ = ] [ir [ ors,,

wher& 5 istheclassical action.

{4.17)

' _ After the: renormalization process '_we. get the following. results, in the high

o temperamrehmt '

i . —.I.Q.’_ _%Tzl

[}
}

R
¥
&

H
had

L .
K 41+3e?
Fstring = Ms + gjtge_l Tzf dr 2w T(Pz(r)'“ﬁb{z)) .
0 :

(4.18)

{4.19)
(4.20)
(4.21)

(4.22)

(42)

Where MS is the zero temperature energy per unit-length that can be written, in term of

the function p and F defined in (4.12) and (4.13), as*16:21)

-]

Ms='2rJ; rdr %[%]z[gl’?]u,[%]zﬁpu[glrl]er%[zpz—g:g]z . (42e)

From expression (4.23) one can see that for temperatures high enough the: free
energy of strings becomes zero. The temperature for which this happens is
BMS
T, = - (4.25)
Tar+3) [ dr 1(6fms")

At this temperature the cost for introducing a string in the system is zero and one
expects that condensation of strings takes place thus signaling a2 new phase. As expected

the critical temperature is Gauge independent.




V. FREE ENERGY OF COSMIC DEFECTS

Let us analyse the high temperature behavior of the free energy associ.ateti to
topological deefects that might be relevant to cosmology. In this context an interesting
example will be to study the SO0(10} model. This model exhibits, depending on the
symmetry breaking pattern, ditferent. type of defects. Consider the following symmetry
breaking pattemns. .

8O(10) —p+ SU(S) x Z, —pz+ SU(3) = SU(2) = U(1)
50(10) —g5+ SU(3) x VW)~ SU(3)

I the first case ome expects(%) the production, at the phase transition, of stable
strings. In the second case ome expects the production, at the first phase transition, of
magnetic monopoles. In this way, depending on the symmetry breakdown pattern we will
have the production of different defects in the Universe.

We will show, in the following, that independently of the type of defect its free
energy has the structure predicted by (4.5), that is

Fietecr = M—BT? : (5.1)

In: order to prove this all we have to do is to show that the effective action behaves
like (5.1). Let us give an explicit example. The Lagrangian density describing the SO(10)

maodef ig:

‘= —%FT,(GW Telag +;1fTr(D#szS)2 - V(g) (5-2)

where

24

=)
o
I

W? =9, ¢—Eig[Aﬂ,¢]' T (3.8)

? - .
Vg) = fg(Ted) + 0Tyt ~ 17T 8 . )
D M ¢ in (5.1) is then the covariant derivative and V is the potential that will lead
to spontaneous breakdown of symmetry that depends, in this model, of the parameters a, b
and p. g is the coupling constant of vector boson fields. ) ' . .
The multiplet of the Higgs field ¢ is in the 45 dimensional adjoint representation.
In terms of the fields G|, A" i ' : p i (51) .
erms of the fields G.W A’L and ¢ one can write the Gﬂ” s ~\# and ¢ in (5.1) .
as . .

Gwefirel e
A, = J%a‘i A:f ] L (5.6)
¢ = J—Qr'aij e I e (5.7)

Let us analyse the behavior of the free emergy --associ;ted ‘to-a classical field
theoretical configuration associated to a set of 45 Higgs fields gt:é and 45 gauge bosons AL
Up to one lcop approximation the free energy of the topological defect has-the
structure predicted in section HI that in the example that we are considering has the

expansion:

%



+ 00000 +

(5.8)

S.g 15 the classical action associated to the background field, Z_ab(T) can be represented

graphieally. as

Zab(i) - ' o {;} (59)

whereas. Hgg(T) can be represented as

s _
B g v B 27 o M

frrd }._.4.. ot e+ VL

1y = _ P e " - (5.10)

The wavy, solid and dotted lines stand, respectively, for the gauge bosons, Hipgs and
' b

ghostv.ields (for the fluctuations we are working in the Landau gauge). wa can be

identified as the polarization tensor for zero external momenta(lg). Following our earlier

prescription (3.17), we can also write

Y - )RS WIS e

ot 0T (5.12)

ab a

HW(T): 11”

First of all one notes, looking at (5.8}, the appearance of uitraviolet divergences.

These, however, can be treated, as usual, by adding appropriate renormalization

counterterms which are just the usual oneé at zer¢ ternperature. This means _tha.t the zero

temperature renormalization scheme suffices for getting finite expression to free energies of

topelogical defects subétituting (5:11} into {5.8), one can obtain the topological defect free
energies of the SO(10) model -

' 8

& ab
F(T) = Md—j Y (T) f drf ds?b[?r:(%) (3 - vﬁ] -
_ | |




g . . S : o LTy o =12
1 ~ab _ ‘b . . . gg ¢ F18 N ,-
- nZ,,(T)f qrf FEABHAB+ (5.13) _#_O.z,;v -4, s o (5.18) ]
0 _ a b —3 8T, :

for pand/for r=14

where now Md stands for the renormalized méss of the defect at the zero loop level, ; ‘
N T N . 4g2'1‘26‘?b6w for  pr =12,
g (T} and I'IW('I‘}- are given in {5.11) and (3.12), the fields * and A# are the _ K = _ (5.19)

classieal field. theoretical configurations associated to the defect and the dots represents -4 g T bﬁp,, for wandfor v=4

contributions that are not shown in (5.13).

Omne could go further and write down similar expression for all the one—loop graphs . " § E v . '
for the topological structures of the SO{10) model. However, instead of doing this _ - N -%—0 g' T bﬁw . (5.20)

explicitly, we will just analyze the high temperature limit of the free energy. In this limit,
the-form (4.3} is particulazly useful, since the leading power in T of series (4.3) is easily

obtained. Property (3.18) permits us to identify those contributions, which are the ones From (5. 3)—(5 14}1 (3 1) and- (3 12) we have the asympt:otlc expressions for X (T)
with higher superficial degree of divergence. These contributions are precisely the ones we aﬂd n (T) o - )
have written explicitly: .
: . - S . : ~cd .
In the high temperature limit, the graphs appearing in (5.9) and (5.10) yield Z (T) ~ T [252 + %1' [ %& . 729'}” £ (5.21)
: meyr) ~ ~Hpmepbs (5.22).
=-[H, 4 720b] o (5.14) ad
m ' n - 1_ 12 )
One obtains from (5.13)—{5.22) the high temperature behaviour
__,le = —4 g'T?pb ' ' (5.15) {5
. Fu(r) = Ma+ oo+ by (42 v [ L2V sasa-st i+
. =1 o
"2 amoah ) _ . e L a .
" ,’"", v —35'T & 6#” fm.' Ty = 1,2, 610
SN - ggz’l‘zb“b& "~ for pandfor p=4 - 14 a3t .
: 3 et 212 J. 2 A o T (5.23)

+F—Q+ = - % FTF0E,, (5.17)
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- The appearance of the term . f fi5s 3 [Ak] ‘in the. last expression seems to be a
problem First of all becanse it seems to be not gauge invariant and, finally, because it
dx_ygrg&_p- . This implies tha.t in order to be oonms.t,en_t one bag.to adopt a "physical”! Gauge
for theba.ckground Field. _7 We:take the background in the Gauge A:: 0.. Only in this
Gang we g fi it for the Froe Enegy of the siing, ‘Thi ha boen discussd, in
the case of the Nielsen hd Oléen string in ref. {16}.

_ ’I‘he oonclusmn is that also in the  50{10) model one can predict, for the Free
Energy a.ssoc:a.ted to any defect in the high temperature limit:

Fy(T) = _Md-—BTz {5.24)
where-B. is the constant that depends on the classical solution associated to the defect and

Mg is (in this approximation} the classical emergy (per uait Lemgth or area) of the
topological defect.
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VL. APPLICATION TO COSMOLOGY .

- In. the preceeding sections we have shown that for temperatures high enough there is
condensation of cosmic strings. For a critical temperature there is condensation even of
infinite strings.

Below the critical temperature only finite strings are allowed to exist in the system.
In the following we will consider. the formation of finite strings of length L and, by making
simple hypothesis, we will compute their lengths as well as their distribution.

We will make only two hypothesis. The first one is that the strings that are formed
below the phase transition do not differ {except for the finite length) from the strings that
we have dealt with in the preceeding seetion. More explicitly we assurne that the Mass
(Mgiring)s free energy (€,.;,,), and Energy {Egtring) 2nd other relevant physical quantities
associated to a single string can be obtained from analogous quantities defined per unit
lenght, for the infinite string (M,, F, |
lenght of the string (L). That is:

Eg, --.), by just muitiplying these quantities by the

fst.l'iug = LF; _
Mstring =LM; . B - {6.1)

Hypothesis (6.1) car be understood on very simple grounds: it means that the finite
strings formed below the critical temperature are just the ones formed above the critical
temperature but, due to their instability, has broken into pieces of smaller sizes of length
L. Tﬁs hypothesis, that Mst,ing =LM,, can be used for deriving time independent
d'eﬁsity perturbations in a very simple 'way(24).

The length of the string should depend on the temperature. Oné can expect that as




3L

one increases the temperature the length of the string increases. That is, thermal

fluctuations. induces the creation of strings of higher and higher length as the temperature
increases. As a matter of fact we have seen that at the critical temperature even strings of
infinite length can be produced. This means that at this temperature one should éxpect
that

LTy == . ° N (6.2)

The other hypothesis that we will make is'that the gas of strings is a dilute one.
Under this hiypothesis one can write, for the partition function {Z) of the dilute gas,

Zr=expc;§ exp{ fd%fd% '-”Eﬂms} 6

hJ

where Z is the partition function a.ssociated 10 one string,

The Energy (Egypnq) of a string moving with velomty V in the nonrelativistic

limit, 15(20)
Msl:ring a2 - 2
Estring snrmg {(T) + _2_"" v o= fstring (T) + §M;Pm_ng - (6-4)

~ From (6.5} and (6.4} it follows that Zg can be wriiten as
1
- T fstring(T) [

Z .
S

= Ve
Z,

It follows from (6.5) and (6.3) that the free energy of a dilute gas of strings (VF =
=—TlnZ-) will be given by
v .

. 13/2 - .
™ ;trlug:l N | (65)

32:'

. 1. ) )
o e T F e 3/2 . o -
cmllLm T 'string TMssrine 1'% ¢ N
F==Te | [ — ] _ .(.(?'.6)

Although we have made use of the nonrelativistic apprdﬁ:‘nétibﬁ'dhe’ cin show that'
the relevant term [TMsm,-lg}:"/ % ‘¢an be obtairied without resorting o thiis. appm:uma.tmm
In Field Theery it follows by just taking into account ‘the zéro modes. This i shown in
Appendlx B. o : ' '

- By making use of our ﬁrst hypothems one can state that stnngs of Iength L, , in the

dilute gas approximation, has a free energy whose ¢ expression is B

L. LEg(TY} -
T (LM

Tr | (67)

The length L is a parameter as yet unknown. However L can be determined by
remembeting that, for each temperature, there will be a length L favored by statistical .
arguments. This length L is the one that rinimize the free energy. The system produces

strings whose size can be determined from the condition

> 0 (6.8) |

2
& _ [Q
L=L

: - 2
dL|} dL

It follows then, from (6.7), that the length of a string as a function of temperature

will be

r . (6.9)

= Rm

b e

At this point we would like to comment on our expression (6.9) for the length of

strings produced as a result of thermal fluctuation. In the first place the length of these




strings tends to zero as- T goes to zero. This follows from (t_3.9_) and. expression {6.2). This

° is also expected in i)hyéicai grounds. Fina.lly, one ca.ﬁ see from t.:hjs e:_cpfessiqn that at the

critical’ temﬁeratu:e, for which F (T } =0, stfings of infinite length are favored. Iﬁ .om;

scheme: the critical temperature T, _‘ defined 4b¥ (4.2) i3 the same as the critical
ter;lperature defined by (4.2). Both scﬁemes are, thén, totally compatible.

Let us turn now to the computation of the contrast density due to string production

a5 a result of thermal fluetuations. The contrast density associated to any type of defect is

defined through the expression
dp _ Pefect Pdefect . (6.10)
» Protal Pdefecy T Pelen.part
. For strings one then has
. & _ Pstring . (6.11)
g P Psuring  Pelen. pars

The energy density associated to strings whose average number is N(T) and whose

mass i Mg pqpe 157,

SF(T) Mstring
Pstring = —————— (6.12)

\'Z

Since N(T) is given by(lg)

. | N(T) = Z% : | (6.13)

One can write from (6.15) and {6.16), for & dilute gas of strings of length L, -

_L(MF(T) .
T .

T L(T) Msfﬁ’
pseriug =€

BT

4

L(T) M, . (6.14)

For the most favored strings, those obeying .(6.9), one gets

(&) 3 e

. 2 FAT) (6.15)

pstrings =

Expressions (6.9} and (6.15) are the main results of this section.
In the high temperature limit, as we have argued in section III, and given examples
in sections III and IV, one can compute L and Psuring  €Xplicitly. We can write, on

general grounds:

F(T) = M,—BT? (6.16)
' 2
= MS[I—«T—Z
TC
oM
where T2 = — (6.17)
B
Where, for the Nielsen—Olesen strings, one gets from (4.23)
a3er ([
B = ¥l f r de(¢3-p3) o (61g)

0
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For Fy(T) given by (6.16) one geté -
Lt =3 T (6.19)
Ms[l -
T
with T, defined in (6.17) and
: - 3 13/2 ‘
pstring(T) = %[%] 'i""-—"2 572 (6?.0)
L3

¥
Since the contributior of the eIemeﬁtary particles can be written in terms of the

number of degrees. of freedom fermionic (Ng) and bosonic (N;) as

ol

7
pelm-m_ = T [NB +§NF] ‘I"g - . (6.21) )

The-contrast density will be given as

Sk
Il
L
.
—
&
&2
)
e

1+3?%[NB+%NF][1_?] 2

For T below T, and for NB + %NF » 1 the contrast density is small and can be

approximated by

w 1 ) (6.23)
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For the SO(lOI]H'm-odeI one can write (f(’)r:' T < T,), taking the effective degrees of

freedom of the minimal SU(3) model.

N.B +§NF = 160.?5 - o _ [6.24.)
So that for TAI-%TC: one gets’

. This result is compatible with the bounds i'mposed--by“ the anisotropy of the
background radiation.
Another interesting result of this section is that ge is almost independent of

temperature for T < T, and can be approximated by

7
9[NB tg NF]

In this way we showed that the density contrast in the scale~invariant {Zel'dovich):

spectrum.
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CONCLUSIONS:

.. In:this paper we have developed further an alternative method to the study of phase

transitions; in field. theory. at.finite. temperatures.. The distinction from the usual approach,

based on::.the: effective- potential,. is.. that: we deal with.space—time. field theoretical

confignrations.. Qur analysis i3 based on the free energy associated. to topological defects.
Im this:context, the critieal temperature is the one for whick the free energy goes to zero.

+ Up-to-the:-one loop level and i the high-temperature limit, one can easily compute
the leading; contribution:tos the. free eﬁe’rgy of strings. In the one loop approximation only
graphs: with superficial degree of freedom of order 2 coniributes. There are only 2 few of

‘them: in: this- approximatiom:: We have illustrated how to compute the free energy of the

Nielser—Olesen-string and the strings of the SO(10) model. We give explicit expression for

‘the critical: temperature.

The: temperature for whieh: the free energy of the string becomes zero is a critical

onex'- Ak this: temperature- there. is- condensation:-of strings ‘since- the cost in energy for

introdueing a: such an objeet: is zero. The-condensatior is enterely due to thermal effects.

Thermal fluctuations cannot be ignored in any string driven mechanism responsible for the

farge: seale- structure of the Universe: - We have developed a very precise scheme for

determining. the Free Enmergy of topological defects and applied this scheme to the

computation- of the eritical temperature.in the high temperature limit. The critical
temperature is relevant because, in our picture, at this temperature, large (infinite) strings

breaks down. into smaller ones.

* Withim the dilute gas.appro:dmé;tion Jone.can get extremely simple expressions for

the length of strings and their density as a function of the free energy per unit length.
In temperatures just below the. critical, one gets very simple expressions for their
legnths and for the density contrast.  In particular we get, for any renormalizable model,

within the semiclassical approximation the result

38

g
I
-

L+ 3’% [NB+ I NF] {1 - b ]572% [igﬁ]s/z

This expression is the main result of our paper. In the first place because it shows

practically no dependence with temperature (or sime). That is, for T < T, one can write

o1
[ T\F
Q[NB+81F]

One gets in this way not only the scale independent Zel'dovich spectrum but also a
totally compatible density contrast for models for which NB + ngF >100. That is, a
Zel'dovich spectrum with the proper order of magnitude. This is the case of the SO(10)
medel.
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'APPENDIX A — GENERATOR OF 50(10)

For SO(10) model the 45 géuerators are given by
0¥ = & (r'ri-Tir
't are the generalized Dirac matrices.

Constructed by the Pauli matrices, ¢y, o,, 03

I, =ogxoxlxlxa,
Iy = gynapyxixoyno,
Py = axoyxlxoyxog
Py =oyxmpxlxgyxl
Py =@\ oyxlxayxo
Tg = oynopxlxo o,
I; = alxas'xarlxlxl
Py = quxogxopxlxl
Ty = oynoyrayxlxl

Tpo= oy3x1x1x1
T'; obeying the Clifford algebra

LT+ = 26 ij=1,.,10

if

The commutations relations of the 45 generators of 50(10), are given by

[550xd = 28050+ 8oy~ &5 — S 7ip)

(A1)

(A2)

(A.3)

(A.4)

a0
APPENDIX B
We will develop in this apperidix an’alternative way to obtain the expression (6.6).

We will make use of the semiclassical expansion"as‘a' approximative method to obtain the

free energy of closed strings with radius R. By making use of dilute gas approximatioi;

the partition function is given by(ls)

R 1 . ce o d

7= 7 exp[zo] | | o (B.1)
hore o e
| ® = ¥ det—‘ﬂ[-_v%v"wv)] (B2)
and . -

ey o : g
7l = e @) det_llz[—vz-i-\f"(qbn)] e S (B3)

Tn (B2). ¢, is the vacuum.of the-theoty, and. g, , in'(B.3), is a feld theoretical

configuration describing 2 topological defect at rest.
Being -
VF = -Tlnza'-- e e (BA)

‘and treating separately the zero eigenvalues; one obtains from (B:1), (B:2) and (B:3) -

F = '_Tz:+1 -Swn)rﬂ [d"t'(‘ww"wn)}]_lm .'(',{S(‘ﬁu.):‘s(%)l '_ {1:%."5)

27 det (V24 V"(5,))

where the prime indicates that the zero eigenvalues of :—ﬁ‘-’-f-V"{éD) must bé omitted from
the determinant and z is the number of these eigenvalues, which in this paper is three (we

are working with tridimensional theories).
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From {6.6) and (6.7) we obtain, in the high vemperature limiz,

S(op) 122
_ _Tz+l[ (iD)‘I exp(—ﬂfD) (B.6)

where: 5(¢) is the classical action associated to the topological defect and f, the free
energy of one defect.

Within the finite emperature scheme and for string

Mstring

S[og = ot

For finite strings z=3 since we have J translational zero modes. From (B.6) one

gets

1
F=-T [TMs]z'm e_TfString .

T (B.7)

That is another way to derive {6.6}.
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