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ABSTRACT

We have analysed a self-organization oceurring in an open ferromagnetic Ising
system o a square lattice in contact with a heat bath and subject to an external source of
energy. The system follows a stochastic dynamics composed of two processes: one of the
Glauber type which simulates the contact of the system with the heat bath and the other
of the Kawasaki sype which simulates the continuous flux of energy into the system. When
the flux is small, the stationary state is, paramagnetic at high temperatures and
ferromagnetic ai low temperatufes. By increasing the flux the ferromagnetic state is
destroyed and the system reaches a new statiopary state of high energy identified with the

antiferromagnetic ordered state.

1. INTRODUCTION

A system subject-to an external source of €nergy may in certain circumstances
organize itwelf. This self—organization resnlts from the amplification of fluctuations and is
sustained by itself as long as the nonequilibrium conditions are maintained. The structures
arising from self-organization processes, called dissipative structuresl, have been observed
experimentally and are object of study in the areas of thermodynamics of nonequilibrium
systems and nonequilibrium statistical mechagics. Examples of dissipative structures are
found in fluid dynamics and physical~chemical reactions .

In this paper we analyse a dissipative structure occurring in an open ferromagnetic
Ising system in contact with a heat bath and subject 10 an ext,ernai source of enefgy. The
Ising system evolves in time -according to a stochastic dynamics composed of two
competing processes: one of the (}lauber3 type which simulates the contact with the heat
bath and the other of the Kemra.sakj4 type which simulates the continuous flux of energy.
When the intensity of the emergy source is small we are in the linear regime of the
irreversible process and the system displays (at low temperatures) an ordering similar to
that occurring in equilibrium. If the intensity is increased, this ordering will be destroyed
and at sufficiently large intensities we reach the nonlinear region of irreversible process
where a new order will occue.

We have analysed the stationary states of the system as a function of the flux of
energy for the case of an Ising model in a square lattice with ferromagnetic interactions
between nearest neighbors. In the linear regime, when the flux is small, the Glauber
process dominates and the system will be in the ferromagnetic state below a certain critical
temperature. At high temperatures the stafionary state will be the paramagnetic state.
By increasing the flux the critical vemperature decreases. In other words, the flux of
energy destroys the ferromagnetic ordered state. In the nonlinear regime, when the flux is

sufficiently large, the Kawasaki process will prevail and the system will be found in a




stationary ordered state of high energy which is identified with the antiferromagnetic
ordered state.

The problem was solved by using the dynamic pair approximation which leads to
equations for the time evolution of the two sublattice magnetizations and the nearest
neighbor pair cdrrel&tiOn. At equilibrium this approximation reduces to the Bethe—Peierls

approximation.

2. THE MASTER EQUATION

Consider a lattice of N Ising spins with ferromagnetic interactions. The state of
the system is represented by ¢ = {0y, 0q, 73, -1y aN), where oy, the spin variable at site

i, takes the-values + 1. The energy of the system in state ¢ is given by

E(o) = =T Z 75 0 (1)
(i)
where the summation is over nearest neighbor pairs and J > 0.
The state of the system evolves in time according to a stochastic dynamics. Let
P(o,t) be the probability of state ¢ at time t. The evolution of P{ot) is given by the

master equm;ion“‘k

rLren = Y [P(o",t) Wie'0) — P(o.t) W(cr,a')} : (2)

a.l

where W(o',q)/7 is the probability, per unit time, of transition from state o' to state o,
if the system is in state o',
The transition probability W{e',o) is construct in order to describe the following

pEOCESSEes:

(A) The contact of the system with a heat, bath at temperature T, and
(B) The flux of energy into the system.
We assume that

W(o'o) = pW,(040) +qWy(d'0) (3)

where W A(cr‘,-:r) is associated t0 the br'ocess. ‘A and .WB(J',O') to process B. The
process A occurs with probability p and the process B with probability q = 1-p .

The process A is simulated by a Glauber dyna.mics314 {one spin flip} so that

WA(U"#T) = 2 6010'[ 60'20% o 603—0‘; o 60'N0'I:I wia) (4)
_ i

where w{¢) is the probability of flipping spin- &. The comtact with the heat bath at

temperature T is obtained by using the Metropolis prescription‘5

) A0 o for o AELL O e SR
wila) = R )
FAESKT s AE; >0, '

where AEi is the change in energy obtained after flipping spin i.

The process B is simulated by a Kawasaki dynamics® (two spin flips) which

describes the exchange of two nearest neighbor spins. That is

Wo(o'o) = (2() 5010,1 ,50563 6%“7{ JGNJ& wii(a) (6}
1)

where wij(cr) is the probability of exchanging the nearest neighbor spins i and j. The

fiux of energy into the system is obtained by the prescription




AR 0 when, . AE; <0
o) =40 L L (7)
- 8 when .’_\Ei]-' >0,

where .A'Eij is the 'cha.ﬁge in éﬂe'rg'j' obtained after éxéh'anging sﬁins 1 and j.
Let us denote by <f(o)> the averajge of the state fanction f(o), that is

<f(o}> = Ef(d) P(os) . (®)

The equations for the magnetization <di> of spin i and for the correlation <gjo> of
the nearest neighbor spins j and k can be derived in a straightforward way from the

master equation. With the notation introduced above we get

rf<e = pAkaB L. 9)
and o R . :
Tgf <0'j0k> = ijk+qBjk 4 {10)
where
A; = <(=20y) wifo)> . ) (11)
Aje = <(=20y0,) w;(a)> + <'(~ 20;0,) wi{9)> (12}
B; = Z (o= oy wyilo)> : _ (13}
[;
{noof 1)

Bjk = E <_('a£ak—aj.crk) wjg(cr)> + |

(ot

.+ 2 <(Ujae—ajak)wke(g-)> , 7 .‘ : (14)

(mn'oF )

where (nn of i} denotes that the summation is over the nearest neighbors of site i.

These equations have a simple interpretation. For example, the quantity
(oeak—ajak) inside the bracket <(a€ak—orjark) wje(a)> equals the variation of ¢;0, in
the B process (Kawasaki process) in which spins j and £ are exchanged.

The equations for <e;> and for <ojop> are exact. However, they cannot be
solved since their right hand sides involve averages of other combinations of spin variables

besides <o;> and <gjo,>.

3. PAIR APPROXIMATION

The: right hand sides of expressions (9) and (10) involve the average of clusters of
spins. In the case of the guantities A, and A“ik the type of cluster to be considered
consists of a central spin and its nearest neighbors. In the case of B; and le; the type of
cluster to be examined is formed by two nearest neighbor spins and their nearest neighbors.
In order to obtain closed equations for <> and <gjo> we will use an approximation
in which the probability of these clusters are written in terms of the probability of a pair of

Spin56’7’8

. Since the probability of a pair of spins in turn can be obtained from the values
of <¢;> and <ajoy> a set of self—consistent equations are therefore obtained.

We apply the results obtained so far to the case of a bipartite lattice. We look for .

~ solutions such that <e;>=m, for any spin belonging to sublattice 1 and <g> =1m,




for any spin belonging to sublattice 2 and <eyoy>'=r for any pair of nearest neighbor

spins i and j. Let o, and o, be a pair of nearest neighbo'r spins belonging to sublattices 1

and 2, respectively. Then, the pair probability P 5{c,.0y) and the single spin probabitities -

P{o;} and Py(gy) are given by

Po) = 3(1+moy) (15)
Pyoy) = 3(L+mym) , ' (16)
Pulono) = é(l + myoy + M0y + T 0y0y) (1)

We should examine three types of clusters. The first one consists of a spin o, of

sublattice I surrounded by spins o; of sublattice 2. The probability of such a cluster is

approximated by7

P (J 70-')
Poy I ey (18)
J P(oy)
{no of 1)

The second type of cluster has a spin ¢, of sublattice 2 surrounded by spins oy of

gublattice 1. The probability of such a cluster is’

Pulo,,09) o o
Pay) M ()
! Pylay) o '
(nn of 2}

Finally, the third type of cluster i5 formed by a pair oy, & of nearest neighbor spins

sﬁrrbunded by their nearest neighbors. The probability of this clugter is-

o Pplone) o Pulona)

Pialoya) _H = I ”12__1—‘?‘ - (20)
j#2 Piloy i#1:  "Pyluy)
(nn of 1) (nn of 2)

Inserting expressions (18)—(20) in the RHS of (11)—(14) and taking into account equations
(15)-{17) we abtain closed equations for m,, my, and r. . '

The equations for the evolution of the quantities m,, m,, and r are

d S

TE™ = P A (mpmyr) + q By(mmyr) (21)
d oA ) e B e e

TafmZ =Pp 2(1‘[11,[112,{) +q BZ(m11m21r) 1 ’ ) o (22) ’

Tt = P Ap(mpmgr) +q By(m,myr) -, ' (23)

where Ay, Ay, Ag, By, By, and By, are given in the Appendix. Notice that the following

properties hold: A,(m;,m,r) = A,(my,m,,r} and B,(m,m,,r) = — B (my,m,,r).

4. PHASE DIAGRAM

When the system evolves in time it will eventually reach a stationary state
characterized by constant values of magnetization and other thermodynamic variables.
Thiee types of stationary ‘states may occur: the paramagnetic (m; =my =0), the
ferromagnetic (my = m, # 0), and the .antiferromagnetic (m,; = — m, # 0) states.

The paramagnetic state corresponds to the trivial so,li.ution of -equations (21}—{23).
It is given by m; =m, =0 and r=r* where r* is the'solution of

p A(0,0,0%) 4+ q Byp(0,0,r*) = 0. thatis



p(— 1zt — 2y + 22v® + v*) — 2q(5etE + 452 4 28y) = 0 | (24)

where 7 = {(b+r*)/4 v= (1-1%)/4; and 5= exp{— 41 /kT}.

" The  second type . of solution that ma.ji- appear is the ferromagnetic state -
(m, = mj # 0}, described by the order parameter mﬁ = (m+my)/2 . The ferromagnetic

ordered state'is the equilibrium type of order.” It-occurs, at low temperatures, not only at .

equilibrium (q=0) but also in the region near equilibrium, that is, for small values of q If
q iy increased, at low 'temperatures, the ferrcmagnetic’ state eventually disappears giving
place to the paramagnetic state. In other words, the ordered state that occurs at
equilibrium is destroyed by the increase in the flux of energy.

If, however, the flux of energy is sufficiently increased, the system will organize
itsel in another type of ordering. That is, by increasing q the system becomes more and
more far from equilibrium until a critical value of q is reached where the paramagnetic
.sta,té' becomes unstable giving rise to a new stationary state. This new state is identified
with the antiferromagnetic ordered state - described by the order parameter
my = (my-m,)/2 |

The phase diagram shown in figure 1 displays the regions of occurrence of each type
of stationary state. The ferromagnetic state océirs at small values of q and at sufficient
low temperatures whereas the antiferromagnetié state happens at large values of .q for any
temperature. The ferromagnetic and antiferromagnetic regions are separated by the
paramagnetic region. The two transition lines are obtained by the analysis of the stability
of the paramagnetic solution. When this solution becomes unstable a symmetry breaking
takes place and the system starts to display an ordered state: either a ferromagnetic or an
antiferromagnetic state. ' _ '

The expansion of the RHS of equations {ﬁl) and (22) up to linear terms in m; and

nm, gives

10

(25)

{26)

where

A, = 16p [n2(6z4—4z3) + 4n(62%-32%)v + 6(6z2-22)v? + 4(6z—1)v3 + 6v4] . (27
A, = 16p {nzﬁz“ + 4rzd(6v—1) + 62%(6v>—2¥) + 4z(6vi-3v3) + (6v4—4v3)] +
+ 512q[45z"’(4v3—v2) + 1225(6v3—v) + z8(12v-1)| -, . (28)

with z = (141%)/4 and v = (1—t*)/4 .

If )\F <0 and A A< 0, the paramagnetic solution is stable. Therefore, AF =0
together with equation (24) define the para—ferro transition line, and A 4 = 0. together
with equation (24) give the para—antiferro transition line. The two transitions defined by
these lines are contineous since the order parameters mg and m 5 Vanish contingously

when they are crossed.

5. CONCLUSIONS

We have studied an open ferromagnetic Ising system in contact with a heat bath _
and subject to a continuous flux of energy from an external source. We have found that
the stationary states may be one of three types:. paramagnetic, ferromagnetic and
antiferromagnetic. The first two states are the only stationary states observed in
equilibrium and when the flux of energy is small. We may say then that the ferromangetic

state is of the equilibrium type. The antiferromagnetic ordered state, on the other hand, is




11

the result, in the- case considered here, of a far from eqﬁilibrium process namely the
continuous flux of energy into the system. Thus an instability of the usual (equilibrium)
solutions leads the system toward states with spaial self--organized structure.

" The nonequilibrium antiferromagnetic ordered structure we have found is an
indication that the study of stochastic lattice systems may be useful to undersiand, at the
microscopic level, the occurrence of such dissipative structures found in fluid dynamics and
physical—chemical reactions.

Finaily, the system we have studied here can also be interpreted as a kinetic Ising
model with competition between a ferromagnetic Glauber dynamics at temperature T' and

an antiferromagnetic Kawasaki dynamics at zero temperature.

12 .

APPENDIX

Here we write down the quantities “A,, Ay, Ay, By, By and By, defined in-
section 2 ag a function of m; = <oy>, My, = <gy>, and r = <oy6,>. Let us define first
the quantities 5=P+), n=P-) B=Py+) ya=Py(=), z=Pu++)
vy = Pyy(+ =), vp = Ppo(— +), and w = P,{—-). From equations (15)—(17) we get .

no=s(4m) B (A1)
¥ = %(Hnl).,: o (-A2)..
7 = %:('1+m2). S
v = %(l—ma):, L N L)) _'
= ?1£(1+1;;1+n12+r) . | | . (AB).
v, - _%{£+m;¥m2¥r) o . L (A8}
vy = i(i'_m;%@.—-r). i ...-:(}w)”:-
w= %(L—}ni—mﬁr) S .___,.(.As)_

Using these variable and # = exp{— 2J/kT} . we have, in the pair approximation;



13"

Afmymy,r) =

_; (qzz + 41;tz3v1 + ﬁz-v 3 4zv * v'*) +E (er + 4T]W3V2 +6w'vi + 4wv2 +v$)

1 : y 1
(A9)

M) = M) )
Agp(mymy,ry =
1;(_ zf,%z — 4nzly, + dzvi +.2 ) + —(— 2172w 417wv2 +4wv3 + 2..v2) '
% - 27}%" 4y, + 4ZV3 + 2v§) + ( 2wt — dgwdv, + 4wvi + 2vi) , (A1)
B1(m1’fi'§2:r) =
——83 (éz3wv§ + 3z8w2v3 + z:‘,:'.vv3v‘.r1 + 3zwivi + 3wy %+ 92wy 3) 3

LA :
+ —8—3; (€3w3zvg + 3wizvg +'§;v323v2 + 3wzdvd + 3wz 3v o 9w~z2v2} , | - (A12)

i

Bymumpr) = ~By(mymgs) . L a

14:

Bjg(my,myr) =

12

7y}

xgh

- 1—23 (wPzvd + 2wizhvE + widy, + wz"’vg + 2w223v%

- (zPwvi + 228w + 2dwiv, + zwdv] + 22%wdvE + 322wivE) +

+ 3wilvd)

(AL4)
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FIGURE CAPTION

Figure L.

Phase diagram of the open ferromagnet.lc Ismg system T is the temperature

of the heat bath and the variable Q= q/(l—q) is related to the flux of

energy. The system may exhibit one of the three stationary states:

paramagentic (P), ferromagnetic (F) and antiferromagnetic (A}.

Q=0 corresponds to the thermodynamic equilibriin.

The case

b,

<






