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Abstract

We consider a three djmensiqnal model of two component spinors with
a quadrilinear self interaction. In the 1/N expansion the model turns out
to be rénorma.lizable and a mass term Is generated, violating parity. This
allows for the generation of a Chern Simons term if the spinor is coupled to
an external gauge field. The parity violation and the associated induction of

the topological term ceases at a computable critical temperature.

. This work was partially supported by CNPq.

Quantum field theory in three space time dimensions has recently at-
tracted considerable interest, particularly due to its possible relevance to tﬁe
quantized Hall effect!!! and to high T, superconductivityrz]. Indeed, there
is a class of three dimensional theories exihibiting interesting and impres-
sive features such as exotics statistics, fractional spin[s"i‘I and massive gauge
ﬁelds[s'ﬁl, It has been peinted out that these peculiarities are of a topological
nature and that they can be produced via the addition of a Chern Simons
term to the Lagrangian describing the system under consideration8l. It
is therefore important to understand the mechanism by which a topological
term of the Chern-Simons type can be generated. Being a pseudo scalar den-
sity this term is odd under parity. Parity violation is so a prerequisife to
generate the Chern Simons term. This breakdown of parity can be accom-
plished by coﬁpling the gauge field to massive, two component spinors. In
fact, it is well known that a fermionic mass term is odd under parity. Here
we would like to indicate another route to parity viclation, namely the parity
symmetry breakdown through radiatiave corrections. This dynamical viola-
tion of parity will be explicitly verified in a context of a model with a four
fermion interaction. Although perturbatively non renormalizable the model
has a well defined 1/N expansion. Formally, it is described by the Lagrangian
density

£ =% ~ 5 () (1)
The diménsion of 4 is one so that the quadrilinear term has dimension four,
signaling a (perturbatively) nonrenormalizable the(;ry.

There are two inequivalent two dimensional representations of the Dirac
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algebra. One of these has™
=0t ~l=is' and 4% =io? . €3]

as a typical exi)licit. realization; the other inequivalent representation has a
typical representative which differs from the above just by the sign of one of
the gamma matrices. For definiteness, we use the representation (2) whenever
convenient.

The parity transformation, corresponding to the inversion of one of the

axis, 71, let us say, leaves the action corresponding to (1) invariant if
¢(za’ .'Dt., 1,_2} . 71¢(E°, Hzl, $2) (3)

Note however that a mass term ) would change sign under such transfor-
mation(®),
The most efficient way to derive the 1/N expansion for this model is to

use the equivalent Lagrangian
— — N ,
L =iy —o(di) + 7° (4)

where g plays the role of an auxiliary field(classically, o = -‘?g@d)} As in two
dimensionstg], there is the possibility for ¢ to acquire a nongero vacuum ex-
pectation value, {0|¢|0) = o,, at the guantum level. Making the replacement

o — & = o+ o, the Lagrangian density in eq. (4) becomes

— — — N, N, N
= - - e 5
WP = 0() = o(Fh) + 5 0l + S0+ oo (5)
The requirement that the shifted field & now has zero vacuum expectation
value implies that

1 dak i . d3k 1
50'0 = (2,”)3 ;4,_ 7, = —2io, (271')3 [ERp (6)
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where in the (logarithimically divergent) integral an appropriate ultraviolet
cutoff is understood. This relation fixes.g as a function of the generated mass.
In particular, if a Pauli Villars regulator is employed, we get

1
g(A)

so that, introducing a renormalized coupling constant, ga, through

(A 7o) = M

1 1 1
— ==~} 8}
we obtain ] _
1 _oco—p S :
gr- 2= v )

where the massive parameter p plays the role of the rerormalization spot.

Different renormalization prescriptions. will introduce the mass parameter

in different ways, but they can be related through a renormalization group

transformation(101.
Let us look now to the propagator for the o field. In the domma.nt order

of the 1/ expansion it is glven by the i inverse of

N i i
F +N'I'I‘/(2 )3¥ o’n(#"i‘}&)—aa -
=1 1 ; Lk k-(kE+p)+o? : o
= N(g +2 (2r)? (kz—o‘f)((k_-i-p)zqu)) (10?

Now, if one replaces {6) into the above equation; we get a finite result

2 1
T = N(p*—do )f (2n)® (B = a2){((k +p)* —o2) o

which exhibits 2 bound state pole for the propagator A, = (F,) "' at p* =40l .

For large p*, ’che sigma’s propagator behaves like

AT
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This expression illustrates the fact-that, by summing an infinite chain of one
loop. diagrams as the % expansion-does, one may improve the ultraviolet
behaviour of field theories. Here each fermionic loop at high momenta has
ga..iﬁe.d z.tdd_it;i_onal decaying féctors corresponding to the sigma lines in it.

. Higher orders contributions to the ¥ expansion can now be systematically

. c_:onéﬁ‘ucted.’ They must use” -

]

ﬁ_O‘n

Fermion propagator:
Sigma propagator: A,, given above:

Trilinear vertex: the vertex associated to the term —o(gh) {13)

Graphs containing:as subgraphs either the one loop contribution to the
o-propagator:or the.one loop contribution to the tadpole should be omitted

since:they: have: been explictly taken into consideration. Similarly to the

four con_nbonent spinor case[ui, with these rules we obtain that.the degree of

superficial divergence associated to a proper graph v is given by
d(y) =3~ N - N, (14)

where Vg and N, are the number of external fermion and sigma lines, re-
spectively. From this we see that the ~ expansion defines a renormalizable
tile;o;‘}r. Grapixs having N, = 2 and Np = 0 are linearly divergent but, due to
Lorentz covariance, only & counterterm proportional to o? is actually needed
ta absorb this divergence; the counterterm correspands to a coupling constant

renormalization. Differently, in four dimensions the same type of diagrams

is quadratically divergent and need a counterterm of the type (8,0)" making
the 1/N expansion unrenormalizabie.
A Chern Simons term can be generated by coupling a gauge field 4, to

¥ through the interaction
e _
Lint = —= 4" 15
t \/ﬁ?”')’uﬁb (15)

so that, in the dominant order of § the polarization tensor Ty IS given by

&k i i
¥ (p) = ¢ / Tr[v* g 16
(p) (27!’)3 h! E_UOT fs+¥_‘7o] ( )
Taking into account that Tr[y#4"y?| = ~2ie"*, we obtain
(p) = 2ieta,e" p, F{(p?) + other terms (17)

where F(p?) is the same integral found in the calculation of the sigma prop-

agator, i. e.,
Y 1
") = | Gt T —od)

For very low momenta this expression reduces itself to- %(sign o) p,. It

(18)

corresponds to an induced Chern Simons term
o ' .
S—ﬁ_(sign )" A, 8,4, (19)

in the effective Lagrangian density. We arrive thus to the conclusion that the
Chern Sirnons term can be generated via a dynamical violation of the parity
symmetry.

The Chern Simons produces a rotational anomaly as follows. Ficstly

notice that the equation of motion for the 4, component of the gauge field jis

_ z
ﬁn’w"sﬁ + ;_w( sign f’c_:)fijai-‘d-j_= 0 (20)

&




implying that the “magnetic” field, e,-,-@"A-’:,' creates a charge. In Dirac's
Hamiltonian formalism for constrained syétems this is a secondary constraint
Induced by the primary constraint =, = ( {m, is the canonical momentum
conjugate to A,). Choosing the gauge VA= 0, 4, = 0 permits one to
integ-rate eq. (20) to

i) = A0, [y W) (21)

where j, = ﬁ@mﬂ[; is the charge density. Now, the symmetric gauge invari-

ant energy-momentum tensor is given by
s i v s o, wn
T = 1 (P D" + By D% — DBy*s — DYrp) — gL (22)

where D#gp = (G*— zT-A“)z‘b is the covariant derivative. In particular, the

component T has the form .
i WYY 1.0 oy e, 1 .y '.
= (7w - 0re - F@ryw) + el (29)
so that the generator of rotations
L =fd2x(z_,-e_,-,-T,,;) . (24)

turns:out to be equal to

L= fdzzi{ej,-x_,@%a‘-:,b - %‘i_ﬁ‘f ='¢‘ + \/—Gumtw')’a'[)A } (25)

The last term in this expression which can be rewritten as E‘%%MQZ, where
Q is. the charge operator, is responsible for the fractional spin.

As-we shgll see now, these facts are temperature dependent and we shall
determine a critical temperature beyond which no parity violation oceurs

and; consequently, no Chern Simons term is induced.

6

At finite temperature, eq. {6) chaﬁges to

Ef (@) £ — 0,2 =0 . (26)
where the sum is over k, equal to odd integer mult:ples of miT; Bis the inverse

of the temperature. The sum can be transformed into an mtegra.l glvmg

1 LR
(2n) wy - efwr 1

}=0. : - (27).

where wy = \/E + ¢}. This equation shows that or decrez;ses mpr;otonicq.lly
from o, at T = 0 till zero at the critical temperature T, = fmﬁo = 0, 36077,
We should remark that a similer result holds in two dimensions where there
is also & critical temperature at ‘the leading 7\1,— orAer, associated to.a. chiral
symmetry violation(121
At T = T, parity ceases to be violated and there is no mduced Chern

Simons term. In fact, one rapidly finds that the finite temperature anologue
of the first term in eq {17} contains a factor o which takes the would be
Chern Simens term to zero for all values of p # 0. The isolated: singularity -
at p = 0 is integrable so that the Chern Simons term really tends to zero in
a distributional sense:

We could have considered a more general Lagrangian with four fermion

interactions. However, because of the identities
1+ 2T = ~FrOFnd) - GFDEe). @)
22+ 2T+ G TFr) + PAONTNS)
+ YNNG NPy =0, (29)

where A*, @ = 1,..., N, indicate the SU(N) generators, there are only two

linearly independent, U{N) invariaut, quad.rilinea.r'intéractions'.' These- could

7




be (%) and ($v*4h)(¥v.1). If we incorporate this last interaction the
treatment is very similar to what we have already described. Besides the
o field, one i-ntroduces an awxiliary vector field, W*, through the combina-
tion N W? /g — Wy, where 7 is another coupling constant, associated to
the new interaction. Due to Try* = 0, the tadpole equation, eq. (8), remains
the same. The W* propagator turns out to have a transversal part which
decays for large momentum as ﬁ The longitudinal piece, nonetheless, be-
haves like a constant. This bad behaviour will still be under control if the
regularization procedure keeps the current ¥y#¢ conserved.

On the other hand, if the only interaction is (E*y“d:)(}y“w), the induced
mass will possibly be generated ét higher orders of %, This is presently under

investigation.
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