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ABSTRACT

The Uniform Semiclassical Approximation is modified to take inte account
absorption. Symbol caleulus and pseudodifferential operators techniques are employed for
the purpose. The resulting theory, very similar to the one developed by Frahn and Grosé
permits the decomposition of the near—side and far—side amplitudes into diffractive and
refractive components. Application to several heavy—ion systems at intermediate energies

is made.

L INTRCDUCTION

In recent years t.heuéla.s'ﬁ_c.'scai':_t:efing of he.avy. ions h;lé'reﬁeived renewed interest
both expeﬁmentall.y a.ﬁd theorét'i'(ia_!.ly. " This stems prmmpa.lly from the availability of
higher energy heavy ion beams w.hich‘ ma'k.es' possible the stu&y 'of the ion—ion interaction
at shorter distances. One of the most conspicuous manifestation of the probing of short
distances in the system is the occurrence of a nuclear rainbow. This effect is connected
with the internal branch of the deflection function 8 = 2 %«;(g, where §(f) is the total
(Coulomb + nuclear) phase shift. A minimum in this branch at 4, (at negative angles)
would naturally divide the angular space into the dark side, # > #. and the illuminated
side #< 4. At angles smaller than 4§, the angular distribution would, under ideal
situations, exhibit Airy oscillations, followed, at # > 4, by an almost exponential drop.

The presence of strong absorption in the low—{ partial waves, considerably modifies
the above picture. The contribution of the inner branch of the nuclear deflection function
in the rainbow region is strongly damped. Aci:ordin'gly the Airy oscillations are expected
to be washed out. Nevertheless a remmant of fhe fa.inbow will be seen in the cross seetion.
The analysis of the elastic scattering data at intermediate energies would then supply
invaluable information about the deflection function at negative angles and correspondingly
the underlying ion—ion potential. The most spetacular case of a nuclear rainbow is the one
"seen" in o—scattering from medium mass nuclei.

The common procedure usually employed in the analysis of the elastic scattering
data is the optical model andfor the coupled channels metheds. This is dome in
conjunction with the near—far decomposition of the resulting ampIitudel). Such a
ciecomposition is quite useful ag it separates the repulsive; Coulomb,  comporent of the
interaction from the more useful nuclear interaction: the near-side component carrier

information aboul the repulsive interaction (positive angles), the far—side component is




primarily sensitive to the attractive nuclear interaction {negative angles), responsible for
the muejear rainbow.

An alternative method of analysis is based on the use of a conveniently
parametrized S—matrix, from which semianalytic expressions for the scattering amplitude
are derived. This has been pioneered by Fra.hnz) who employed this procedure primarily to
the analysis of heavy ion scattering at low energies, where the near—side component plays a
dom_issaut' role. Though Frahn has always emphasized the réle of strong absorption and the
resulting diffractive scattering in ‘the heavy lon system, his method is general enough to
accomodate strong refractive effects such as rainbows and glories. In fact Frahn and
Gross?’) have layed down the grounds for a quite general and powerful framework, based
directly on the S—maftrix, through which nuclear refractive effects can be studied and
anzlysed, clearly in the presence of strong absorption. Very powerful'methods such as the
uniform semiclassical approximation (USCA), may be easily extended to strongly
absorptive media using the result of Frahn and Gross3). Unfortunately the F—G theory
wag never subjected to realistic numerical tests.

It is the purpose of this paper to supply such tests. This stems principally from the
fact that only recently, the relevant intermediate energy HI elastic scatiering data
necessary for such tests, have become available. Further, recent da.ta.4) ‘and a.na.lysis‘:'}
suggest that a further decomposition of the near and far amplitudes into retractive and
diffractive components may be quite.usefﬁi.' As we shall show, the methods we develop in
this paper enables us to perform such a decompdsition ina ré.ther simple way. In a way,
our paper may also be cons:dered ag a genera.l:za,tlon of the uniform sermclassma.l
appmmmatmn to absorptive mteractmns

Several recent theoretical work om heavy—ion elastic scattering . are worth
mentioning in connection with our ‘developments. In particular, McVoy and
collabora.torsﬁ) have recently done extensive work on the analysis of intermediate energy

elastic scatering angular distributions through numerical study'of the contribution and

v

interference between different physically identifiable pieces of both the near and far
amplitudes. Vigezzi and Winther7) have applied the Knoll and Schaeffer methods) to
discuss both elastic and quasielastic scattering of several heavy—ion systems. Finally, da
Silveirag) touched upon a question very close to what we discuss in the present paper,
namely the modification that absorptxon inflicts on rainbow scattermg Our method is,
however, more general.

The paper is organized as follows: In Section II,' the near—far, diffraction—refraction
decomposition of the scattering amplitude A la Frabhn and Gross is fully reviewed. Several
improvements and genera.lizations'of the F-G formalism are also developed in this section.
In Section III we introduce the powerful method of symbel calculus, necessary for practical

evaluzation of the .refractive and diffractive components subsequently discussed and

- developed in Section III. In Section IV we review the uniform semiclassical approximation

for the a.bsorptlou free amplitude and develop asymptotic representation necessary for l;he
application of the techmques discussed in Section III. In Section V we apply our formalism
to elastic scattering of several projectiles off 2Pb "at intermediate energies. Finally in

Section VI we present our concluding remarks.




II. THE NEAR-FAR, DIFFRACTION-REFRACTION DECOMPOSITION OF THE
SCATTERING AMPLITUDE

In this section, wé preéent in full details the formal development of the elastic
scattering amplitude, up to the point where the different and diverse physical effects
associated with absorption and refraction may be easily identified and considered on the
same footing. Whereas Frahn emphasizes the diffractive effect of absorption for the
ptrpose of obtaining closed expressions, other authors treat absorption approximately
- (semiclassically) in favor of refractive effects such as rainbow for whose treatmeﬁt the
uniform semiclassical approximation may be utilized. _

It is our purpose in this section to present a less prejudiced discussion, within the
formalism developed by Frahn and Gross. We extend further the F—G formalism in such a
way as to make it amenable to a detailed numerical investigation. For this purpose and
also for the extention of the uniform semiclassical approximation to the case of absorptive
scattering, it is useful to find a way of relating the absorption—meodified amplitude to the
absqrptionmfree one. We accomplish this below through the introduction of what may be
called the diffraction operator.

We use below the notation emploved by Berrym) . The elastic scattering amplitude

[

o ais :
(0 =g Y, (e+1/z)[1sgl o E—I]Pf{cosﬂ) . (IL1)
=

Eq. (IL1} differs from the one used by Berry in an important aspect, namely that the
partial wave amplitude S is allowed to have a modulus smaller than one, as unitarity
requires in absorptive scattering, i.e.

S0 <1 (.2)

We now proceed and decompose f(#) into tis near and far components through the use of

the following asymptotic form of the Legendre function

P, (cost) = Lo 22)51110 cos[(2+ 1/2)9-—-1r/4] (IL3)

valid for £' < #< 7—£ . The near-side, ) | and far—side, £, components of £(6)
are just obtained from the i, and e*/2g yranches of the cosine function in

Eq. (1.3}, respectively

f{:l:)(g) — 1

\2 eziﬁ()\)l's( ] SFA T4 (1L.4)
iky2asind ey

As £+ 21—
where the factor (—1) is dropped as it contributes only at #=0, a region necessarily avoided

here as long as Eq. (3) for P, {cosf) is used. The above equation can be

Poigson~decomposed as

@ = —Lo Y [ alsy)
0= iy % J; 15001
x exp[i(éﬁ(k) + 2maA i.)lﬂi .1r/4)]. . | .. e _. | . .:(_I_I._5)

For simplicity, we consider the case in which the deflection function 2(d&(A)/dA)
never exceeds +r. Then the m=0 term in the above sum approximates very well .

Introducing the notation y5ing (8) = I*(ﬂ) , we have

[
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() = ‘?:WJ‘ f dx AY2|S(0)1 expli(26(A) £ AB) (IL.6)
1 T .

where ﬁe kave extended the loﬁrer limits of the integrals to —o (with [S(A)| =0 for
A=0). "

It is clear from Eq. (IL6) that 1(#) is simply (aside from a constant) the Fourier
transform of A 2|S(,\)]é2i5()‘);:l(")(a) = I(+)(—6) is the Fourier transform taken as a
function: of {—#8) of the same A—function. We now introduce the absorption free amplitude

I,(6) as being the Fourier transform of AY 218() |'e2w()‘)

+iT/4

ik 27

Io(#) = ¢

f dA A2 expli(26(3) 5 A8)] . (IL7)

In order to obtain ar equation which relates I*(a‘)) to Iﬁ(ﬁ), we use a three—step
procedure; we first inverse Fourier transform (I1.6), divide over |S(A)] and finally Fourier
transform back. Denoting the Fourier transformation of a function G(x) by Fx_’pG , we

have, for the near—side amplitude
FraglISOIN Fgy 18 = 190 (1L.8)
The operator (F ,\_"G(IS_(,\)I*} Fy.,) is an example of a class of operators called

psendo—differentia.lll). As long as |S(A}| is representable as a polynomial in A, the

following relation holds

FrfISOIY Py = }s[igyﬂ_l . )

A similar analysis follows for the far—side amplitude 1°7(8) = I)(—¢) , in which the

pseudo—differential operator is

Fy glSITF_,, = \s[iﬁ]]_l . (IL10)

We thus find the follwoing important relation (In what follows, we drop the I superscript
since 1°)(8) = 11V (—g).)

\s[igy][_l (8 = 1,0 (Ir.11)
which formally solves to '
16 = |s[i 3-0” W0 . (IL12)

In fact, each term in the Poisson sum, Eq. (IL5) can be considered as a Fourier

Ii

w
transform in  the sense  that I(*)(B) = 2 e imm I(i)(ﬁa: 2mu)

+ir/4 . . : —1
= e—w—J’ dAa ,\1/2[S(I\)|ez'6u) x ePMOEIEM) |S [ﬁ Eli%J I I(*)(G ¥ 2mr) =
ik 27

=1§*’(e; 2mr) and accordingly a relation similar 0 Eq. (11} is valid for the full

" amplitude, Eq. {IL5). It is interesting to observe that with a Fermi—shape |S(i(d/d#)) |,

Eq. (11) takes the appealingly simple form eA/A I(#—i/A) + I{(#) =1,(#) , which can be
[i+]
solved for 1{0) as I(f)= ) Io(f+ (ni/A))e A2 we have opted for the
n=1

integral equation approach to avoid dealing with complex angles.

Eq. (IL12) shows how diffraction comes into the picture as a result of the
application of {S(i(d/d#)){ on the otherwise purely refractive amplitude I,(8) . Ii seems
natural, therefore, that an approprizte name wo be given to our pseudo—differential
operator, |S(i(d/d#)|, is the “diffraction operator” D . For convenience, we introduce

the notation-
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Ko = <ol . . - - (iI )" function  |S(A}| = [exp[Ag=Al/A + 1jt. A "here' measures the extent’ of the surface
13 T
L) = <fl> . region in angular momentum space. Semiclagsically, it'is approximately given by ka with R
Thus . ' o a being the diffusencss of the density profile of the scatterer and k the asymptotic wave '
. . o number. We ﬁndm’ls) . . o -
[I> = Di> = f d¥ D|#><f i3> (I1.14)
and ra (g TR
F [gxisen] = 8L eqpn (09
. A(e-0) (4R sioh [7A(8'-6 B L
<> = fdﬂ' <ID|I><F 3> . (IL.15)
C= A=) explid(0-0) . . (I17).,
The matrix element <8[D|#'> is just the Green function corresponding to Eq. (IE.11). Tt -
is the degree of non—locality in #-4' that determines now diffractive the scattering is. In where we have introduced the damping function
fact, as we show below, most of the diffractive effects in I*(B) are contained in the _ '
.. . : _ fip.8 ' ;
pringipal part pf-the ¢ integral. | \ AY) = sh= - (IL17')
We present now an analysis of the angle Green function <d[D{#'> = G(8-8). _ )
E
Owing to the unitarity limit of |S{A)|, namely |S{A}| =1 for A> Ay, where Ap Thus, very diffused systems (A ¥ 1) are characterized by a small non—locality in G(8-¢') , :
characterizes the extent of the scatterer, it is safer to express G{&~#) as a Fourier since on¢ has °
transform of (d/dA)|S(A)| . This invelves explicitly extracting a pole term, (#'—f+ig)™ .
ith the small imaginary part used ¢ 1 ) N e b7 1 —enjep| P00 E
wi imaginary part used to guarantee convergence G(4-0) = irr ;1%1 = - TA(0-8) 6T i | e , (11.18)

We obtain (this relation was originally obtained by Fraha and Gross3) in a slightly

different, manner) .
~evenfor # very closeto #. The degree of non—locality in #, and accordingly the degree

; of diffraction, is measured by (1/xA). The above situation represents a case of weak

i 1 d
Go-0) = L o2 F [ S(A ] . (IL16) :
7T T " A-(0-0y [ 3X 151 diffraction (the largeness of A forces G to be dominated by its on—shell part).

The other extreme A -0, gives
The Fourier transform F I 9_8.)((11/(1/\)[5()\] |} measures the contribution of the

G-y AL, L lim T © , (1L19) s
. o=

surface. Sharp surfaces are characterized by &like behaviour of (d/d))|S(A)] , resulting A (0'—6)
R
in a constant behaviour of F A=ty d/dA]S(A}| . Diffused surfaces give rise to a wider

distribution in #'—4. For the purpose of illustration, we take |S(A)! to be a Fermi
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namely "infinite" .non—locality. This would represent an extreme case of diffractive
scattering such as the case in Fraunhoffer diffraction.

From the above discussion, it would seem natural to extract what we may call the
diffractive component of the scattering amplitude, from the contribution to the amplitude
arising from the off—shell part of the angle propagator. Writing the Green function
G(¢-4)

G(#-8") = G (-8) + Gl 0~0')
Conl-8) = 5XE-0F\ g | I 15001]
Cet#9) = 5P gy Fros | 3 150)1] @)

where' on and off refer to the on—shell (delta function) and off—shell (principal integral)
parts, respectively, we define the diffractive component, ID(ﬂ) of I(#) as the stationary
phase. contribution to I ¢(f) (where L is I calculated with G replaced by G ,
Eq (IL20). Thus | o

A(A(8 -0 A (F~
1(6) v %;J-—E,A—ﬁgi) ag e X 0)10(0') . (IL.21)

" Accordingly, the refractive component, I, of 1(8) is a sum of the on—shell piece of

I and the remainder of its principal part

. oy AA(O, -0 T
IR(:ﬂ)-_=%I0(9)+%fdf)'[“&gﬁ A gAfﬂ }e‘A(B'_mIO(ﬁ') L)

Equations (T1.21) and (I1.22) are valid for angles larger than f, . which is the

13

statlonary point angle obtained from the condition
d
[A8 + phase of I,{#")] 5 _ = 0 . (11.23)
d& "o le=a,

If I,(#) is dominated by a stationary phase then HA is just the corresponding
classical deflection function. However, Eq. (21) can be used in a more general sense. For

instance if there are more than one s.p., [ becomes a sum of their contributions. We

D
remind the reader that our refractive componeng IR is not the absorption free amplitude
T{(#) , since it is modified by absorption through the second term in Eq. (IL22).

Whereas Eq. (IL.21) for L,(8) is readily calculable once Iy(#) is known, not so for
IR(E) , Eq.(IL.22). The principal part integral is cumbersome t.o evaluate numerically.
For this purpose we develop in the next section an aiternative and apparently more poweful

techniques which will enable us to evaluate refractive component of the scattering

amplitude. This technique is known as symbol calculus and it has been recently reviewed
by McDona.ldM).
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I. PHASE SPACE EQUATION, SYMBOLS AND THE REFRACTIVE AMPLITUDE

In the preceding section we presented a general method for the separatior of the
near— or far—side amplitudes into a diffractive and a refractive components. The form
obtained for the refractive component is not very convenient from the numerical point of
view (of course one may obtain it Dy merely subtracting I .{#} from the total amplitude.
However our aim is to develop a full theory of these components).

In the present section our goal is to develop a scheme through which the refractive
component can be calculated easily. given the general structure of the absorption—free
amplitude. To achieve this goal, our sirategy will be to go back to our pseudo—differential
equation, to construct eikonal (WKB) approximate solution for it, resorting to phase space
and symbol techniques. The method to do this is described in a recent Physics Reports by
$.W. McDonald'®),

The first thing we have to do is to derive an equation which envolves only operators.
Our basic equation, (I1.11), is an equation for the vector |I>, but if we multiply it by its

conjugate we readily obtain the equation
DHI><I| = {I><iy|DT (IIL1)

for the operator |I><I| ., where D™ and DY are the inverse and the adjoint of the
diffraction operator. We observe that the diagonal elements of the projectors |I><I| and
|Io><16f are just the complete and absorpiion—free cross sections.

The rule to construct a symbol of an operator may be derived from the relation
between the diffraction operator and its symbol. It is easily found that if Q(8,#") is an

operator and q{#,A) its symbol we have

15
a(8A) = f saEesgedd T gy
and, inversely . N _
Q6,8) = f%’%q(ﬂ,;\) U (I1L.3)

In fact, it is readily verified that in the case of D which has the explicit representation

D(8,0) = f 4 53] NEH) (IEL4)

w0

we gbtain from Eq. (H1.2) the symbol

d(B)) = f dsj N s AN =50y ' (HL5)

as it should.

For the projectors [[><I| and |[;><I,|, Eq. (IIL.2), gives respectively the

symbols
s(8,0) = f ds 1(8) I*(8-s) €25 = 27 1(8) T*(\) &7 (I1L6)
and . .
so(BN) = 2r1(0) TX(n) €A (.7

We obtain now the rule to construct the symbol of the adjoint of an operator. By

definition,

[¥3




16
with -
Q08 = QX0 . (I1L9)
Using Eq. (IIL3) we get :
T » _
atey = f ds X g* (45,0 AN ~ (HL10)
-0

Expanding q*(ﬂ—s,/\'} about # in its first variable, we derive after some manipulations,

the result

id, 8
at(8r) =e * ? g*(an) (IIL.11)

where- :9)" and 36 stand for the derivatives of the function at the right and the
exponential operator is defined by its Taylor series. Since the diffraction operator is real

and its symbol is independent of #, the formula above gives
+ -
aten = IS0y . (I1.12)

Obviously, the symbol of the inverse operator is just the inverse of the symbol of the
operator. Thus we have deﬁned the symbols of the operators which enter in Eq. (IIL1).
However we still need the rule to construct fhe symbol of a product from the symbols of
the__ factors. We proceed now to derive it. _

Let Q,(8,0') and Qu(,8") be two operators, q,(4A) and qy(4,A) their symbols,:
and q(0,A) the symbol of their product, then, since

(QQ)(0.8) = f af" Q,(6,8°) Qu( 0,7} - " (HL13)
we have

a(8A) = f ds 40" Q,(6,87) Qu(0",0-5) X (IIL.14)

Expressing @, and Q,, using Eq.(IIL3), in terms of their symbols we get. after
integrating in ds

a8 = f a8 P2 q,(0.) ap(1,2) TN ()
Making the substitutions ' = #+s and \' = A+q we find

a8 = f ds 38q,(0+q) ay{f+s,0) € (IL16)

Expanding q, about A in its second variable and q, about # in jts first variable we

deduce after standard calcula.tiohs, the relation

- -

id) 9, S
q(8,1) = q(fA)e Q(8A) (IIL17)

where the exponential operator is defined, as before, by its Taylor series and the arrows
indicate to which function the derivatives are to be applied.

Using the results we have just derived we find

- - - =+

L 10, 8 } a N g 18, B
5017 e A P Ty €M = 1) TEA A6 A O |50 (IIL18)




o)

Since [8(A)! does not depend on #. the right hand side simplifies and we can also drop

the common factor T*(A) in both sides of the eguation. which is written finaily as

+ =+

4 10 6
1S e A Pxe M = (g M (IIL.19)

This is the phase space representation of the Eq. (IIL.1).

This phase-space equation may be understood as a linear inhomogeneous
differential equation of infinite order. It is easy to prove that its Green's function is just
the same of the original pseudo—differential equation and consequently it is possible to
write down its solution immediately but this will not lead us to anything new, what we
intend is to use it to generate approximate asymptotic solutions. To do this, we. make the
assurmption of the eikonal theory that the approximate solution we are looking for has the

form

1) = c(a 90 ' (TI1.9)

where C(4) is a slowly varying function of & while $(8) wvaries rapidly in the
semiclassical regime. Substituting then this ansatz into the equation and collecting terms
of the same order in both sides of it we determine C(8) and ¢(#6).

Before substituting I(#). we observe that the diffraction term we defined in the
preceding section is.a homogeneous solution of Eq. (II[.19) for 44 gy . Of course, this
follow from the fact that it is just the Green's function of Eq. (II.11}. It is then possible to
interpret the diffraction contribution as the solution of Eq. (II1.19) with no source.

Inserting Eq. (II.9) into Eq. (II1.19} with the r.h.s. zero we obtain

g

n=0

1=.4

d)“

in dn'S(z\)l ‘C(!)) HE B)+Aﬂ]] . (II1.20)
a5
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The leading order series in the equation above come from the derivatives of the exponential

and their sum is just a Taylor series expansion which gives the result

‘S[_g%”;l=.0.~ T { 11 £33

This means that the diffractive contribution comes from the angular momenta which are
the poles of the S—matrix. Let us now consider the source term in the r.h.s. of Eq. (IIL.19).
First we suppose that the purely reffractive amplitude, I(#), is aiready calculated

asymptotically in such way, that it can be written as a sum of eikonal terms, that is, as
(0 = ¥ Cif) d#ilf) (11.22)
i : T

where each term. comes from a stationary phase contribution to the amplitude or,
ph'ysically,_ from a sém_i_cl_assical trajectory (in the next section, we discuss how this can be
done in the case of rainbow scattering). Inserting this expression for Iy(4) into
Eq. (IIT.19) we find that a solution can be constructed if we impose that to each term of
I4(#) corresponds an equivalent term of the total amplitude I(§) with the same phase but

with a magnitude A;(#) which is given by
L,(6) = 2 AL = Z| [ H ddi 1l cy(0) 9D )

As we shall show in the next section, even in the case of a caustic (rainbow
scattering), which requires the use of the uniform serniclassical approximation, the

amplitude 1,(8) may be represented as (I[1.22), with slowly varying factars C;(f). In
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the dark-—side of the rainbow, however. care must be taken when applying (IIL23) to
construct IR(ﬂ) .

Summarizing this section we have found that asymptotically the total elastic
amplitude may be expressed as a sum of the diffractive term, derived in the preceding
section, plus the refractive components which are just the contribution of the semiclassical

trajectories of the absorption—iree scattering damped by the absorption.

21

IV. EIKONAL REPRESENTATION OF THE UNIFORM SEMICLASSICAL
ABSORPTION-FREE AMPLITUDE

As already has been announced in' the previous section, it is important for the
construction of IR( ), Eq. (II1.23), that the absorption—free amplitude is represented in
an ecikonal form namely as a sum of terms involving a slowly varying amplitude
multiplying a more rapidly varying phases, Eq. (111.22).

The purpose of this section is to supply the necessary background for constructing
the eikonal representation of Iy(#) . This background involves both the stationary phase
method in its simplest form, as well as the uniform asymptotic representation necessary for
the treatment of caustics {rainbows). )

In the case of a monotonically varying deflection function (generally defined as

dé ' .
23’)«_’\' where 6/\ is the phase shift), the contribution to I (#} mainly comes from an

stationary phase point, A; , which is a solution of the equation
dé A
8(x;) =2 o = # (Iv.1)
/\=Ai.

and, physically, corresponds to the angular momentum of a semiclassical trajectory.
Following Erderlyi'sl5) presentation of the stationary phase method we ma.b the phase
shift onto a quadratic function, that is,

26(3) — Af = %2 + B(§) (IV.2)

where +(—}if B'(A;) positive (negative) and

B(8) = 26(x;) — A0 ' (v
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gince by construction t=0 when A=\;  The amplitude then becames
. ® . 2
Lif) = e‘{m"i)"\i"]j dt AM2(1) 32 (1) &1 (IV.4)
o

where we have extended the lower limit of integration to infinity using the fact that owing
to the rapid oscillations of the integrand, only & small region around t=0 contributes to

the integral.. Substituting the coefficient AY 2(1;) -(d]%- (t} by the first term of its expansion

/200, @A - i )
A0y 3 (0) ——jx“i) | {Iv.5)

calculated taking the second derivative of the equation defining the mapping, we can

about t=0,i.e.,

perform the integration in dt to obtain

i Sh)—A 8T
I(6) = |27 SO = A=l (IV.6)
-8(X)

which is the usual single stationary phase approximation. _
According to the recipe of the preceding section, in the total amplitude, this term

will appear damped by the factor |5(A;)], Eq. {II1.23), with X; replaced by A;(8). since

%ﬂ. in this case is just

4 IQﬁ[Ai(Q) - Ai(B)B] = M) (IV.7)

To derive the eikonal representation of rainbow scattering, we review first the

10

uniform semiclassical approximation deduced by Berry™ ). adapting to the scattering

.

formalism, a miathematical formuls obtained by Chéster, Friedman and Ursell!®). "The
uniform serniclassical approximation is, in fact. a generalization for the case of two -
stationary points of Erderlyi's method: The mapping of the phase—shift is now madé onto

a cubic function, namely,

2600 - A8 = £+ x(Ou+ AW @)

where x(#) and A(6) are determined from the values of the phase at the statiomary

pOilltS. Tﬂ.ki'ﬂg the derivétive of Eq. (IV 8) we have
L& A = 12 [ V.9

where the Lh.s. vanishes at the two angular momenta which we denote by A; and A, and
ther.hs. at p=#*4—x. The quantity x(# may be fixed such that it is negative when
the A's are real, that is, in the so called illuminated zone of the rainbow and, positive in
the dark zone, where the two stationary values are complex conjugates. Associating A,

with the root y—x and A, with —y—x we deduce, easily, the expressions

AD) = 267,(0)] — A()F 42- 287(0) ~ A(6)0 (Iv.10)

and

2/3 .
x(8) = —{g[z.s(,\z)—xga—za(xl) + ,\Ee]} (Iv.11)

for the illuminated zone, and in the dark zone these equations may be prolonged with the
association of A, to iyx and A, to —iyx, which leaves Eq. (IV.10), for A(f),

unchanged and for x(#) gives
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. 3 _ AT 2 .
() = [-E[zs(xi)-—-x,a—za(-,\-,)Jr,\29;}--- e (iv.12) -

At this point, we have to say how to choose the two \'s. We note that in the near—side
_thé p——éads is reverse to the A—axis:’ the j‘+ w of the A corresponding to the —w of i -
This implies that to be consistent we mmst have )\, < A, in the bright region and
Im A, < 0, in the shadow region, for the near—side a.mplitudé’.. On the other hand, for the -
far—side, we take the A's such that A, > A, and Im A, > 0, for the illuminated and the
shadow regions, respectively. ' '

Substituting, then, x4 for A, using the equation defining the mapping, the near and
the far—side ampliﬁudes that we denote by the superscript (+) and (), respectively, are
given by o

3
i(§- + xp)

1@)(g) = (v) AP f dp z\‘ﬁ_"(ﬂ)%(ﬂ)e (Iv.13)

where the subscript r referes to rainbow scatteﬁng and the only approximat.ion is the
extension of the limits of integration from o' .to "+ o, which is Jjustified, again, by the
assumption that the contribution to the integral come from the vicinities of the stationary
phase values. The next step is to substitute the function AM 2(,u) (a% (#) by its Taylor

series

Allg(u)gﬁf(#} = 2 (124+%)" (D) (1V.14)

o=

. about the two roots + y=x retaining only the first term, m=0. The coefficients Py and

4o are easily determined, taking the second derivative of Eq. (IV.9), to be given by
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- L] [P, _e&] . I AT

f{e'.(m J%‘(Aﬁ) o |
= 3L | |2 _2& iV.

® m“a'(z\fjﬁe'(»\z)} e

where ;==X in the illuminated region, and in the shadow region uy=iyx. With

and

" these substitutions we arrive at the final asymptotic expressions for the amplitudes

190 = () 2weiA(ie){p0Ai[x(iﬂ)—iqo Avfx(z0)]} (Iv.17)

where Ai(x) and Ai'(x) are the Bessel function of ‘fractional order and its derivative,

usually known as the Airy function, defined by

Aix) = L f ® du cos[ L xu] . (IV.18)
0

The formula above describes the passage from the region "illuminated" by the two
trajectories wherel the cross section presents typical oscillations caused by their interference
to the dark—side of the rainbow penetrated only by aexponentially decaying trajectory. It
is easy to show using the a.symptotié expression of the Airy function, valid for large
negative expression of values of its argument that away from the rainbow, in the
"bright—side", the amplitudes reduce to a sum of two terms given by Eq. (IV.6). In the
dark—side, on the other hand, far from the rainbow angle, substitution of the Airy function
by its asymptotic .expression for large positive argument, show that the amplitudes decay
exponentially as - .

I(*)(_ﬁ) w g 10TmA,] . | o (Iva
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-~ Let us cast the uniform semiclassical apptoxinaation for the rainbow scattering in
the form of a sum of eikonal terms. i.e., a phase factor times a coefficient. To do this we
use the formula of Abramovitch and Stegun”) which express the Airy function and its

derivative asyntotically as

Ailx) = fcosu+fysinu (IV.20)
and
Ai'(x) = g, sinu—g,cosu (1v.21)
‘for x <0, where u = 2(—x)*%/3, while for x >0

Ai(x) = fexp(-2x%/3) (IV.22)
and

A'(x) = —gexp(-2x>%/3) . (Iv.23)

The first two equations, (IV.20) and (IV.21}, are inverted introducing the Airy function

Bi(x) and its derivative Bi'(x), which gives

f, = Aicosu—Bisinu , (IV.24)

f, = Aisinu+Bicosu (1v.25)

g = Ai'sinu+Bi'cosu , (1v.26)
and _

g = —Ai'cosu+ Bisinu . _ (Iv.2T)

In fig- 1 we show all these functions together with the phases. We sce that, apart from a
small region around x=0, they indeed vary slowly as compared to the phases.

Writing the two trigonometric functions in terms of exponentials we will have the
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eikonal form for the uniform semiclassical approximation. To apply then the recipe of the

preceding section we need, for x < 0,

)= §5- G e v
where 38 = (A +4,)/2 and & = (3,4+A,)/2=% , which yields
T7 = Mt a7 = Wt X , which yie
g—% = A for (+) and g% = Ay for (). . . - (IV.29) .
In the shadow, x > 0, T, )
AHA _
4= i B = | (IV.30)

Reexpressing then the exponentials *as trigonbmetric function we obtain the modified

uniform expression for the refractive rainbow scattering
Lo = :exp(iA)[pousul)i%lsuzmm4(53(&)&18{.&)5)31] a
—igg [( IS(A)[+S(A) | AP* ~ i(lS..(.f\:).I—IS(Ag) [)Bi'] o | : - : (I\./-.?u.l)
in the illuminated side of the rainbow and

IL(6) = #|S(A)] exp(iA)(p, Al 1 g, AT') (1v.32)
in the shadow. ST
Before we apply our theory to data analysis (done in the next section} we.ﬁl_:st check
the validity of our semiclassical formalism by applying it to a typical heavy—ion case. Let

us take as an example the McIntyre parametrization of the S—matrix element, given by




Mermaz for the system 1604100, 18) (see Table ). Just for illustrative purposes we
increase the nuclear rainbow making the parameter g = 10 (actually we discuss the real
case in the next section) in order 1o see the first minimum of the rainbow. The deflection
‘and the profile functions are shown in fig. 6. The comparison with the exact partial wave
sum is in fig. 2, where the absorption free cross section is alse exhibited. The semiclassical
amplitude contains the diffractive term plus the contributions of the two rainbows and of
the internal srajectory. In fig. 3 we show the near and the far components, approximated
and exact and, in the two following figures 4 and 5 we decompose them in their refractive
and diffractive sub—components. We can see that the damping caused by the absorption
destroys the oscillation in the nuclear rainbow. We conclude from these figures that our
formalism describes very well the fall-off in the shadow of the rainbows. In the vicinity of

=4 )\ Weare ovbiocusly overestimating the diffractive contribution.

V. APPLICATIONS

We apply now the results we have obtained in the preceding sections to analyse a
set. of elastic angular distributions pertaining to four different systems at intermediate
energies. In the first two systems the !0 at the laboratory energy of 1503 MeV is the
projectile and the sargets are *®Ca and %°Zr and, in the two others cases, 12C  at
2400 MeV is the projectile and 'C and °8Pb are the sargets. The data points for these
systems were fitted in references 18 and 19, respectively, using a Mclntyre parametrization

of the S—matrix, i.e., the nuclear S—matrix was taken to be of the form

it

where the values of the parameters A, A, dj, A, and A, which give the best fit to the
data, for the four cases are shown in table I In figures 7, 8 and 9 we show the fit of data
points for the four systemns. '

" One common feature of these systems is that, due to the projectiles' high energy,
the cross—sections are concentrated in forward angles. We observe, as we should expect the
Sommerfeld parameter has small values for the four cases but it increases as the target
becomes heavier. As a consequence the electromagnetic interaction turns out to be more
important, or, using Frahn's optical image, the diverging lens created by the Coulomb
repulsion becomes more effective, in such a way that we go from the refractive far—side
dominated system '°0+12C 1o the diffractive near—side dominated 120+208Pb, as our
analysis will show in the sequel.

Following the usage employed by McVoy and collaborators in a series of recent

articlesﬁ), we plot the natural logarithm of the cross sections g% (i units of mb) as a
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function of the angle. without dividing them by the Rutherford cross—section as is more
commonly done. This exhibits the exponential behaviour in the shadows more clearly, For
each of the four cases we preseni the near—far decomposiiton of the total cross section and
the d'iffraction—refra,.ction decomposition of both, the near and the far—side cross sections.
The semiclassical cross sections were calculated with the closed formalism of section IV.
The total cross section evaluated perfomﬁng the partial wave sum, i.e., the exact cross
section appear in the figures as triangle dots. We discuss now the results obtained for each

system.

V.l 190 4 %cy

In fig. 14 we show the profile function, i.e., the modulus of the S—matrix as a
function of the amgular momentum and the deflection function calculated Iwit.h the
parameters of the Table I. The Coulomb and the nuclear rainbow angles are respectively:
BC= 1.18° and BN =—4.99 and, the critical angle associated with the angular
momentum A s BA = 0.08. In fig. 10 we see the total cross section and its near—far
decomposition. The elastic cross section exhibits the characteristic Fréunhofer oscillations
which are more pronounced in the region of the crossover angler, approximately 4.5°, and
disappear as the scattering a.ng]e.increases with the cross section becoming far—side
dominated. We observe also from fig. 10 that the semiclassical calculation reproduces very
well the exact partial wave sum.

In fig. 11, the decomposituon of the near—side cross section shows that the refractive
subcomponent associated with the broad Coulomb rainbow is dominant at forward angles
with a small interference with the diffractive subcomponent. Its fall-off is steeper than
that of the diffraction. This may be understood looking at fig. 13, where we show the
paths in the complex angular momentum plane of the angular momenta of the complex
trajectories in the shadows of the two rainbows. We see that the imaginary part for the

Coulomb rainbow goes rapidly to — 74, which is the imaginary part of the pole of the
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defelection function. Since A > A the diffraction éxpoﬁenti&l decaying should be sligthly
fa,._ster than in the rainbow shadow. We observe also that for angles #3>11° is the
contribution of the internal trajectory which prevails. This contribution tends to be just a
Rutherford damped cross section. Nevertheless, we remark that the cross section in this
angle region is extremely small and beyond the measured angular spectrum, therefore, we
do not know the physical content of the model in this angular domain.

In fig. 12 we present the decomposition of the far—side cross section. The diffractive
subcomponent’ decays rapidly becoming negligible for angles #>8°. We see in fig. 13
that the imaginary part of angular momentum of the complex trajectory in the shadow . of
the nuclear raimbow is. smaller than #A/3 for. #<8°.,  The period of the

diffraction—refraction interference in forward angles is 180°/{A—A,) =~ 4°.

V.2, %0 4 %0Z;

The characteristic of the angular distribution of this system as can be seen in fig. 15,
is the presence of Fraunhoffer cscillations which extend over the entire angular spectrum.
Of course, this is a consequence of the fact that the near— and the far—side components are
comparable over a large angular domain as can be seen in the figure. The deflection
function, in fig. 19, shows that the two rainbows are very symmetric: the rainbow angles
are f,=171° and By =1.52°. Th.e Coulomb rainbow is broader but the narrow
nuclear rainbow is in the diffraction shadow with #, = 0.2°.

We see in fig. 16 that the near—side is diffractive at small angles, #< 7, and
refractive for 8> 7. The fall-off in the shadow of Coulomb rainbow is steeper than that
of the diffraction. In fig. 18, we see that this is explained by the fact that the pole of
[S(A}| is inside the curve described by the angular momentum of the complex trajectory.

The situation of the far—side component, see fig. 17, is opposite of the near—side: it
is diffractive at forward angles and become refractive as the scattering angle increases. The

interference of the two subcomponent produces a minimuim arcund &~ 6.5 .
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V.3, 2C + 2C | Ey,, = 2400 MeV

We start now the analysis of the two systems which have the 2C at the laboratory
energy of 2400 MeV as projectile. We see in fig. 20 that when the target is ?C the
angular distribution at this high energy is far—side dominated presenting the typical
Fraunhoffer oscillations which are damped as the scattering angle increases. The deflection

function, in fig. 23, shows how concentrated at forward angles the system is: the two

rainbow angles are, respectively, the Coulomb and the nuclear, 0o =0.28° and
ﬂN = —0.56°. We observe also from this figure that the nuclear rainbow is partially in the

illuminated side of absorption.

In fig. 21 we see the interplay of the three subcomponents that constitute the
near—side cross section. The refractive contribution associated with the Coulomb rainbow
is dominant at extreme forward angles, < 2%, but its fall—off is steeper than that of the

diffractive term. Again this is explained by the fact that A < A,, see Table I As the

angle increases the contribution of the internal trajectory becomes more important and is

dominant for # 11°. At these relatively large angles the near—side cross section
presents oscillations caused by the interference of three subcomponents. ”

In fig. 22, we can see how the diffractive and the refractive contributions form the
far—side cross section. We ﬁerify that apart from small angles where our method
ovefestimates the diffractive contribution the subcomponent associated with the nuclear

rainbow dominates.

V.4, B2C 4 208pp | By = 2400 MeV

The first observation we make about fig. 24 is that, apart from the small region

around the critical angle f, = 1.5°, our semiclassical caleulation nicely reproduces the

exact partial wave sum. The total cross section is near—side dominated as we preview in -

the introduction of this section. For angle § < BA we see, in fig. 25, that the near—side is

refractive, actually, this cross section is just the Rutherford cross section. Tn the dark side
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of the difiraction, i.e., & > BA . the diffractive subcomponent is only slightly greater than
the contribution from the Coulomb rainbow and botk contribute to the total cross section.
For larger angles, the internal trajectory is also present and for # > 5° it dominates. It is
interesting to remark that this system has a typical Fresnel pattern but with the difference
that we are observing refractive contribution in the dark—side of the absorption. This is
also true for the far—side component as can be seen in fig. 26, where we present its
decomposition which shows that it is refractive although the nuclear rainbow is completely

in the dark~side of the diffraction region.




VI. CONCLUSIONS

In this paper we developed a theory for the elastic scattering of strongly absorbed
particles in the presence of strongly refractive mean field. Our approach starts with the
absorption—ree amplitude constructed from a given reasonably parametrized partial
S—matrix, treated within the uniform semiclassical approximation, and, with the aid of
symbol caleulus, construct the absorption modified amplitude. We have shown that it is
possible, within our approach, to decompose the near—side and far—side amplitudes into a
well definedrefractive and diffractive components.

This further decomposition of the elastic amplitude {which can also be done within
the more conventional optical potential approach as in Knoll and Scha.ffers} is found to be
quite useful in analysing intermediate energy heavy—ion elastic scattering. Application was
made to the analysis of the elastic scattering data of %0 off **Ca and %%r at

E . = 1503 MeV and 2C on 12C and BC+¥8Ph at B = 2400 MeV
ab Lab
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APPENDIX A — CUBIC RAINBOW

In a real heavy ion scattering situation nothing prevents the deflection function
from being positive for ail angular momenta values and still present a minimum. In this
case the nuclear rainbow angle will be positive and we will have what is known in the
literature 2s a cubic rainbo 2[_}), characterized by the presence of two caustics. We want
to discuss in this appendix the extension of our formalism to this case. First we construct
the uniform approximation for the absorption—free amplitude and then shoﬁ how it can be

put in an eikonal form.

We start mapping the action 25(A)—A# onto a quartic function, i.e.,

260) ~ 10 = — & x(0) E_ 303 + A) (A1)

where the fractions and the minus sign were introduced in the rh.s. for convenience.

Taking the derivative of (A.1) we see that the stationary phase points will be the roots of
= —~0 . ' ' A2
Pixpt+y 0 . (A.2)

This is & cubic equation which has a real solution given by17)

= 5+ 5, _ (A.3)
and two complex solutions -
Sl+32 . s ’ :
by = — e+ 1 (55y) (A4)
S48 m '
o= e i) . (as)

where
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(A.6)

and

A=E+T (A7)

The roots fig 5 are real {complexj if A <0 (A > 0). These inequalities define in the xy
plane the- domains shown- in fig. 28 taken from reference 21. The cusped boundary
determined by the equation A =0 define the points where two roots are equal and
corresponds to:the caustics. Denoting by A;, with i=123, the stationary angular
momenta we see that the mapping is such that the domain A <0 is to be associated with
the angular region between the two rainbows, namely GNS #< HC , where the three
semiclagsical trajectories contribute and,- A > 0. corresponds to & < 9N andfor 6> 4.,
ie., the shadows of the rainbows, where one complex trajectory and one real trajectory
' contribuie. . .
To determine the parameters x, y and A in terms of the A;'s we have to solve
the system
x4 By —4A = —4f;
where f; = 2f(X;}~A;0 and we have used equation (A.1) defining the mapping and the fact
that the . i;'s are the roots of Eq. (A.2) to get a simpler expression. The solution of (A.8)
is an elementary but, very lengthy calculation and we present here the main results. First,

adding the three equations in (A.8) we obtain the relation

f1+f2+f3 2

since Tp;=0 and Upd=-2x. After some algebraic mantpulations we find that x
i i . _

satisfies the equation

i=1,2 (A8) -
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X8 — 6C,Coxct — H(CHCI® ~ 3(C,Cy)" = 0 (A.10)

which is a quartic equation in x? and the C's are defined by

foHf—2f, -1
c, =2ty T¢ (A.11)
' 3 3 .
and y is given in terms of x by
3 v
yo= |3 - . (A.12)

The positive real root of Eq. (A.10) is obtained from the standard solution, ses

17)

Abramovitch and Stegun~ '/, as

x = iJ J;:wsclc2 + Jsclcg - D + [4D%+48C,C, (A.13)

where

13
] ~9C,C, . , (A.14)

D= {wmi—cg)
This set of equations defines completely the mapping in terms of the paré.meters of the
assoctated semiclassical trajectories: (A.13) together with (A.14) gives x(#) and (A.12)
and {A.9) give respectively y(#) and A(§). The signs of x and y are to be chosen
properly.

The near—side absorption—free amplitude is now written as
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.—i(g +x ’g‘—z + yu)

Li#y = ei‘\f dp E{u) e (A.15).

~w

where E(p) = AY 2(,bs) g% (#) and we have extended the inferior limit of integration to
—w. Approximating E(g) by the parabola

E(p) = po + qop + rp (A16)

the parameters p,, g, and r, are fixed impoéing that the parabola passes through the

three stationary phase points and this implies that they satisfv the system of equations
Do + Qots + Tt = E(y) with i=1,2,3 (AITY

- which is easily solved. On the other hand, the quantities E{y) are calculated taking twice

the derivative of (A.1) at the stationary points which yields

(3#% + 10X . .
B, = |———— i=1,2,3 . (A.18)
0'(2)

Making use of all these relations we have just introduced. we finally have the

expression of the uniform approximation for & cubic rainbow
Io(0) = V27 €A by Pyliy) + iy PYlxy) — 1 Phlxy) (A.19)

where was defined the function
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© ot 2 :
P (xy) = J?,;_f dp cos yp e ) (A.20)
0

and the derivatives are with respect to v .
This function is the Pearcey function2! and was first introduced in scattering
theory and studied in nimerical detail by T. Pearcey in 1946. Recently it has been studied

) 24} a5 well as da Sitveira? in

by Trinkaus and Drepper™ and Berry and collaborators
papers concerned with application of catastrophe theory to optics and quantum mechanics. -
In this theory the cubic rainbow is the second catastrophe known as the cusp diffraction
catastrophe. The bar over the letters in (A.20) was used because the function we have
obtained here is actually the complex conjugate of the standard Pearcey function. -

In order to apply our method we need the Peamey function Pe(x,y} written as a
sum of eikonal forms, i.e., terms containing a rapidly varying phase times a slowly varying
coef.ﬁcient.. Based upon what we have in the case of the Airy function we observe that our
Pearcey function, Eq. (.A.QO), as a function of vy is solution of the third order differential

equation

w'' —xw' +iyw = 0 (A.21)

as éan:be easi}y'checked. It car also be checked that two other conjugate solui;ions are
Qe = J_%J‘ dp cosh [e : y,u} e : {A.22)
0 _ i .

T

' 1 2 " 2 -
I N (SR = T A C ot it N
Re = J:f d sin yu e —.Ef-du e - (A
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Considering the a.nguia.;' region &, <8< f. the three stationary points of Pearcey
fynction itself, i.e., Pe(x,y) are real and a contribute. A standard stationary phase method

calculation leads us to write the formula

Pe(xy) = ¥, bylxy) 3 i) - (A:24)
o

for its decomposition. The factor 7; is given by

i sgn(®'(y) §
% = T4 (A.25)
and hix,y) is a slowly varying function of #.

With regard to the function Qu(x.y) we observe that its stationary values are the

ro0ts. of
4 F
B—xfig—e Sy =0 (A.26)
which may be easily checked to be
;3
i 3%

From.this we deduce using again the stationary phase method the formula

Qe(ey) = 3 bxy) g el | (A.28)
i
where &) is given by
e i sgn @A) >0

5 = . 3 {A.29)
e. B if. . sgn ©'(4) <0 .
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Finally the function Re(x,y) is written as ..

: T
(y—a~3)
@ J 2

Re(xy) = ¥, y(xy) 7 i) - (A%0)
i

The three equations (A.24), (A.28) and (A.30} define the functions hy(x,y) since
given the Pearcey functions they may be inverted to give the h's. Similar relations may be
derived for the derivatives. The difference will be in the factors + and 6 which Wiﬁ
appear to the square and cubic power for the first and second derivative respectively.
Qutside the angular region between the rainbow, that is, the domain limited by the
caustics, only two stationary points, one real and one complex, and two functions, Pe(x,y)
and Qe(x,y), have to be considered. Tﬁis ends this Appendix. As a last comment we say
that numerical investigation of these formulas and application to heavy ion system are in

progress.




APPENDIX B — RELATION OF THE PHASE SHIFT TO THE PARAMETERS OF
THE OPTICAL POTENTIAL

To do numerical calculations and data analysis with the scattering formalism we
develdpped in this paper, we have to assume some specific form of the .S—ma,trix. One way
of doing this, is to parametrize directly the S—matrix elements, leaving aside the question
of how they are generated. The vast majority of researchers, however, use the conventional
data—fitting with a parametrized optical potensial. The purpose of this Appendix is to
supply to the optical potential practioners simple analytical relations between the partial
elastic element of the S--matrix and the corresponding Opticél potential. For strongly
absorbing potentials Ka,uffma.nn%) has derived analytic expressions. for the reflection
function and the nuclear phase shift, valid for very heavy ions, that is, strong Coulomb
interaction. These are not the conditions we are interested in. Indeed, since we want to
investigate the nuclear rainbow, we have to suppose relatively transparent potentials and
weak Coulomb interaction. In the following we discuss two methods for relating 5, to the

optical potential which have been widely used in the literature.
B.1. THE KNOLL~SCHAEFFER METHOD

Our starting pont is the eikonal approximation, as it was modified by Knoll and

Scha.eﬂers) for nuclear potentials of the Woods—Saxon form, i.e.,

f(x) = (e*+1) "

<
il

— Vi(x,) — iWi(x;)
(B.1)

with small diffusenesses a .« Rri . Their expression for the nuclear phase shift can be

written as
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28%(s0) = 5 VB |V VB (o) + IW /B gy (B.2)
where
g(x) = f — &y - (83)
0 exp(x4v)}? + 1

and r, is the turning point. : _

- It will be shown to be convenient to obtain é.pproximate closed form for the function
g(x). To do this, we consider first the case x>0, where the most important
contribution to the integral comes from the vicinity of v=0. ‘We can then replace the

integrand by the expansion

2
(exp(x+12) + 1)'1 - e”lll(1+e{x+" )}

= exp[— [ln(l-l—e") + ;:—ivz 4o ” . (B.4)

Integrating Eq. (B.3) and keeping only the first two terms, we get

glx) = _exp(x/2) g T, x20 (B.5)
expix)+1 ’

For x<0, we divide the integration interval into-the intervals (0, vx) and (%, w),

and rewrite g(x) as

50 = f

0

V=X

dv dv ' )
dv —f =T + .[/--.- ST (B.6)
Y0 =

The first integral is immediately performed. In the second and third integrals we use,
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respectively. the expansions

-1

[exp(— (x+v3)) + 1] = exp[—- (In‘Z.i—{——x (v—v=)+ - ] (B.7)

and
-t

[exp(x+v2)+ 1] = exp{— (0 2+ (V= /) o & (v =y ) + o

(B8)
about v =4~x. Neglecting the higher order terms we find
(0 = Loty e T3 (89)
glx} ~ yx———+ r effc{fu) , x<0 B.9
. 2 = 2Ty z _

where. u = E'(I-}E_x)' . We observe that for negative x, u is smaller than unity which is its
limit for x+—w. ‘Thus we can put erfe(u) ~1 —ue™ i Eq. (B.9), obtaining a
simpler expression for g{x). This equation shows that g(x) behaves, for large negative
values of x, as y=x.

Eq. (B.9) together with Egq. (B.5) form a continuous representation of g(x) .
Howevgr, it is not é differentially continuous functions at x=0. This fact renders
Egq. (B.9) not gquite appropfia.te fo.r the obtention of the deflection function (the derivative
of 28". Eq. :(B.2)). To rémedy this situation, we present helow an alternative
approximation &0 g(x) \ which is more adequate.

The idea is to divide the integration interval about the point at which the integrand
has a point of inflexion. Designating this point by ¥, it is easy to show that it is given by
the solution of the transcendental equatioﬁ

X + ¥

= %coth[—z—] . | | (B.10)
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Proceeding now as we did to deduce Eq. (B.9) we obtain, after some algebra, the equation

L2el
g(x) » v—£ |1 e HF
2v

+%erfc“§] g (B.11)

valid for any x and where g = exp(x+¥2).
To compare the behaviour of Eg. (B.11) above with the approximation to g(x)
obtained before, we observe first that the solution of the transcendental equation goes to

¥ o~ Jx (B.12)

when —x»1 and therefore Eq. (B.11) must go to Eq. (B.9). On the other hand fmf great

positive values of x, the solution of Eq. (B.10) goes to

(B.13)

fl=

Since when x 31, p»1, we can neglect the factor 1 in the exponential of the second

term in the r.h.s. of Eq. (B.11). Expanding the exponential up 10 third order in 1/p we
wi

obtain erfe(y) ~ 2_e_’

JT 2y . :

g(x) = E e (B.14)

which should compare with Eq. (B.3). In fact, for x31, this equation gives an

exponential form for g(x), while the factor g ~ J-—% .
Eq. (B.11) with ¥ given by Eq. (B.10), is analytical and so can be derived in order

to find an approximate expression for g(x) A somewhat lengthy calculation yields




1

+ [a {5—1] —%] ::;;_Z E erfc[g} uz—v}v' .(B.ls)

where
— o4
v o= -—é " : - (B.16)
and
a=1+2% = —* - (B.17)
3 + 4¥t
Eq. (B.15) can now be inserted in the expression
Veg'(x) iWg'(x;) '
oMy = - ~+ = VI, (B.18)

E&

for the derivative of the phase shift. A comparison of our approximation for the deflection
function and the profile function is shown in figures 29 and 30..

As an application of the relations above, it i interesting to observe that we can
extract from them an approximate expression for the slope of the exponential shadow of the
nuclear rainbow, given by the imaginary part of the turning point, in terms of the
parameters of the optical potential.

To do this we observe that since the nuclear rainbow occurs at negative values of

the variable x, we can take

glx) =~ v (B.19)
and approximate Eq. {81) by the equation
FPx +7) =~ 0 (B.20)

whose solution can be written as
7 = exp{—% stnh1 g] . _ - (B.21)
Supposing equal geometry we obtain the deflection function

L exp[—_ %siuh“[%_—Rt]]

. ‘ |[V+iW] . a -
oV, = — @ : (B.22)
) ¢E Cog—
L+ (5)
with ¢ = tan™(W/V). This equation shows that real solutions are obtained when
Imr, v 22WV_ ' o (B:23)

W24 v?

B.2. THE KAROL METHOD

Taking a microscopic view of the optiéal potentia'i based on multiple scattering
theory, the ion—i;m interaction is then constructed as a "tpyp," . Kar0127) pararnetrizes
the densities as Gaussians, which allows an analytic construction of the potential when
cylindricai coordinates are employed. The potential is found to have the form

aya

3,3 - .
Vig = "<tNN(ENN)> 2/ 2,(0) £g(0) A3 e"p[_ L= bz] (B.24)

2, ,2y8/2 2 2
(ay+ag) . a; + ag

where the a,5 are the Gaussian widths and g A(O) and ,oB(O) are the central densities.
(tNN(E)> is the average nucleon—nucleon {—matrix irt the fdrward_direction.

The relation between the density parameters p{0) and a and the corresponding
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ones of the conventional Fermi—function form of p is discussed in details in Karol and we -

shall not repeat it here.

Within Glauber approximation, the elastic nuclear S—matrix is given by

Sy = e"p[—%f Vagb2) _dz'] (B2

where k° (asymptotic wave nimber) and E (center of mass energy) refer to the ion—ion

system. The intégration im B.235 is straightforward and gives

o | s |
Sgwy = exp +§ﬁ:<tNN(ENN)>ﬂ2pA(0) 25(0) a“+a‘: exp[—a b® ] (B.26)
B

2 2 2
A A T3
Writing " Ret=ofE)Im¢
and <l t> = —-41r% i‘—r<aNN(E)>
E
= — <og(E)> (B.27)

where o is a known function of energy, we have finally for the reflection coefficient

ISy| = axp{—Aexp[——z—LH (B.28)

2
Loay +aj

and the phase

2
26 = aAexp S
a

2 2
A+BA

49

. (E) 3‘3 3 L
A= N2y 0)p,0) a:—:agw (B.29)
A .

The above expressions are quite simple and contain no free parameter. They have been

used by Chauvin et al.28) o analyse the 2C+'2C elastic scattering at- E/A = 25, 30 and
85 MeV. '
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TABLE I. Mc Intyre’s phase shift parameteré
System 160+40Ca 160+90Zr 12C+12C 12C+208Pb
A 183.042 244,132 73.89 351.78
A 20.271 i7.080 13.86 37.0%
dl 4.404 3.331 0.5686 3.0412
Al 133.873 206,410 80.11 253.08
Al 15.519 21.774 14.49 28.95

FIGURE CAPTIONS

Fig.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1 -

3 -
4 —
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10—

Coefficients and phases of the Airy function and its derivative as a function
of the argument x.

Comparison between the exact cross section given by the partial wave sum
(full line) and the cross section calculated with our semiclassical formalism
(dashed line) for an illustrative example. The absorption—free cross section
is also shown (dotted line).

The same as fig. 2 for the near— and the far—side separately.

Decomposition of the near—side cross section in its diffractive (D) and
refractive subcomponents, rainbow (R) and internal trajectory (IT). The
near—side absorption—{ree cross section is also shown.

Decomposition of the far—side cross section and the far—side absorption—free
C€ross section.

The deflection function (full line) and the profile function (dotted line} for
the exampie discussed in the preceding figures.

Fitting of the data using a McIntyre parametrization of the S—matrix.

The same of Fig. 7.

The same of Fig. 7.

The total semiclassical cross section and its near (N) and far (F) components
for the system '*0+4%Ca. The triangle dots are exact cross section given by
the partial wave sum.

The near—side semiclagsical cross section of the system 504-19Ca, (N) and its

diffractive (D), rainbow (R) and internal trajectory (IT) subcomponent.

 The far—side semiclassical cross section {F) of the system ®0-+1°Ca and its

diffractive (D) and rainbow (R) sub.component.‘
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Fig.
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15—
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i7-
18 —
19—
20—
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22—
23—
24—
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27—
28—

Path in the compiex plan.e of the angular momenta of the complex
trajectories in the shadow of the coutomb and nuclear rainbow for the system
%0+%Ca. Also shown are the first poles of the deflection and profile
functions.

Deflection (full line) and profile function (dotted line) of the system
160y (400, '

"Fotal (full line), near (N}, far (F} and exact (triangle dots) cross sections for
the system 1804%07Zr.

Diffractive (D), rainbow (R) and internal trajectory (IT) components of the
pear—side (N) 1%04-%9Zr cross section.

Decomposition of the far—side cross section of ¥Q+Zr.

The same as fig. 13 for 1604907,

Deflection function (full line) and profile function (dotted line) for 160 4+%07Zr.

Exact cross section {triangle dots) and near—far decomposition for the system
120: 41200, '

Refractive—diffractive decomposition of the near—side cross section of
1204120,

Refractive—diffractive decomposition of the far—side cross section of 2o 12G,
Deflection and profile function for 2C+12C,

Exact cross section and near—far decomposition for the system of *C+208Ph,

Decomposition of the near—side cross section of 12C-+208Pb,

Decomposition of the far—side cross section of 1*C+%%pb.

Deflection and profile function for C+208Pb.

The three region of the (x,y) plane in which the stationary phase points

behave differently.

Fig. 29 —

Fig. 30 —

Comparison of the approximation for the modulus of the S—matrix with the
optical model output.

The same as fig. 29 for the deflection function.
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