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ABSTRACT -

" Conformal parafermionic field theories are reviewed with emphasis on the
- compufation of their OPE. structure constanis, . It is presented a simple
computation of these for the Z(N) parafermions, unveiling their Lie
algebra content " ST e

1. INTRODUCTION
' In thiis lecture it will be Teviewed the pa.raferrmomc conformal fiéld theories.

They appea.red m ‘the work of Lepowski and' Wilson 1 fromi‘the’ point of view of

the representa,tlon theory'of Kac-Moody algebras ‘under the namie of Z—&Ivebl as.
Later on; Fateev and Z&mOIOdChIkOVZ], motivated by some statistical mechanics

models, constructed the Z(N) parafermionic field theory. It will be outlined she

definition of the Z(N) lattice models together with their expected phase
diagrams. Some special points-in these diagrams correspond to completely
integrable theories>. in the semse that the Boltzman weights fulfill the
Yang—Baxter reial;lonJ‘] The Z(N ) parafermlomc field theon should correspoud
10 these spemai pomts : o o
A peculiar fact of the parafermionic field theory is the existence of rational
spin chiral currents. Although ‘these’ models are related to the
Wess—Zumino—Witten (WZW )5] field theories, and so a classical action might be

written in terms of fields lying in the group ‘manifold, a  direct canonical-

formalism in terms of those chiral currents is missing. 1t is nos clear if such a
cahonical formalism exists at all, but db a- motivation it will be presented the

theory of a single scalar “Chiral held i based ori the Ditac formalism. of :

constrained systems.

Next it will be defined the Z(N) parafermionic field theory and it will be
explained the consistence conditions that led to the computation of the
parafermions current algebra structure consta,nbsz]
9 will be constructed from
Kac~Moody aigebras. In fact these theories are the simplest examples of coset
G/H models where H corresponds to the Cartan subalgebra associated to G.

The lecture will be closed with an alternative computation of the structure
constants of the Z(N) parafermions algebra. We will use the representation
theory of level N Kac—Moody algebrasm] and it wilt become clear that those
structure constants are given in terms of group theory factors coming from
su(N) level one and su(2) level N.

The general parafermionic field theories

2. SOME MOTIVATIONS FROM STATISTICAL MECHANICS
The Z(N) lattice models are defined through camplex spin ¢ = uf .
q=01,...N-1 (w= egﬁ/N) sitting at the sites of a square lattice T. The
Boltzman weights are attached to the links of L and are given by
N-1 :
(o) = Y x ot (1)
k=0

where x, =1 and Xy k =X . Then the partition function is given by

=Yy I X(e(t], oft42,) @)
_<ar(i‘)>

where, as 'uspa._l, < > means summing over configurations and & o = 1,2,

are the basis vector of L . : :
These models can be alternatively deseribed by the s0 called dual Boltzman

. V\lelLH




L N-1 © N-1. - :
R = 1+2kakq l+2xq- {3}
g=1 g=1
k=20,1,.., N-1

in terms of which the self—duality condition is stated:

X = x k= L2,...N-1 . (4)

The duality mentioned above generalizes the well known otder—disorder
duality that is present in the Ising model (N=2) and in the Potts model (N=3).
For N=4 and N=3 eq. (4) is given, respectively, by

X+2x =1

x1+'x2 = %(ﬁ'+ 1}

These lines are plotted in the dié'grams below by partially broken, partially
" unbroken lines.

L

X4

The unbroken 11nes déseribe phase transition points and’ wefe: predi¢ted ten yea.rs
ago by Alcaraz and Koberie! ]. The points marked C are the ones were one
expects to have the conformal parafermionic field theory. Fateev and
Zamolodchikov3] have shown that at the points

. [ 5
k—1 sin(f= + )
x = I N IN _ : (5)
. 4=0 sin[vr £+1) - rrw]-

X = %y

S

the star—triangle relation4 is fulfilled, and so thé coptinuun theory should be
integrable too. As we have already mentioned, Fateev and Zamolodchikov
introduce chiral fields (generalizing the Majbrana fermion of the Ising model) in
order to describe this continuum theory. So, before moving to the study of their
theory let us see how the 31mp1est of the chiral models can be constritcted.

3. QUANTUM FIELD THEORY OF CHIRAL FIELDS - o :

Another motivation to study. chiral fields comes from l;he heterotlc st.rmg
theory12]. Chiral fields also appear.in the.investigation of. constrained field.-
theonesm%. From. this. point of view Floreanini and Jackiwlﬁ ha.we. offéred a
beautiful solution. to. the problem of constructing. the theory of a single. chn'a.l :
field: They have considered the Hamiltonian

=%I@WMrw T (1
where x denotes space, and the unusual common t‘ime éonunutat_i_og re__l_aﬁhhs_ '
B8] = i80y) . .. (7).
which lead to the self—duality equation:

b-imd=v @

where the dot means differentiatior with respect to time..




The-associated classical (non—locat)' Lagr&ngian.is .
. 1
= [ a0y 0 o) ) -} [aew o
where e(x—y} denotes the step—function, whose Euler—Lagrange equations are

W) = f dy () #y) - (10)

In fact, the Lagrangian (9) déscribes a comstrained dynamics. To see that it

suffices to realize that the canonically cotijugate momentum
") = f day ) ey o
ig a constramt .sin_(i_e u;do&e 1_1"0.%.'_ jci_é_.}:)_.e::ﬁd-on'fhé"‘.ré'lqcii.:ies.__' So,
T6) = ) -if dy ") e('y—xj_ .0
{TE),T()} = 5 e(xy)

Girotti and' Cost:i7)’ have shown that' this is the only (second class) constraint,
and so onie’ could exiploy the Dirac formalism for constrained systems, defining
Dirac brackets by : B

aly = (t8) - [ s 570 Qe (1))

where Q(z2') = {T(z),T(2')} . Then one obtains

{990}y = Fy)

~which ledds haturally to the equal time commutation relation (7). Also, the

equation of motion for the chiral field ¥ follows
b= {8H}, = v

The spin one chiral field ¢ is interpreted as a charge density field, and so one
might ask about the charge cresting chiral fieids that should be present in this
model ). These fields are defined through their Dirac brackets with the field
by

{exduly)}ty = iv fx—y) uly)

where 7 is a free parameter. Thus, besides the chirality condition ¢ = u', one
gets the equation
u'(x) = —iy w(x) u(x)
whose integral is ~
u(x) = 7 f12)

The field u{x) has spin zero (as the field (x)} in the classical case but adquires
a dynamical spin (given in terms of 7) in the quantum regime. Indeed, the
equation (12) is the source for the bosonization procedure in the quantum regime.
As it will be explained in the end of the lecture the bosonization of the
parafermionic fields is known but any classical counterpart (if it exists at all} is
missing.

4. Z(N) PARAFERMIONIC MODELS :
In order to make contact with the continuum theory, Fatesv and
Zamolodchikov™ 2 introduce one additional spin variable given by o f1) = (a(2))k

k=12, N-1, which take value w*% and crN_k(i‘) = ¢}(?). These spin
variables should correspond to the continueus conformal field oply)s yel?
oy = o). Their dimensions are denoted by 2d, such that dy_y =4, and

the Z(N} - symmetry being defined by the invariance of the correlation. functions
under the substitution




o) — Fraly) | (13)

for meZ. They also explain that the order—disorder duality implies that it
should occur additional fields, p(y) k=12,.,N-1, corresponding to the
disordér parameters, with the same dimensions 2dx. The seif—duality then
* implies that all correlation functions are invariant under the interchange
Oy — By - {This means that the theory possesses an additional Z(N) symmetry

associated to the substitution corresponding to {13) for the felds p(y) . Thus

the general fields in this model will be labeled by their Z(N) and Z(N) charges.
These fields will not be discussed further in this lecture and the reader referred to
the refs. [2,14] for a full account.)

In order to describe how the chiral fields arise it is convenient to introduce
complex coordinates in B2 by z=yHys and Z= y1+yé . Reasoning then in
analogy to the Ising model Fateev and Zamolodchikov postulate the operator
product expansion (ope) of an order field and a disorder one as

0 &2 (00) = 2222y 0y 4 . (14)

where ¥ = th{z) are the chiral fields and" Ay are their spins. (There are in
addition left—handed chiral fields ¢i = P(Z) but from now on we concentrate
on right handed fields. Also we will suppress the Z dependence of the
magnetization fields to avoid repetition.) The field #x is supposed to he
conformal

z) N = Bz 7' 1—8. ')+ e -15
T(z) ¥y (2" — B )+(z—z‘) L dz') + (15)

where T(z) is the_Ehira.l wmp'onent of the energy momentum tensor and fulfills
the Virasoro algebra

T(z) T(z") = _¢f2_ + —2 T(z) + 1 ) By T(")+ - (16)

) e

The model is then fully specified by defining the algebra of the parafermion
CUrrents:

AL A A, ' _
B(@) () = ¢ () KK Ky ey (17
k+k' < N '
o A L AA L, _
Ule) o (2) = ey o) BT E N g @) (17.b)
k' < k- ’
(@) ty ((2) = (a) 20k [I_+2%Alf(?—z')2 T + ] (17.0)

together with the input of choosing Ay =E(Eﬁlﬂ ‘Then looking ai the

conformal Ward identities, tha, follow. &om'( 15).and {16) one coinpﬁto;s c.to.be:

¢ = HNTL (18)
L (N$2) '

Also, using (17) to decrease the order of an arbitrary 2n—point function of the

 fields  ¢a(z) and demanding that the procedure gives the same result

independently of the way that one fuses the fields x(z), one gets

@ = _ D{crk'+1) T(Nk+1) T(NK'+1)
S D) T(k'+1) T(N—kk'+1) T(N+1)

{19)

At the end of the lecture we will compute the above structure constants using a
different procedure. - It will become clear, then: the group theory content. of the..
numbers (19).. Before this, we will present the definition of general parafermionic

modeisgl.

5. GENERAL PARAFERMIONIC THEORY - )
We start recalling the definition of a'level N' Kac—Moody algebra g

J2(z) Jb(z'} = m-ag. -Lb'c JEYy+ - R ‘(20
(22 (&2')

where J(z) stands for either the generators 'Ea(z) (¢ a root) or the Cartan




subalgebra-(CSA) generators “H(z); i =1,2,.;r" The parafermionic theory is = -

obtained. by: decoupling the CSA from g To. do that one defines r free-fields

by "
<¢y(z} ¢;(2')> = ~In(z=2") & (21)

and writes the CSA generators as

i o
Z). = = 3 $ ..
H(z) = 24N ajz @ (22)

where - g is=a.z'simp1e:i:00t.-_. (We. will concentrate in the simply laced case. See
ref. {9] for a full account.) The currents E®(z) get. then decomposed as

E%) = [ZF ¢4 ¥,(2) - explicd(a)/u ): (23)

where ¢ - is a cocyele-factor.and - ¢ d,(z) are parafermion: fields. From (21} and

(23) one sees that their common dimension is

A =1-2 (24)

x N

Then it follows from (23) and the algebra {20} that, the field ¥, (z). must fulfill
the parafermionic algebra: |

¥,(2) wﬁ(zi) = ka,ﬁ'(z,.__'-zl) atf e :'6 ¢a+ﬁ(-z’) S (25)

if o+f isaroot. k af ~are certain numerical factor and in (25) we have used

the. convention that.. Ag = 0.  To. see. how the remainder parafermionic fields
appear, recall: that-we-are dealing ‘with integrable representations of Kac—Moody
algebrasl-s;]': So; there:is a-highest weight A .which obeys A-y =N where ¥ is-

the highest root of the algebra g (normalized to ¢® = 2). One verifies that the . -
fields belonging to this representation get decomposed in a complete .set .of- -

- -parafermionic fields times the-CSA eontribution. - Indeed; Fuchs-and;Gepner;ﬁ]' :

have observed that the four—point functions of these fields possess power—like
behavior., Extracting the €SA factor one gets' the parafermionic contribution.
The details of this computation will be published elsewhere”] and we will omit it
here since it will cost us a long detour in the main theme of this introductory
lecture. ‘ : - -
Let us briefly see how to compute the central charge, Cp, of the
parafermionic. Virasoro algebra. Recall that the Virasoro gemerators for the
WIW modelsl are given by

- WZW 1 W
L,°" = — Y W IE
dly :
(N+h) 2ed

Ja

where B i3 the dual Coxeter number and J¥(z) = EI Za+1 - Denoting by LESA
mel

the Virasoro generators corresponding to the CSA and writting

L\:‘ZW = LSSA + Lll: B

one sees that G, is given by

where D is the dimension of the algebra g. Thus this construction is in fact a
particular case of the Geddard~Kent~Olive coset constructionls].

6. COMPUTATION.OF THE STRUCTURE CONSTANTS
We now turn to the Z{n} parafermicnic field theory.” Considering then the
su(2) level N Kac—Moody atgebra and writting

B) = W) = exoli [§ o(a)]

for thé positive root generator (and an analogous expression for the negative root |

one, F(z}, the. CSA being generated by. H = yN &,8). Consulting the work of .




Bernard and Thierry—Mieglg} one sees that y(z) is represented'by.
Wz) = ) exp(ivZ A-X(z))
AE A1}
where {A1} is the set of weights of the elementary representation of su(N) and
the free fields “X'(z)- fulfil}
<Xi(z) Xi(z")> = —In (z—2") &
(We are now employing a different normalization from that used by Fateev and

Zamolodchikov), Also, from the work of Fuchs-and Gepnerw} it follows that the
isospin J = N/2 field is given by

@i(z) = :exp[igqﬁ(zj]:

Considering then the ope of F(z) and a field in the multiplet ©7(z):

R 8l) = I ol )+ -
{z—z_)
one gets : :
17 = by_2)exp i(N—ZJ)lﬁﬂz)J:
where

it

b = 50— Y ewiZAXE)
o8y Bwoer A€ g}
{Ax} is the set of weight of the {k} representation of Au(N}.

The ¢;(z) are the parafermion fields of Fateev and Zamolodchikov (with a
different normalization). With their explicit expression the reader can easily
perform their product obtaining in this way the structure constants (19). This
computation and the analogous ones for other algebras will appear elsewhere17

Bernard and Thierry—Méeglg] one sees-that (z) ié represented by - .
Wz) = exp(i ¥ A- X(Z))
Ae {h} e
where {Ay} is the set of weights of the elementary representat;on of su(N} and_
the free fields Xi(z) fulfill
<Xi(z) Xi(2)> ="~ In (22"}
(We are now employing a different normalization from %hat used by Fateev and

Zamolodchikov):. Also, from the work of Fuchs and Gepner ]"ir. follows that the -
isospin J = N/2 field ig given by > ** e G

‘I’j(’z) S rexp [i J—g qs(z)] L

Considering then the ope of F(z) -and a'fiefd in thé multiplet” ®7(z):

Fz) 8)(z') = it o] (2} + -+

(z2")
one gets : i
where
¥y ;@) —jTJl““‘“W EXP(—l VZ A X(Z))
B I Uy b

{Ax} is the set of weight of the {k} representation of su(N).

The j(z) . are the parafermion fields of Fateev and Zamolodchikov (with a-
different normalization). With their explicit expression the reader can easily .-
perform their product obtaining in this way the structure constants {(19). -This' -
computation and the analogous ones for other algebras will appear elsewhere™ -
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