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ABSTRACT

In this paper we describe some of the main quaiitotive features of the Compton effect
within the realm of classical Stochastic Electrodynamics (SED). We found very clear
indications that the combined action of the incident wave (frequency w), the tadiation
reaction force and the zere point fluctucting eleciromagnetic fields of SED, are able to give a
high average recoil velocity v = caf(I+a) to the charged particle. Our estimate of the
parameter o gives a = hw/mc? where 2rh is the Planck constant and mc? is the rest
energy of the pa,rficle. We have verified that this recoil is just that necessary to explain
the frequency shift, observed in the scattered radiation, as due to a classical double Doppler
shift. We have also calculated the differential cross section for the radiation sca.t't'ered by
the recoiling charge using classical electromagpetism. We found the same expression as

obtained by Compton in his fundamental wark in 1923.




1. INTRODUCTION

Certainly the.two greatest revolutions in thé' XX century Physics are directly
connected with the electromagnetic phenomena. One of them, the Theory of Relativity,
generated profound conceptual achievements that contributed to hafmonize Newton's
mechanics with Maxwell's electromagnetism. The other revolution was Quantum Theory,
which was born: with the problem of blackbody radiation, and, gradually, penetrated the
domain of microscopic phenomena. After three decades of development it has become the
most powerful theory conceived up to now.

However, during this period (and also later on) several distinct interpretations of
Quantum Theory were proposed attempting to clarify conceptual problemsu). Despite the
efforts of De Broglie, Schriodinger, Einstein and others, the Copenhagen interpretation of
Bohr, Born and Heisenberg has prevail over other interpretations. With the appearance of
the so called Relativistic Quantum Electrodynamics, with a quite impressive predictive
power, the attempts to find other theories and interpretations of microscopic phenomena
has almost disappeared. In the same period we have obéerved an almost complete absence
of attempts to understand microscopic phenomena through Classical Physics.

Despite the predictive power of Quantum Electrodynamics some important
conceptual problems of this theory remain unsolved, for instance the renormalization

problem and the more delicate questions concerning the violation of causality in the

phenomena involving the so called wawve function collapse. Because of this a growing

number of physicists are more and more involved in the debate concerning the
interpretation of microscopic phenomena(z).

One of the many attempts, developed in order to clarify at least a few points of

those complicated questions, is the so called Stochastic Electrodynamics (SED). This.

theory is simply Classical Electrodynamics with new boundary conditions, that is the

. . . 1,34
existence of fluctuating electromagnetic fields in free space even at zero temperature( 34),

In this view, SED is an attempt to extend the frontier of Classical Physics up to the
domain of microscopic "stochastic" phenomeha(1’3}. o
This is done by postulating that the zero—point electromagnetic fields have a

Lorentz inva,riant(l’a’4) spectral distribution py(w), which is uniqueiy given by

o) = & (L1)

where w is the frequency, ¢ is the velocity of light and h is the only free parameter of -
the theory. This parameter can be identified with h/2x where h is the Planck constant.
In this way the theory is able to explain, within an entirely classical context, many
phenomena before considered to belong to the exclusive domain of Quantum Theory. As
examples ﬁe have the blackbody radiaﬁion(l}, the microscopic properties of the harmonic
oscillator(4}, the dia,gmagnetic(4) behavior of free and harmonicaily bound charges, the
pa.rama,gnetic(5) behavior of a rigid magnetic dipole, the Casimir forces(?’) between
macroscopic objects and polarizable particles and a few other phenomena(l’3’4). These
achievements of SED and also the historic development of this theory, are very well

4)

presented in many interesting papers by Boyer(3) ,dela Peﬁa.(l), Sa.ntos{4), Miionm'( and

others(s"”?).

Marshalt®) which is one of the first in SED.

We addréss the reader 1o these references and also .10 the 1963 paper by

If we accept the zero point electromagnetic field as real but random, we must ook
for more indirect observations of its effects, because direct detection is prevented due to
isotropy and the Loreniz irwariance(9)| of the spectrum. However, a formel expression for
the zero—point electromagnetic density, which can be shown to be equivalent to (1.1}, is
quite suggestive as we shall see in a while. _

Let us consider the electromagnetic energy in an infinitesimal voiuﬁ{e arround an

arbitrary point r of free space. This is a rapidly fluctuasing quantity because the electric



E(r,'t)" and mégnetic B(r,t) fields are random functions in SED. - The average

- electromagnetic energy density can be writien as

. w
2 2
<Eetle - <SBUEO> [ u o (12)
0

with all ﬁeqﬁencies contributing to thé enérgy present in the infinitesimal volume because
polw) is given by {1.1).

If we consider a box with volume V, and write E(r,t) asa superpositibn of plane
waves with frequencies wy = ¢k, where k i$ the wave vector, then it is not difficult to

show tha.t(:n

<E2517;,t!> - %% gy (1.3)

is formally equivalent to (1.2) if py{w} is given by (1.1).

The above expressions (1.2)-and (1.3} deserve some comments. Both are divergent
tf po(w) 18 extended to the full range of frequencies 0 ¢ w<w. The questions related to
this ultraviolet divergence will not be discussed here. We simply assume that (1.1} is valid
up to a very-high frequency that we cannot estimate. On the other hand (1.3} is very
suggestive. First of all we see that there is an average energy hw, , associated to the
waves with frequency w, , inside the volume V. If V is the volume of a charged
péiticie{lo),' and for some reasons t0 be explained later, the particle is induced to absorb
energy from a wave with frequency w from the background radiation, then an energy
tus, and a momenturn hk is imparted to the charge. This resembles very much the
kinematics used by Compton(u) in his corpuscular theory of light proposed in 1923 in
order o explain the wavelength shift observed in the scattered radiation,

Having the above observations in mind it i3 quite easy to explain the purpose of our

present paper: we want to see, by using the simplest calculation, if it is possible to obtain &
serniquantitative description of some of the main features of Compton scattering, within
the reatm. of classical SED. '

In order to reach our goal this paper is presented as follows.

~In the next section we give a brief discussion of the historic development of the. -
phencmena related to the Compton eﬁfect(lz). We start with the first propositions whiéh
appear a few years after Roentgen's (1895} discovey of X rays(lz) and end the.sectioﬁ with
some comments about the KIein—Nishina{B) formula. However the main purpose of this
section is to review Compton's efforts, both experimental and theoretical, in his attempts
to explain the obse;ved physical properties of X and ~—rays. Wé stress in this. section
the hybrid nature (classical a-nd guantum} of Compton's 1923 paper. -

In section III we give our qualitative descriptioﬁ of the wavelength shift and also E
discuss the departure from the Thomson theory observed in the scattering radiation cross
se_cliion. In order to do this we have invoked the possibility that a resonance, that is
constructive interference, between the X~ray pulse .(from the’ primary beam) and .the
waves, with the same frequencies, from the zero. point radiation, may occur. In such a case:
it is possible to show that the radiation reaction force is able to impart a high recoil
velocity v =cf to the electron. Within our qualitative-ca.lcuiation_we were able to show
that f=ef(1+a) with o=hw/me® where m is the mass of the charge. This high
recoil velocity generates a wavelength shift by double Doppler effect exactly as was
proposed by Compton in his hybrid (classicel and guentum) 1923 paper.

_ For completeness we discuss in the appendix Einstein—Ehrenfest's model(m_m), f_of
the equilibrium between matter and cavity radiation at temperature T , adapted to the
realm of classical SED. With simple assumptions and a nonrel&tiviétic ca,lcul_atio.n,.we
derive the kinematics of the Compton effect, which we show to be neceséary to maintain
the equilibrium between radiation and matter. We also try to identify the .hypothes.i.s'::

(made by Einstein and Ehrenfest) which introduces the "corpuscular” properties of ‘the




random classical electromagnetic fields of SED.

Finally we present in section 1V a summary of our conclusions and we also comment
the connections between this work and a related work by Marshall and Santos(”‘ls)
within the realm of “Stochastic Optics". A little discussion about future research is also

presented.

II. BRIEF HISTORY OF THE COMPTON EFFECT

Near the end of the last century, doing experiments with catode rays, Roentgen
(1895) discovered what he called X—rays\'2). Their nature was then discussed for
approximately three decades, generating many different interpretations and theories. The
clarification of the subject only started with the presentation of a corpuscular theory of

radiation by Compl;on(n)

in 1923. Later on, in 1929 with the work of Klein and
Nishina(}_"'s). the phenomena involving the scattering of radiation by electrons were
incorporated into the recently developed Relativistic Quantum Mechanics.

In what follows we shall give a brief exposition of some of the attempts to explain
the Compton effect as well as the experiments which gradually contributed to the
comprehension of the phenomena.

After his discovery -of X—rays. Roentgen was not- able to observe either reflection,
refraction or polarization of these rays. and therefore made the proposition that they were
longitudinal oscillations of the aetber. Two years later, Stokes and independently
Wiechert. put forward a theory based on transverse electromagretic pulses. Latter on, in
1903, J.J. Thomson improved this theory“z].

In 1905 one piece of experimental evidence was obtained favouring the
Stokes—-Thomson theory. namely the detection of the X—ray polarization by Ba:rkla.(lg’zo) .

At approximately the same time. however, the first controversy appears. It was noticed

that the incidence of X—rays on matter (and also the y—rays just discovered) was followed
by the egjection of electroms. This behavior was difficult to explain by the theory of

electromagnetic pulses and Bragg(m’z?) (

1907) was compelled to suggest that the X—rays
were made by "neutral pairs of particles travelling with some unknown velocity", A
divigion of the physictets around the cofpuscular and ondilatory theories was again
starting.  Very important names such Planck and Sommerfeld were resisting the

corpuscular interpretation of X—rays, while Sta.rk(23’24}

was defending the identification of
X-tays with the energy quanta introduced by Einstein (in 1905} in order to éxpla,iu the
photoelectric effect. .

- Those discussions stimulated many experimental works, mainly between 1908 and
1914, with very interesting results. Firstly there was observed (by doing experiments with
y-rays mainly) a deviation from the angular distribution predicted by Thomson (baséd on
the wave theory of light). The experimenial observations could not be explained by the

simple expression (valid for unpolarized beams or for circular polarization)

]

where @ is the angle between the direction of primary and secondary terms. The radiation

{1+c0320] [% ]2 | 1)

Thomson

scattered in the direction of the primary beam (8 = 0) seems to be more intense than that
scattered in the opposite direction (# = 7) and this fact is not predicted by the expression
(2.1) which is symmetric in #=0 and #=r. Another observation was that the
secondary beamn was less penetrating than the primary beam. Afterwards it was verified
that the scattered radiation frequency deviates from the frequency of the original beam and
is a function of the scattering angle

In 1912 Laue discovered X-ray diffraction which reinforced the experimental

evidences favorable to the theory of electromagnetic pulses. Many physicists were




convinced that Maxwell's electromagnetic theory should be applied to X—rays. The next
stép was, therefore, 1o define more clearly its behaviour when in interaction with matter.
One of the physicists who initié.ted careful experiments involving X-rays was
Compton, in 1916, and he was a supporter of the classical wave theory rather than the
corpuscular theory. Because of this Compton made many attempts, based on Classical
Electrodynamics, 10 explain resuits apparently strange to the theory. He conceived, in

1917, a model(%}

in which the electron was extended enough so that interference effects
should be able to explain the asymmetry in the intensity of the scattered radiation.
.Neverthlas, this model presented some difficulties, for instance the mass of the extended
electron. According to Compton's calculations the electron must have a radius like 1 J10 of
the diameter of hydrogen atom and therefore with an electromagnetic mass 2000 times less
than that observed experimentally. Later on the conceived an electron physically more
acceptable, that is, with a bigger mass, by proposing the ring electron model(lz) in 1918.
At the same time he was developing and realizing experiments in order t0 test his theories.

[ 1919 Compton travelled to England and there he performed a series of
experiménts with y—rays. Due to the results of these experiments he decided to abandon
the ring electron model. DeSpite_the buoyant state of Physics in Europe at that time,
Compton decided to continwe his experiments insisting on the ideas of the theory of
electromagnetic pulses. “So returning to America, he prepared more experiments and, in
1921, he was sure that the scattered radiation had a lower frequency than the radiation
from the primary bea.m(lz) .

This remarkable fact was difficult to be incorporated in the classical electromagnetic
theory, and led Comptor in the direction of the corpuscular radiation theory. Imitially-
Compton suggested(%) thac the electron absorbs from the incoming radiation an energy
"quantum" with momenturn hy/c . which is able to impart to the electron a wvelocity
vi=hp/me where m is the mass of the particle and v is the frequency of the incident

radiation. The electron reemits the energy during its motion. providing a modification in

10

the wavelength that was calculated, up to order v/c. according to the classicel Doppler
effect. He was able to obtain, with this reasoning, a value for the wavelength of the
radiation, scattered to #/2 from the incident beam, which was very close to the
experimental value.

The posture of Compton during these years of theoretical and experimental
investigations had two main characteristics: a great liberty in doing experiments and
theoretical concepts derived from Classical Physics. In his first models (spherical electron
and ring electron), he believed thas classical electromagnetism was a good theory to explain
the scattering of radiation by electrons. The deviations observed should be attributed to
the structure of the electron. Gradually, however. he modified his point of view in the
direction towards the theory of energy quanta {as well as the associated concepis of energy
and momentum). Therefore, fie published in 1923 his fundamental work about the
quantum theory of the scattering of X and ~y-rays by ele.x:u'ons{11 ). However, as we shall
see below, his theory was hybrid since he used many classical concepts.

He assumed, as is well known, that a "photon" with frequency u, (momentum
hyyfe) collydes with an electron in such a way that energy and momentum are conserved as
in a game of billiards. With a simple relativistic calculation he obtained the wavelength

displacement law

AN _ M _ hw
T = —(Xi— = —g {1 —cost) (2.2)

mce

where # is the same as before and Ay, = Av=c.

The existence of recoiling electrons helped Compton in his calculation of the cross
section for the scattered radiation. To get this he assumed that the recoiling electrons
behave as a system that emits quente in such a way that in the rest frame the intensity is

emitted according to the Thomson classical theory. He was also able to prove that (2.2) is
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due to a double (classical) Doppler effect if each electron is moving with a constant velocity
in the direction of the incident radiation beam. In this way, having succeeded by means of
two different methods in obtaining the same result for the wave length shift, he postulated
that the intensity of the scottered radiation, obtained by the two methods (the first one
quanturmn and the second one classical) should be the same. With this assumption he was
able to calculate. by using the clessieal method, the angular distribution of "photons”
emitted by an electron moving with constant velocity v = cf=caf{l+a) where

@ = hygfme? . The result was

= %[92]2 [+ o + 20(1+0)(1—cout)? (2.3)

me? [ lt+a(l-cos )]

after the removing(n) of an overplus factor namely (1+2a) .

In the next section we shail explain in details why this part of the calculation is
classical as was pointed out very scon by W06(27) in 1923,

The resuit (2.3) was verified to be in good agreement with the experimental data,
and when hyj € me?, wehave a¢l and §— 0, sothat the expression reduces to the
Thomson cross section as expected.

(28) published a paper proposing a theory which

Independently, also in 1923, Debye
had many points in common with the Compton calculations. By using the same
considerations as Compton he was able to caleulate, not only the wavelength shift
(expression {2.2)), but also the energy of secondary electrons and the relation between the
scattering angle ¢, of the emitted "photon". and the angle i of the recoiling electron.
This is shown in the figure 1.

The relation between these angles is given by

{1+a) tan( g) tan ¢ = 1 (2.4)

with 0¢ 95 #. Debye therefore concluded that, in the laboratory frame, the electrons
are é,lways scattered in the forward direction 0< @< /2 while the "photon” can be
scattered in any direction, a result that was not so evident from Compton's work.

In order to calculate the cross section, Debye modified the Thomson result by
multiplying the cross section by the factor (#)/r, according io the correspondence
principle. With this he obtained a result qualitatively similar to the Compton case, but
with a worse quantitative agreement with the experimental data. _

Immediately after these works, a series of attempts by more conservative physicists
were made, trying to incorporate the Compton effect to Classical Electrodynamics through
semi—classical thecries. All these attempts started from tﬁe fact, pointed out firstly by
Compton, that the radiation emitted by an electron which is moving in the direction of the
incident beam, suffers double Doppler effect in such a way that the wavelength change is
given by (2.2). As we said before a good example of such theories is the calculation by
Woo (1925), by means of which it is possible to get the cross section {2.3). by using
Classical Electrodynarnics(27). In order to do this Woo assumed that the incident classical
wave is scattered by an electron which is moving with constant velocity v = ca/(1l-+a)
(here again o = huy/mc®) just necessary to get (2.2) through Doppler effect.. We also
mention the work by Breit (1926) in which he tried to accomplish Compton's thecry

utilizing the correspondence principle but without the concept of the "photou".(zg) .

An interesting and controversiai(g{]) work i3 due to Bohr, Kramers and Slater
(1921). It was a qualitative work in which the main goal was an attempt to conciliate two
apparently contradictory situations, that is, how classical electromagnetic radiation (with
continuous energy variation) can interact with s system that can only occupy. discrete
energy levels (an atom), in such a way that the conservasion of energy is verified. The
authors reasoning was that the atom is in interaction wit-h a "virtual" radiation field which

contains all the frequencies necessary to make all the possible transitions, and that energy

conservation is valid only statistically. These ideas generaved many arguments that were
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resolved by the experiments of Bothe and Geiger (1925) concerning the electron
recoil 3132} Tpe predictiqﬁs' about the ejected electrons made by all semiclassical
theories were refuted by these experiments. Everything pointed towards the way proposed
by Cormpton.

At the same time, the efforts of De Broglie and Schrédinger generated the "wave
mechanics" that become popular very quickly due to its simplicity and the power of its
predictions. This motivated Schridinger (1927} to publish a paper(ss) (aimost unknown}
with a different approach to the Compton effect. He considered that the electrons are
characterized by a wave function which is a-solution of a Klein—Gordon type equation, that
is, "quantum” elecirons (latter on it was verified this equation is not quite appropriate to
describe electrons}. To Schridinger, however, the radiation was made of classical
electromagnetic fields which are diffracted by the "wave matter" pattern of the incoming
and outgoing electrons. This semi—classical treatment is quite different from those of
Compton' and Debye, mainly because Schridinger did not mention the concept of the
"photon". However he did not calculate the scattering cross sections. The only result
obtained by him was the wavelength displaceﬁent given by (2.2). This formula was also
derived more recently by Dodd(®%). His calculation is based on a classical model (without
the eoncept of the "photon") for the absorption and emission or radiation.

Later on, with the proposition of a covariant equation for the electron by Dirac,
Klein and Nishina (1929} obtained the famous expression for the cross section describing
the scattering of radiation by electrons(w) - The treatment includes effects due to the
magnetic dipole of the electron, and the results are in very good agreement with the

experimuental data. The Klein—Nishina formula for unpolarized beams is given by

1 + cos®# H 21— cosh)? (2.5)
1 + a{l-cosh) (1+cos?8)[1+a{1-cosd)] |

an

48]

1ie2)?
=§[nTc!]
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It i interesting to note that the analyses by Klein and Nishina was done without an
explicit gquantization of the electromagnetic field. Only Tamm (1930) realized the
calculations within the realm of Quantum Electrodynamics(35) for the first i;ime, that is,

35 years after Roentgen's discovery of the mysterious X—rays.

M. QUALITATIVE DESCRIPTION OF THE COMPTON EFFECT WITHIN THE
REALM OF SED

In the last section we have shown the reasons why the theory of electromagnetic
pulses, proposed by Stokes and Thomson, did not explain the Compton effect. The theory
was not able to explain the wavelength displacement, the asymmetry observed in the
radiation scattering and also the recoil of the electrons.

However, as far as we know, there is no classical {reatment {or even semiclassical)
that takes into account the possible effects generated by the zeropoint electromagnetic
fluctuations that characterizes SED. As we shall try to show in what follows, thée. effects
are not negligible but, on the contrary, including them we can deseribe semiquantitatively
some important aspects of Compton's scattering.

We shall initiate our analysis by describing, with a few details, the interaction
between a piane monocromatic wave (frequency w) and a free charged particle. It is
possible to find exact solutions, neglecting radiation reaction, for the equations of motion
even in the relativistic case in which the magnetic force is not negligible. In Landau and
Lifshitz book(36), for instance, we find a sophisticated solution to the problem. Here we
only give a brief exposition of the results.

Let us consider that we have a plane wave with circular polarization which is
propagating in the direction of the z axis. The eleciric field can be written as

E = Eyi cos{w(t—z/c)-{-j sinfw(t —2/c)]). The stationary solution is such that the
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coordinate r, which gives the position of the particle with charge e and rest mass m, is

given by the simple expression

ecE, | .
r = — (i cos wt + } sin wt) (3.1)
aw?

with a2 = (mc)? + (eEgfw)? .

The conclusion is that the particle will undergo a circular motion (with the same
frequency w ) inthe xy plane, ¢hat is, perpendicular to the direction in which the wave is
propagating. We can also ver_ify that the particle does not recoil since, initially, it was
agsumed to be at rest in the origin of the coordinate system.

We are considering the case in which the wave has circular polarization only to
simplify the calculation and there is no loss of generality. If the polarization is linear, for
instance, the pericdic motion is more complicated but there is no systematic recoi1(36).

We want to analyse the situation in which the wave frequency is high . Such
condition imply that we are assuming that eBE,/mcw¢ 1 for beams of X or rays
produced int the laboratory. This assumption ensures that the oscillatory motion will be
non relativistic since {f| = eEy/mw ¢ ¢ as we can see from (3.1).

We can now calculate the radiation scattering cross section. The radiation intensity
emitted into a solid angle d? around some direction characterized by the unit vector n

will be

e .2
dl = = (i=n) df2 . (3.2)
4mcd

I we use the solution {3.1), take the time average in (3.2) and divide by the

modulus of the Poyting vector of the incident beam, we get

16.

I o o O - (33)

which is the Thomsen cross section. This is symmetric in #=0 and f=r where # is, as
before, the angle between the direction of observation and the direction of the incident
wave. In doing the calculation we take a’xm’c that is, eEy; < muc. which. is. the
condition assumed above. The radiation emitted has the same frequency as the incident
one. All the results of this relativistic calculation are in contradiction with the
experimental facts discussed in the previous section. Cur argument will be that the above
calculation is incomplete, that is, we have not considered all the existing forces.

Let us see what happens if we take into account the radiation reaction force which is
generated by the action of the self fields on the charged particle.

This difficult problem has no exact solution in the relativistic case but it is possible
t0 use some iterative procedure as was pointed out before by Hagenbush(37), for instance.
Here, however, we will use a non relativistic approximation and after we shall do an
adaptation of the result to relativistic motion in the same way as is done by Landau and
Lifshitz{38).

The radiation reaction force can be written approximately as F, = 2¢%%/3¢® .in the
reference frame in which the velocity is low. Therefore, if the particle is under the action

of the electric (E) and magretic {B) fields of wave, the equation of motion will be -

. 2 e ' '
mv=e[E+%xB]+§§v 3 (3.4)

If we recognize that the radiation reaction force is small as compared with the others, we

can write

ve LB+ (vxB) (3.5)
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as an equation valid in the reference frame in which the particle is instantaneously at rest.

In this frame we also have . ¥~ eB/m and the . radiation reaction force can be written
2s(38).

e 2t . . -
Fi‘ = 3‘ '(-:—3: E+ 3m2c4: (EN B) . . ( 6)

It is clear that the seéond term above is the 'pa.rt of the radiation reaction force
which is in the direction k of the incoming wave. The first term, which is perpendicular
to the incident direction, is oscillating in time and gives no contribution on the average.

Therefore the time average of the modulus of the radiation reaction force can be written as

ine

<F> = —g—— 3.7
‘where: E; . is the electric field associated to the incident wave and o = ? [li—zg] ? is the
Thomson cross section, that is, (3.3) integrated bver all directions.

The force <F > is in the direction of the incident beam, but in general is very
small- (except for very imtense beams) and therefore generates negligible recoil(37’38).
Then the oscillatory motion characterized by (3.1) will remair with the frequency w.
This has a fundamenta.l importance for the effects of zero—point electromagnetic
fluctuations in our discussion concerning the Compton effect.

(3,9) working with SED we know

According to previous experience of many authors
that if we have an oscillatiqg system (like an harmonic oscillator for instance) a resonance,
between the system and zero—point radiation, with the same frequency, can often oecur
because all frequencies (and phases) are present in the zero—point electromagnetic
fluctuations. Thus the same phenomenon is expected to happen to the charge which is

oscillating due to the fields of the incident wave.

18

If we assume that the average energy density, from the background radiation (with
the same frequency as the incident wave), and the volume V of the charged particle are
such that

V<E:ero-point> = he (38)
ir .
than the energy hw can be absorbed by the particle as was suggested in the introduetion.
Our proposition is that this can contribute to <F_> derived above (see (3.7)) if the
incident wave from the beam is in phase with the same wave (that is, same wave vector,
same polarization) from the zero point electromagnetic field. If the frequency is high
enough (a y-ray for instance} hw can be as large as the rest energy me? of the particle.

The above discussion is very much idealized, because in fact a beam of ¥rays from
any experimental device is not a plane moenochromatic wave with circular polarization. In
reality we have short pulses almost monochromatic, that is, in fact we have a wave packet
with a more complicated polarization.

in this more realistic situation we believe that it is possible to calculate the
probability (Q) to obtain in the zero—point field the same configuration as in the wave
packet from the y—ray beam. The exact value of Q must depend on the specific form of
the wave—packet representing the y—ray signal. This kind of .ca.lculat.ion could be
performed by using a method similar to that proposed by Marshall and Santos within the
realm of what they call Stochastic Optics(ls). This theory is essentially SED of visible
light. The goal of these authors is the same as ours, that is, to see if the classical
zeio—point flyctuations of the eléctromagnetic fields can generate effects similar to the
corpuscular theory of light. In other words we are looking for evidence for "a reaffirmation
of the wave nature of light",

Since our paper is semiquantitative, we prefer to leave for future research a more

realistic calculation (with a wave packet) and, instead we maintain the simplicity by
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assﬁming that the i'ncident beam is a monochormatic plane wave. We also assume th&{
there is some probability. Q@ (0 < Q < 1) that characterizes the possibility of resonance
with the wave with the same frequency in the zero—point background. Two waves with
close frequencies and wave vectors can aiso present constructive interference as we can see
from figure 3.

With these simplified ideas in mind we can generalize (3.7) by the inclusion of the

zero—point field. Then the average value of the radiation reaction force is

a 2 o
<F> = Tr<{Einc + Ezero-poinr.} > = Ix <E> (3.9)
where E is the total field. We expect Ej,, to be comparable with E,. .00, in order
to obtair an appreciable constructive interference between these two ﬁelds(ls). In this

case <F > = dohw/V in order of magnitude.

We must remark that the above expression is valid in the instantaneous rest fré.me
of the charged particle. In order to calculate the recoil velocity v = ¢fk in the laboratory
frame we shall use the procedure explained very clearly in the text of Landau and

Lifshitz(sg). We give here only the final result namely

30 <E'> . _ (28] (1482
30 B> _ [1:,3 [1—_3 —2 (3.10)

where v =cf is the recoil velocity attained after the time t. In writting (3.10) we have
assumned that the charge was at rest at t=0.

In what follows we shall assume that the charge has a radius r such that the
equality r= e'zlmc:2 is approximately valid (this is the "classical" electron radius). The
detailed motion of an extended charge is comp!icated(m) butl here we shall ignore such

details.

Returning to (3.10} and considering that the average energy. V<E%> /47 i3 of order
hw, we see that we can have a relativistic recoil even for very short times, that is for ¢
such t= 10" gec, if the frequency is high (w=mc?/h}. This is simply the time the
electromagnetic signal requires to cross the particle ‘dimensions. If the charged particle is
recoiling with velocity v =c¢f in the fields of a transverse electromagnetic wave then it
will suffer an acceleration V= c(’BH’ ﬁ‘l). .Here ﬁJ_ and ﬂ” are the components
perpendicular and parailel to the incident direction. The expressions for BJ_ and ,B” can
be obtained using classical electromagnetism and are given below. According to Landau

and Lifshitz (ref. 36, pg.71) the transverse acceleration is (seé also (3.21) beloﬁr): '

4

where E is the total electric field and 7= (1—52)_1/ 2 is the Lorentz factor. The parallel

F: g E2 1—, -1
c B —ﬁﬁ[ﬂ-g 7

According to a well known(41) formula, obtained by Liénard in 1898, the total radiated

cﬁ_h=

Bleo

acceleration is(sg)

power P4 is

. ]2 ]
L
[]sing ﬁJ. and ,G” given- above one can easily show that

Prag = 6’6%—; [i{—g] [1 + %[i%ﬁ]] : (3.11)

2 g2yt 2
Pmd=§~g—ﬂl[l+‘ﬁ

5

=

where o5 is defined as




21

.
a4 = ; v E*f (3.11a)

and therv.olume V= %1 ? is defined in terms of the "classical" electron radius r we have
mentloned above
 We, can extract interesting information fmm (3.11) if we assume that total power

incident: upon the charge is such that

 Pye = “1— = pmd(ﬁ) : {3.12)

The above assumption deserves a few more comments Firstly we afe considering, as
: befo:e, that- the particle hag a charge which is distributed over a. sphere of ra.dms r.

.- Secondly, the equality (3:12) is. an.-approximate form: of energy conservation law f0r the

., sca.ttenng pmcess - In other words, if . Pmc— P,ad(ﬁ) is fullfiled by some value of #
) -j (whmh appea.rs in.{3.11)) then v =-c8 is the statwnary recoil veloc:ty of the charge. We .
 Tiave: used the word stationary because it P =P,q there is no incident energy to
inérease:the-velocity of the recoiling charge. Let- us use the notation

.ﬁ.g% e (3.13)

" introduced by Compton: A simple calculation will show that (3.12) is equivalent to

20{1420) = &, - _ (3.12a

' Thjs is'an equation for the parameter & which always has a solution for each. o defined

in (3 lla.) This means that the' stationary recoil velocity v-=ce/(1+0) is always -

attained {:n a very short time t aswe have concluded from (3. 10)) From (3 12a) one can

see that
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v
me? 4

(3.12b)

)
Fal
Nl
It
[TCN 3 )
"

where the equality is valid if o® ¢ 1.
This {more simple) inequality is good enough for our purposes. We can easily see
that the average value <> depends on the average energy density <E>/4x and,

according to (3.8) and the arguments for obtaining the order of magnitude- of {3.9), we

" expect that _
o La> , 2 hw , (3.14a)
2 3 mc? ' S
if Emc Ezero-point _a'nd
<oz . 8 hw - .(3.14b)
2 3 me? ' '
i By = Eero-point -~ From these relations we eonclude that hwfme? . is a good

estimative for the order of magnitude of a.

At this point it is"important to recognize that o is a fluctuating quantity. In each
event (characterized by a wave -pa.cket. 'emjt_ted by the source} « assume different values

due to the random intervention of the zero—point fields. The probability distribution for a

“could be calculated by using the method proposed recently by Marshall and Santos (see for

instance the expression (9) whiéh appears in the Foundations of Physics paper (ref. 18)).
As these a,uthors pointed out this probability depends on the details of the wave packet
coming from the source. 'We shall not go mto such details here. For the moment we only

need to-know the average value of a.

Now we are going to. make some approximations tha.t have the virtue that with

' them the followmg calculatlon will be much more simple. We shall assume that the

radla,t:on pulseis very long in tlme (a.s compared with t = r/c), that is, the plane wave has '
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an infinite duration for calculation purposes. We also assunie that the particle enters into
ﬁhe stationary regimen (see (3.10) and (3.12)) immediately after the pulse arrives, and
' re:ﬁains with' constant velocity v = c¢f =caf(1+a) during all the time. Those simplistic
hyﬁothesis are idealizations which will be more discussed below.

Let us firstly see what happens with the scattered radiation if we take into account
the Dof}pier effect. It is interesting to remember now what we said before, that is, that
Cbmi)ton himself used the Doppler effect in his hybrid (quantum and classical) paper in
1923¢10), _

The particle is moving with velocity cf# in the wave propagation direction. Due to

the-Doppler effect the wavelength in the proper frame will be(42)

1/2
A = ,\E{—ﬁ (3.15)

where A is the wavelength in the laboratory frame. In the proper frame the radiation
emitted will have a wavelength A, . To an observer in the laboratory, the radiation will

suffer a.nothér Doppler effect, and the wavelength observed will be such that

N o= ,\I[W] ' (3.16)

where £ is the angle between the primary beam and the direction of observation. The

above result together with (3.15) can be written as

A = A=) = ).[ff—ﬁ](i—cose) (3.17)

If we use now Compton's notation for 4, which is given by {3.13), we get

2%

%—A = a1l — cosd) " (3.18)

where &~ hafme? in order of magnitude. _

¥ o= hw/mc? the above result coincides with that obtained by Compton (formula
(2.2)) through the relativistic kinematic relations postulated by him in his corpuscular
theory of light. We are going to use Tws/me? for @ in what follows. The reason for this
is that we are able to derive Compton's kinematics by using the Einstein—Ehrenfest (1923)
model for cavity radiation. The model is adapted to SED and is to be considered classical
in the opinion of the present authors. However the calculations are non relativistic as in
the original papers by Einstein and Ehrenfest. The presentation and the discussion of all
these calculations are left to the appendix.

Now we want to calculate the ‘radiation: stattering cross section, utilizing onky

(27, in 1925. We use the:same

Classical Electrodynamics, as was done by Woo
assumptions, that is, ﬁhe particle is moving in a straight line with relativistic velocity
v=cfk and 8= of{l+a}. '

If the particle has an acceleration ¥, the radiation electric field at long distances R

is given by(43)
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rad =

- [1_ﬁ-_V]'°‘ ; d=p L (319)
C

and the instantaneous radiation emitted in the solid angle dfi around & s

dl = Ep,4R'd0/47 or

[ez]—ldf _ e L 20-Nev)  (d9)? (1—2) .(3.20)




The incident wave has an electric field such that E=E, i cosw(t - zfc) +
+ Eq j sinw(t —z/c) and therefore the acceleration will be approximately transverse as we
are going to see in a while. The exact (relativistic) expression for the acceleration is such

thast4d)

v = %A—_ﬂz[E+§xB—ﬂ;—El] : (3.21)

Since the charge is in approximately uniform motion we have v-E =10 because v~ cfk.
In this way we get S '
v = -‘fﬁ,ﬁ—m (1-8)E . (3.22)

_ Now we can introduce _t.his simpie expression for ¥ in (3.20} and take the time
average. .Here however fve must remember ihat the expression (3.19) for the electric field
at distance R must be taken in the retarded time t'=t—Rfc. Therefore, in
performing the time average, the time increment dt must be replaced by df' and this
introduces a factor dtfdt'=1-—1-vfe in (3.20). The integration is trivial. The cross
section is obtained by dividing the result by the modulus of the Poynting vector from the
incident beam. The result is(27+%) |

o _ -1 _ 22 -2 de ) = 1 _ Sinzﬂ(l—ﬂz) .
(18" (1-) [@] [—,m]ww T = 3ot 20— poostf (3.23)

Substituting 4 = af(1+a} we obtain

de _ I{e2]? 1 + cos?d + 24:|z(1+ctr)(1—cosﬂ)2 -
= 142 .
[a“]mo 2 {mc’] (+24) { 1+ ofl-cosd)] (3:24)

where &= fuy/me? .
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In the limit hw ¢ mc? the above expression reduces to the Thomson result (3.3} as
expected. Both calculations, by Compton(H) and by Woo(27) lead to the expression
(3.24) for the radiation scattering cross section. At this point however Compton made a
correction which improved the agreement with the experimenta! data. In order to do this
he based his reé,soniug on the corpuscular properties of the "photon". In other words the
scattering of a "photon" in the forward direction (# = 0} is not accompained -t':y the reeoil
of the electron. In this case Compton said that it is reasonable that the cross section

should be the same as in classical Thomson's theory, that is:

272
[33% (9=ﬂ)] o = ["?"52] ) (3.25)
However in the expression (3.24) there is an additional factor 1424 even for
g=0. Compton(ll) simply discarded this factor in erder to get Thomson's result (3.25)
to the scattering in the forward direction. -
Within our analysis based on SED we cannot compare the differential cross section
{3.24} directly with the experiments. The reason is that instead of (3.24) one musi expect

a result somewhat different, that is

(] = i, o

where Q and Nc are corrective fact_'.ors to be discussed below.

Q is the probability te find a resonance {constructive interference) between the
incoming wave~packet (almost monochromatic) and the background waves with the same
frequencies. As we have mentioned a2bove, this probability is difﬁcu.lt(ls) to calculate
because it depends on the details of the indomjng wave—packet. Here we have simply

assumed that the wave—packet is a plane morochromatic wave.
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N, is another corrective factor also neceésa.ry in (3.25) because, éccbrding to our
assumptions, we believe that (dofdf), ~ sives a overestimate of the scattering cross
section in all directions. In order to understand this better let us remember one of the
simplistic assumptions made before. We have asssumned that the particle is travelling with
a constant tecoil velocity v = cf =caf(1+a) in the field of a plane wave with infinite
duration. This hypothesis can, of course, generate unphysical results like the factor
1+2a = (1+8)/(1-9) , which appears in (da/df),, 85 can be seen from (3.24). This
factor produces a divergence in the cross section when -1 . There is no reason to expect
such a behaviour with a real wave—packet falling upon an electron in the laboratory frame.

Since we have not the intention to caleulate Q and N, from fundamental
principles, we leave this problem for a future mofe detailed analysis. We simply assume

that Q and N, are independent of the scattering angle # and that

since; according to (3.18), AA =0 onlyfor §=0. Therefore it is reasonable to assume
that our qualitative calculation within classical SED should be in agreement wiﬁh the
classical Thomson calculations in this angle (4 = 0} because in his theory AA =0 (here
our argument resernbles Compton's one given above just before (3.25)).

According to these considerations and taking into account (3.27}, (3.23) and (3.24)
we have QN, = (1+2a)™ = (1-6)/(1+5) and then we get '

1 + cos?d + 20;(1-1—(1)(1--::03.'9)2
1+ a(l—cosf))]5

Foo = [ oo = 2
(3.28)

for the differential scattering cross section.
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This is the same expression as the one obtained by Cor'npmn in 1923. He has
compared the theoretical calculation with the experime.ntal results and found a behavier’
very close to the observations. This comparison is shown in figure 2 in which the dotted”
curve is the Thomson cross section (3.3) as a function of the scattering angle 4. -Thé’
continuous curve represents the cross section we have calculated (expression (3.28) for
a=1.1 which corresponds to a wavelength X = 0.022 A . The experimental points are
the resuits measured by Compton. - .

We want to stress again that our simplified calculations claim omly fo give,.:
imdications about the possibility of an approach te Compton effect within the realm of a
classical theory like SED. A fully quantitative calculation {within SED) will require a
higher level approach, sophisticated enough to characterize a new work. However we hope
that our analysis should encourage other reééa.rche'rs‘ fo.conoentra'.te :their efforts in this

promissing direction.

IV. SUMMARY OF CONCLUSIONS

Despite the simplicity of our calculations and the approximations introduced, ﬁé are
able to justify the electron recoil without the corpuscular concept of a "photon”. With our
estimate of the average recoil velocity of thr_: clectrons it' was possible to calculate the
wavelength displacement and the radiation scattering cross section as a function of the
scattering angle 4.

As far as the recoiling electrons are concerned there is an appreciable difference
between our calculations and the experimental facts where a disiribution of recoiling
electrons is observed. )

Based on the corpuscular radiation theory Compton and Hubbard (1924) were able

(46)

to calculate the differential cross section for the recoiling electrons According to the




corpuscular conception, each "photon”" is scattered by an electron, and this fixes in a
unique way the scattering angle between them. Therefore it was not difficult to obtain an
expression for the distribution of the recoiling electrons by using tke differential cross
section (3.28) for the scattered radiation.

In our calculation, however, we have limited ourselves to the calculation of the
average recoil velocity v =caef(1+a) in the direction of the incident beam. But we
believe that it is clear in our picture that we have not taken into account all the possible
effects of the zero—point electromagnetic fluctuations. One important fact that we have
not considered is that the electrons are executing some kind of Brownian motion, due to
the action of the random electromagnetic fields, before the action of the incident pulse of 7
or X~rays. This, of course, introduces transversal fluctuations and the recoil velocity is not
simply v= cﬁfc but a distribution around the direction k of the incident bea,m(42) . The
conclusion is that there is an important difference between SED and the quantum
interpretation as far as the recoiling electrons are concerned. In our interpretation, the
electron emission is also influenced by the zero—point radiation. This is illustrated in
figure 3. In the usual quantum (corpuscular) interpretation only the primary beam, made
by "photons", is responsible for this fact.

A related impottant point which deserves further analysis is concerned with the
energy bala.ncé in our interpretation of the Compton effect. We have conciuded that the
background and incident radiations, combined witk the radiation reaction force, are able to
give a high kinetic energy to the particle in such a way that it has a relativistic reeoil.
According to the quantum theory, however, the energy comes only from the primary beam.
In this conventional description, very well accepted, quantum objects {"photons") with
dual rature (particles and waves}, are in interaction with other quanta {(electrons) in such a
way that the energy conservation is restricted to the system _"photon"'—electron, without
any mention to the quanium zera—poi'nt electromegnetic fluctuations. Similar questiong

appear within the realm of Stochastic Opr.ics(”‘ls].

30

It is quite important to stress the similarity between our approach to the Compton
effect and other analyses in which the concept of the "photon” is not necessary(47) to the
understanding of some important questions, as the photoelectric effect and the stimulated
emission, for instance. These are semiclassical approaches (very successful in quantum
optics) in which the electromagnetic radiation is considered classical but the matter has
quantum hehavior, since the electrons are assumed to obey Schridinger's equation. It is
this wave equation that introduces the fluctuating (quantum) character which must be
invoked in order to explain the transference of energy quantum from the classical
(continuous) wave to the matter. This is very well explained in a paper by Scully and
Sargent III(47). The deterministic electromaguetic fields act as a perturbation allowing the
transition between the quantum states of the system (an atom for instance). We observe
in this treatment the recovery of Planck's view cencerning the interaction between
radiation and matter. We must also stress, however, that, in order to get an. accurate
quartum description of some phenomena like the Lamb shift and the anomalous electron
magnetic moment, it is necessary to inciude the zero~—point fluctuations.

Finally, it is also important to remember that the qualitative connections of our
paper with the work by Marshall and Santos(n’ls), within the realm of Stochastic Optics,
are more or less obvious since the goal is the same, that is, to identify pseudo—corpuscular
properties of light by in\}oking the rote of zero—point electromagnetic fluctuations. Future
research on these subjects are quite desirable because up to the moment we only have
semiquantitative, model dependent, calculations to compare with the experimental
measurements. However, in our opinion, the gualitetive features of the Compton effect

have been clearly identified within the realm of classical SED.
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APPENDIX — A MODEL FOR EQUILIBRIUM BETWEEN RADIATION AND
MATTER WITHIN STOCHASTIC ELECTRODYNAMICS

The purpose of this appendix is to discuss other ideas connected with the concept of
the "photon". These ideas are invoked in order to clarify the kinematics of the Compton
effect. We believe that some of the most interesting attempts in this subject are the
Einstein(4’14) (1917} and Einstein—Ehrenfest(w) {1923) works concerning the equilibrium
between radiation and matter. Therefore, for the reader convenience, we decided to review
(briefly} part of these papers and also to discuss how these ideas could be interpreted
within SED. A similar review of this and other works by Einstein can be found in a paper

by Jimenez, de fa Pefia and Brody! %),

a) The originel Einstein's model

The name of Albert Einstein is directly connected to the first attempts to establish
a quantum theorjr for the electromagnetic radiation. It is well known that Einstein,
attempting to give an explanation to the photoelectric effect introduced, in 1905, the
energy quanta of the electromagnesic field which, later on, were called "photons*.
Subsequently he tried to extend his idess to a wide class of phenomens (involving the
absorption and emission of radiation by atoms and molecules), and therefore presented in
1917 & paper with many interesting results. Traces of this work are familiar to the
students of modern physics under the name of “the coefficients A and B". Unfortunately,
however, the main ideas contained in the paper remain almost unkmown. A very good
discussion of the most important ideas contained in the Einstein—Ehrenfest work can be
found in the review paper by Lewis(lﬁ). We address the interested reader to this work.

In what follows we are going to do two things al the same time, that is, to give a
brief review of the Einstein—Ehrenfest papers and also to adapt their phenomenological

model to SED.
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i order to understand the emission and absorption of electromagnetic radiation by
atoms immersed in thermal radiation characterized by the spectral density prled)
Finstein (1917) started from the following hypothesis(lﬁ):

1. The atoms have discrete energy states.

2. The Boltzmann distribution is valid for the atoms in these states.

3, Wien's law is valid for the spectial distribution at temperature T, that is,

pp{w) = *F(w/T) where F is an arbitrary function. 7

The first hypothesis was named by Einstein as the guantum assumption due to
discrete character of the energy states. The other two are completely classical
assumptions, based on thermodynamics-and electromagnetism.

With these assumptions Einstein was able to derive ‘that prlw) must be given by

the Planck formua

N, _ e
rl) wzc"’[exp(hw/kT} - 1] : (-0

if we have equlhbnum between radiation and matter.

However in 1923 Einstein and Ehrenfest discarded the first (qua.ntum) hypothesis by
allowing the atoms to occupy a continuous set of energy leveis(m). This fact has changed
a lot our appreciation of the Einstein—Ehrenfest work because now the derivation of ,oT(w)

seems to be entirely classical.

b) The Einstein—Ehrenfest model within SED
We are going to discuss this point a little more but w1th one addltmnal assumption,
that is, there are also the electromagnetic zero-point fluctuations of SED and they are

characterized by a spectral distribution pg(e) which is given by .

polw) = j—;“’—s— . : : o (A2)

2xcd
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If wé admit this, then, it is quite natural to assume that this zero—point radiation is
able to stimulate emissions and absorptions in a polarizable particle with harmonic internal
osciflations. For simplicity we will study initially, as well as Einstein, only transitions
between energies E, and E, (with E, > E;). Latér on we shall consider the continuous
case. Let us assumie that the system absorbs energy, with frequency w, from the
ﬂuctuat.ing electromagnetic fields and suffers a transition from the state with energy E,; to
the scaﬁe with energy E,. Then, according to Einstein phenomenological mgdel, the

transition probability dW,,/dt will be given by

dW
— = A polw) + By pp(w) (A3)

where A,, and By, are constants independent of the frequency and temperature.

Here we want to make some remarks. The first one is that (A.3) can be considered
as a classical transition probability because both terms on the right hand side are connected
with the spectral densities py(w) and pT(w) of the fluctuating electromagnetic field. The
second ome is that the phenomenological expression above can be justified, on classical
grounds, because it is well known that a harmonic oscillator with frequency .w absorbs
energy from the backgrourd radiation at a rate proportional to the spectral density at the
same frequenby{l’s). And firally we have introduced the term Ay, py{w) which

correspond to absorption from the zere point field.

Another important remark is that when the atom absorbs energy, from a wave with
frequency w and wave vector k, it is also absorbing momentum (in the direction k)
from the background radiation. Therefore it is reasonable to assume that all the absorption
processes induced by py or Py € directional.

In an analogous manner we are going to write the transition probability from the

state E, tostate E, as
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dW,,
5 = Auslw) + By pplw) (A4)

Here A, py{w} is replacing the term corresponding to spontaneous emission in
Einstein and Ehrenfest's original calculation. This means that we are assuming that the
spontaneous emission is in fact induced by the zero—point radiation. This hypothesis was
put forward many years ago by Welton{4g) (1948) and discussed more recently by
Milonni{50).

The second initial assumption by Einstein (Boltzmann statistics for the particles)
will be maintained, that is, if we have n{E,) particles in the state E;, and n(E,) in the

state -E, the relation

n(E;)
o |EE)/iT] (A5)

is valid on the average.
As in the original Finstein work we will assume that the equilibrium is reached

through the detailed balance conditions:

dW,, dw,,
n{Ey) —q¢ = o(E) 3¢ - : (A8}

Analysing this expression in the limits T -« [when n(E,) > n(E,} and pp% o]
and T-0 [when n{E,))<n(E) and pr€py ] we find, respectively, the relation
Bp=By =B, Ap=0 and Ay =A#0. The fact that A, =0 means that the
zero—point radiation does not stimulate absorptions in the equilibrium situation(sl). This.
is expected in SED because in this theory we admit that the zero—point background is also
responsible for the stability of the ground state of the atoms( 392},

It is easy to show from (A.6) that
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8 pylw) -
W) = B (A7)
epl(E,—E)/KT} — 1

Pl

and the Wien's law (the third classical h&pothesis by Finstein) demands that E,—E, = hw
where h is a universal constant.

The value of the constant A/B can be fixed by using the Rayleigh—Jeans (pm(m))
expression for the blackbody radiation. This law is valid for low frequencies (hw € kT) and
must coincide with (A.7) in this limit. In this way, because pp, =kTe?/mc® and
pplw) = Apy(w)kT/Bhw, we must have A=2B. The constant 2nh which appeass in
(A.2) can be identified again with Planck's constant. With this we verify that the
Einstein's derivation of Planck's formula is compatible with the existence of zero—point
electromagnetic fluctuations.

The relation A=2B deserves a few comments. At first sight this means that the
gero—point electromagnetic fluctuations are twice more effective than the thermal
electromagnetic fluctuations in order to induce the emission of radiation. We are inclined

to understand this result (A=2B) in the same way as was suggested by Milloni(%%)

and by
Franca and Ma.rshall(51} in recent papers. There they invoked the radiation reaction force
"contribution to the emission processes (A.4). In other words, the self fields of the charge
induces emission as well as the zero—point spectral density py(w) ~ «®. The dependence
on the third power of the frequency is connected to the fact that for an harmonic oscillator
(frequency w) the Larmor formula for the emitted power P is such that P ~ £~ wix?.
If the harmonic oscillator is immersed in the zero—point radiation we have <x*> = h/2mw
and therefore <P >~ w'<x’> ~ o’ ~ pyw) . In summary po(w) has two channels to
contribute to (A.4).
In what follows we are going to remove, based on the work of Einsteiﬂ and
Ehrenfest(15’16), the hypothesis of discrete energy levels for the particles.

They have assumed that one particle suffers N ebsorptions, in the frequencies
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Wy, lyeen W and M emissions, in frequencies of,wd,... wh'r[ » in such a way that the
particie goes from an initial state with energy E; t_o. a final state with energy EF (EI a_.p.d
E, arbitrary). From the diagram depicted in figure 4 we can have an intuitive feeling of
the Einstein—Ehrenfest proposition. In order .to have & mathematical description to fhe
processes indicated above, a generalization is necessary for the expressions (A.3) and (A.4).
Therefore Einstein and Ehrenfest wrote for the transition probability d WIF/dt ,

representing the change from the state with energy E; to the sate with energy Ep, the

following expr&ssion(lﬁ)
d W N M
o = 1 [Boged] I [Apyte + B ogtep] (a38)
1= j:

To the inverse process we have
. M
o= I [A o) + Bagin] T [Barep)] - (a9)
=

It is important t0 mention at this point that the above expressions aré wﬂid only if
the “"elementary" processes {emission and absorption) are statistically independent. This
means that the processes of emission and absorptibn occur in very short fimes such that
there i8 no interference between them(m).

By the other hand, we expect that under the influence of thermal and zero—point
radiation, the particles are induced to add and subtract energy and momentum to the
radiation field. This field is represented by a superposition of plane waves with all
frequencies. For this reason it is reasonable to expect that each absorption (in a frequency
w; = cf[k;| ) is accompained by a transference of momentum {from the wave to the
particle) which is directed according to the corresponding wave vector k; . If we consider

tnduced emission as the reverse of induced absorption then it it natural to assume that also




37

these processes involve the emission of plane waves each one with a definite direction for
the momentum. With these considerations it is simple to accept that the energy removed
or added to the radiation inside the cavity will be converted in translational kinetic added
or removed from the particle. AHl these considerations are consistent with the
Einstein—Ehrenfest model and with SED.

Taking into account these observations the final energy E. and the initial energy

Ex of a particle are expected to be related by

N H
B+ Y dlw) = Eg+ Y #(u) ~(A10)
i=1 j=1

where ¢{w) and ¢'(w') are positive unknown quantities to be fixed below. The first sum
in (A.10) represents the energy extracted from the radiation field after N absorptions, and
the second sum is the energy added to the radiation field after M emissions.

From now on our discussion departs from the original one by Einstein and
Ehrenfest. This happens because our intention is not to derive again Planck's formula for
pp{w) . This formulé has been derived many times in the classical context of sep(L),
Then we shall assume that pyw) and pT(w) are well known and we change our goal, that
is, we want to obtain the unknown quantities #(w) and o'(w) .

The procedure is the samé a8 hefore, that is, the Boltémann distribution is assumed

and we have
")
ey exp[(EF~El)/kT)] _ o (A

Also the detailed balance condition
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4 W d Wg,
D(EI) T = n(EF) S (A-12)

is assumed in order t0 keep the equilibrium between radiation and matter.

Introducing (A.8), (A.9), (A.10) and (A.11) into (A.12) we get

Bp.(w]} exp[¢'(w}) /kT]
A oolef) + B pg(})

M

x BpT(wi)exp[¢(wi)/kT]]
= IS

i

(A13)

This expressior must be valid for any N and M and also for arbitrary sets of w;
and . This means that each term in the square brackets above must be equal to 1.
Since we know that A/B =2 and that py(w) and pT(w) are well known, from previous
(different) analyses based on SED, the only unknown quantities are ¢(w) and ¢'(w'). %
is simple to show from these considerations that ¢(w) = hw and ¢'(e') = h'.

H we use these results and write {A.10) for N=M =1 we get
E +hw = Ep + fw (A.14)

as a relation to be validy on the average;
This is a very suggestive result as far as the Compton's kinematic are concerned.
Einstein 1917 paper has another very interesting part which is a detailed analysis of
the momentum exchange between radiation and matter. The calculation is non relativistic
and very well explained in the review paper by Milloni(4). I is also possible, introducing
the same hypothesis discussed above, to adapt this part of Einstein work to SED. This was
done in an unpublished work by one of the authors of the present pa,per(53). Here we only

give the result of the analysis. The conclusion was that, as is intuitively suggested by




39.

(A.14), the absorption of energy in a frequency w=cik| and emission in the frequency
o' =¢|k'| is accompained by a change in the momentum of the particle from P; to Pp.
The relation between these quantities is

P+ 1k = po+ bk . (A.15)

The results (A.14) and (A.15) are exactly the well known Compton's kinematic
relations obtained here in the non—relativistic context of classical SED.

It i3 also clear from (A.14) and (A.15) that apparently we have recovered the
corpuscular (quantum) properties of the "photon™. This is somewhat surprising because we
were using only classical assumptions and SED, which is a classical theory despite the
presence of h.

In the author's opinion, the discrete character was introduced with the
Einstein—Fhrenfest assumption that it is possible to ¢ount the number N of abserptions
and the number M of emissions, all statistically independent. With this assumption it
was possible to write down (A.8) and (A.9). The discrete sum (A.10) is alsc a consequence
of the counting hypothesis and, of course, the relation Ethw=E +ho' .

This "corpuscular” behaviour appearing in SED does not embarass us since we are
able to identify where this hypothesis was introduced, at least in the Einstein—Ehrenfest
model. In fact, we expect that such a pseudo corpuscular behaviour can appear many times

in SED17+18)

ACKNOWLEDGMENTS

One. of the authors (H.M.F.) acknowledge the hospitality received in the
Ulyiversidad de Cantabria, Santander, where part of this work was done. We also want §o
' thank- Prof. Emilio Santos and Prof. Trever W. Marshall for a critical reading of the

manuscript and for valuable comments.

40

REFERENCES : - - o c b : : et e
(1) L. dela Pefia in "Stochastic Processes Applied to Physics and :Qt:h_gr__Reiﬁted
. Fields", eds. B. Gomez, S.M. Moore, A.M. Rodrigu&_—\@rgas and A, Rueda (Worl_d
Scientific, Singapore, 198_2), p-428. See also L. dela Peﬁa and AM. Cetto; Found.

Phys. 12, 1017 {1982) and references therein. o . .y _

{2) See for instance the proceedings of the 2nd Internatiomal Symposium on
" Foundations of Quan.tum Mechanics", eds. M. Namiki, Y. OhmuIa, Y Mga,ya.ma.
and S. Nomura, Physical Society of Japan, 1986.

(3) T.H. Boyer, Phys. Rev. D11, 790 (1975). See also the excellent popuia.r review in
Scient. Am. 253, 56 (1985) and also the review paper in " Foundations of Radiation
Theory and Quantum Electrodynamics”, ed. A. Barut (Plenum, New York, London,
1980), p.49. _ o

(4) T.H. Boyer, Phys. Rev. DI, 809 (1973); E. Santos, Nuowo Cim. 19B, 57 (1974);
P.W. Milonni, Phys. Rep. 25, 1 {1976). _ _ _

() T.H. Boyer, Phys. Rev. A29, 2389 (1984); A.V. Barranco, S.A. Brunini, H.M. '
Franca, Phys. Rep. A39, 5492 (1989). _ _ _

(6) H.M. Franca and M.T. Thomaz, Phys. Rev. D31, 1337 (1985}. See also the series of
papers by G.H. Goedecke, Found. Phys. 14, 41 (1984). S -

(7) M. Surdin, Ann. Inf. Henri Poincare 15, 203 (1972); Found. Phys. 12, 873 (1982).

{8) T.W.Marshall, Proc. R. Soc. London 276, 475 (1963). '

{9) T.W. Marshall, Prec. Camb. Philos. Soc. 61, 537 (1965).

{10) In this case, since V is small and not very well defined, the relation (1.3} is to be
considered qualitative. A method to infer the charge radius of nucleons, pions and
e[ect'rons is discussed by H.M. Franca, G.C. Marques and A.J. da Silva, Nuove Cim.
59A, 53 (1930).

(11)  A.H. Compton, Phys. Rep. 21, 483 (1923).

(12) R.H. Stuewer, " The Compton Effect", Science History Publications (1975).




£a

(13)
(14)

(s}
(16)-

(17)

(18) .

19y

{20)

(1)
(22).

(23)

(24)
(25)

(26)
(1)
(28)
(29)
(30)
(31}
(32)
(33)
(34)
(35)

11

0. Klein and Y. Nishina, Z. Phys. 52, 853 (1929).

A. Einstein, Phys. Z 18, 121 (1917). See the English translation in Van der
Waerden, "“Sources of Quantum Mechanies", North-Holland Publ. Comp.
(Amsterdam) p.63 (1967).

A. Einstein and P. Ebrenfest, 2. Physic 19, 301 (1923).

H.R. Lewis, Am. J. Phys. 41, 38 (1963).

T. Marshall and E. Santos, Annals of the New York Acedemy of Sciences 480, 400
(1987). See also ref. (2) p.66.

T. Marshall and E. Santos, Found. Phys. 18, 185 (1988); Phys. Rev. A39, 6271

(1989).
-, C.G. Barkla, Phil. Trans. Roy. Soc. London 204, 467 {1905).
See Ref. 12, p.14.

W.H. Bragg, Phil. Mag. 14, 429 {1907).

SeeRef. 12, p.T.

I. Stark, Phys. Z. 10, 902 (1909).

See Ref. 12, p:32.

See Ref. 12, p.96.

Ibid., p.205.

Y.H. Woo, Phys. Rev. 25, 444 (1925).F

P. Debye, Phys. 2. 24, 161 (1923).

G. Breit, Phys. Rev. 27, 362 (1926).

Bohr, Kramers and Slater, Phil. Meg. 47, 785 (1924).
W. Bothe and H. Geiger, Z. Phys. 32, 257 (1927).
See Ref. 12, p.299.

E. Schrédinger, Ann. Phys. 82, 257 (1927); J. Strnad, Eurep. J. Phys. 7, 217 (1986).
J.N. Dodd, Eur. J. Phys. 4, 205 {1983).

L. Tamm, Z. Phys. 62, 545 (1930). -

(36)
(37
(38)
(39}
(40}

(41)
(42)

(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)

(53)

42

L. Landau and E. Lifshitz, " Theorie des Champs", ed. Mir (1970), p.152.
K.Hagenbush, Am. J. Phys. 45, 693 (1977). .

See Ref. 36, p.273.

Ibid., p.290.

H.M. Franga, G.C. Marques and A.J. da Silva, Nuove Cim. 48A, 65 (1978). See
also H.M. Franca and G.C. Santos, Nuovo Cim. 86B, 51 (1985).

J.D. Jackson, "Classicel Electrodynamics", Wiley (New York), 2nd edition (1975)
p.660,

R. Kidd, J. Ardini and A. Anton, Am. J. Phys. 53, 641 (1985). This paper also
discuss the Compton displacement. withous the concept of the "photon”. |
See Ref. 36, p.259.

Ibid., p.71.

Thid., p.260.

A.H. Compton and J.C. Hubbard, Phys. Rev. 23, 439 (1924).

M.O. Scully and M. Sargent III, Physics Today, p.38 (march 1962).

J.L. Jimenez, L. de la Pefia and T.A. Brody, Am. J. Phys. 48, 840 (1980).

T.A. Welton, Phys. Rev. 74, 1157 (1948).

P.W. Milloni, Am. J. Phys. 52, 340 {1984).

H.M. Franca and T.W. Marshall, Phys. Rev. A38, 3258 (1988).

For a discussion of the stability of the ground state of hydrogen see H.E. Puthoff,
Phys. Rev. D35, 3266 {1987). See also the paper in Phys. Rev. A39, 2333 (1989) for
the interesting proposition that gravity is a zero—point—fluctuation electromagnetic
force.

AV, Barranco, Master Thesis presented in Instituto de Fisica da Universidade de
Sdo Paulo, 1987 (unpublished). See also the recent paper "Compton's kinematics
and Einstein—Ehrenfest's radiation theory", by A.V. Barranco and H.M. Franca,
IFUSP/P—742 (1988). '




43

FIGURE CAPTIONS .

FIG. 1
Incident radiation (frequency vy}, emitted radiation (angle #) and recoiling electron

{angle ).

FIG. 2
Scattering cross section. The continuous curve corresponds to formula {3.28), the dotted

curve is Thomsen's formula, and the black dots are the experimental values.

FIG. 3
Schematic picture of the constructive interference between the wave from the source
(electric field E,) and the zero—point wave (electric field £,). We also show the recoil

velocity V of the charged particle.

FIG. ¢

Schematic picture representing the processes of N  absorptions ion the frequencies
Wyllgyens Wy and M emissions in the frequencies. wf,ui,... wl\:{. EF and EI are
respectively the (arbitrary) fisal and initial particle energies.
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