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ABSTRACT
-We quantize, via Dirac procedure, gauge covariant chiral bosons using
different Lagrange densities. We discuss ambiguities of the quantization
procedure, and.-propose -a “correct” procedure. A generalization of the
Siegel symmietry is obtained. . Finally, using a certain modified Lagrangian,
we obtain a theory equivalent to chiral QED in two dimensions.
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1. INTRODUCTION

Recently we have discussed the quantization of genuine chiral bosons
coupled to an Abelian gauge field!! where by “genuine” we mean that the
chirality condition is the usual one, 8_¢ = 0. However, it is more nat-
ural to impose a gange covariant condition, namely D_¢ = 0. Although
this seems to be a trivial generalization, of ref.[1], it is a good laboratory.
to understand the quantization of systems with an externally imposed con-
straint. The general procedure will be discussed elsewherel?. The covariamt
constraint will be imposed using a Lagrange multiplier. However, if it is
implemented by a linear constraint, the Lagrange multiplier plays the role
of a constraint force, describing a new field. This method, in the quantum
case, is equivalent to a delta function in the partition function.

A second procedure is the implementation of the constrain_t by means
of a quadratic term. The classical system is first class, and a Siegel sym-
metryl®! takes place. We argue in favor of the second procedure. As men-
tioned in the abstract there exists two inequivalent Lagrangians, and only
one of them leads to a theory equivalent to chiral QED, . '

In section 2 we discuss the first model, briefly with linear constraint,
then thoroughly with quadratic constraint; in section 3 we discuss the sec-
ond model and its equivalence to chiral QED;. In section 4 we draw con-
clusions. : : - SR

2. THE MINIMAL COUPLING

We consider the minimal coupling of real bosons to gauge fields, realized
by the Lagrangian density

{a+1)
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L= EWMUDM‘PDV(P = ZFLWF#V = (= ") A D, +
' (2.1)

with the constraint : :
D,.(p_: 0 ) o . . -.(2‘2)

and D, o= 0,0+ A,.
" The constraint (2.2) may be implemented adding to (2.1) a term

La, = V20 Dop . (2.3)




The resulting theory has tﬁo primary cosntraints ‘
0, =TI, ~0 | ' (2.40)
Q=T =0 , S (2.4:b)
and two éeconda,ry constréints _ '
| Qo =TT, — ¢ ~ady—Ap~0 - (25a)

=H—¢ +A,— Ay =0 , (2.5.5)

which determine the Lagrange multiplier Ay in terms of the remaining fields.
The Dirac brackets of the matter fields are the canonical ones (see also ref.
[4]). The lack of interest in this theory, however arises from the fact that the
field Ay is non trivial, describing the “external force” necessary to enforce
the constraint. If we are interested in the solutions of the equations of
motion arising from (2.1}, which obey (2.2}, we add to the Lagrangian

Loyy = Apa(D_9)® . - (26)

The equations of motion for Ay, Ay, A— and ¢ imply

(D_¢)?=0 (= D_yp=0) (2.7.a)
O_E=aA_—8_p=(a+1)A_ (2.7.b)
O E=—aAL -0y - o (2.7.c}
Ap=E @1d
(A+(a+1)E=0 , \ (2.7.¢)

where E = —Fy_. and the gauge field has mass m* = (a 4 1).

Canonical quantization of the model may be performed using the Dirac’

method!!. The primary constraints read now
Oy =T,~ 0 - (2.8.a)

Qo=M,,~0 . (2.8.b)

The canomcal Ha,nnltoman may be read11y computed a.nd we! find

r2 -

He H2+5 +2A2+ (H+A1) —-A2+A(H1 ©) +
- A (2.9)
2(1+ Agq)

The secondary constraints are the Gauss’ law, and the equwa.lent in
phase space, to (2.7.a), na,mely

0y = H1 —y - ady = | (2.10.0)
- 1 PR
O = sy O+ AN RO (2.10.0)

Equation {2.10.b) may be 111_1eanze_d to the equivalent constraint

s _H <,0+Aa~0 | )

Note also that the Lagranglan (2.1y and (2. 6) has a local symmetry, .
since there is a subset of constraints; which is fitst class.: The local symmetry
may be obtained by the algorithm of Anderson and Bergmannt?hi6l, and
reads _

bp=e D _p=c (0_p+A.) (2.12.a)

B, A
D_p

(5)\++ = —a+€+ + €+8..A++. - /\.§.+6_E+ + S+ (212b)

The commutators are obtained by the Dirac method, fixing the above
symmetry, if we take, e.g.’ A_H_ = 0 The non vamshmg equal—tlme commu—
tators are - :

[ (t,2), A5, )] = ﬁa (== ) (213.0)
[41(t,2), Tt y)] = —ihb(z — y) (2.13.)
a2 )] = o (- ) (213.)

th{o + 1) g (¢

- —y) (2.13.d)

(I(t, 2), 10(t, y)] =
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lo(t, ), (1 9)] = 4(;ii“1‘)'e(¢“—y)' (180
folt, =), Tt )] = 26 ) (2.13.f)
[p(ta), At = g pble =) - (13g)

Notice that the commutators are essencially non canonical as oposed

“to the former case (2.1) and (2.3). The latter case corresponds to the usual

quantization of chiral bosons; the Lagrange multiplier is a gauge field and
plays no role, while it is defired by eq. (2.5) in the former case, being
interpreted there as an external force and therefore presuposes a modifi-
cation.of the problem. Notice also that in general the symmetry (2.12),
which is a generalization. of Siegel symmetrym is.anomalous in the quan-
tum theory. Quantization requires a Wess-Zumino term!®l. In the case of
chiral bosons, an analisis shows!®! that inclusion of the anomaly does not
invalidate the result, because the quantum symmetry replaces (2.12). We
postpone further discussions to-the next section, where a more interesting
model is considered.

" The special cases a = 0, —1 give rise to new symmetrles as one readily
sees from the fact that elther Qs com.mutes Wlth Ql(a = 0) or Qs ~ Q5
commutes with Q;(a = ~1). 4

3. A NEW INTERACTION, AND EQUIVALEN CE TO
FERMIONIC CHIRAL QED-)

We can contempla,te studylng the effect of addmg aterm n*v A, 3;,99 to

- the Lagrangian (2 1) obta.mmg

v i _ SR
L= Zn“"DmoD p-—FM,,F“”—E“"AD ot 2_1)AP,AF . (31)

The equations of motion are

Ap + 8,A* = E | | (3.2.a)

‘o.E=ad. (3.2.5)

OB =—aA, — 20,9 : o (3.2.c)
CE=(1-0a)d,4" (3.2.d)
a?

- Therefore, the gauge field £ = —F, _ has a mass m®> = a2/(a — 1),
which is the value of the chiral QED, photon mass!?l, Introducing a linear
chiral constraint, the structure of the equations of motion get modified,
and we shall not dwell on this case. We eventually go to the (gauge ﬁxed)
case A4 = 0, adding the constraint to our set of equations (the constraint
appears as the secondary constraint arising from the conservation of IT Ay R
0) The whole set of constraints reads

U =T,~0 | (3.3.a)

O =T+p + 4, - H1+(a-—1)Ao~0 C(33%)
93 = HA++ = . .(3'3'6)
Q=I-¢p =0 S (3.3.4)

(s = Ay ~f=0 . __ (3.3.d)

Note the simplicity of the chiral constraint since in this formulation

V2D_p=p— <p+A Al_H v (3.4)
due to the definition of the momentum
H=¢+AO—A1 . (3.5)

The constraint corresponds to the conservation of Ql, using the
canonical Hamiltonian

: 1 '
‘_7?.“25(11“9 —AO+A1) + 500 ~H<,, - -11'[1——(.»4_2 A§)+

z\++ s Ll B
m(n v) (36)




The constraint IIy, . = 0, and the corresponding consistency condi-
tion, imply, using the algorithm of Anderson and Bergmannl®l, the gauge
syminetry

bp=cyD o (3.7.a)

6A++ = —*6+E+ + 5+6_A++ — ,\.),.4.8...54. . (375)

‘We recovered once again a generalization of the Siegel symmetry The
“chiral” Dlrac—bra.ckets are

: 1 :
{(P(ta "'L')a (P(ta y)} = —ZG("’U - y) (38(*")
1 .
fip(t,2), (t, )} = 58(z = 9) (38.0)
. - : 1 .
| {II(t, %), IL{t, y)} = 56 (z—y) . (3.8.¢)
 After using the constraints strongly we obtain :
| 1 a—1 1 . ! | / !. .
H=§n%+( 5 )A§+(a_.1)_(2<p + A -T2+ (0 +41)% (3.9

' .Th'e_ special case a = 1 has two additional constraints
Qs =TIl = 0 . (3.10.0.)

Qr=A,— Ay ~0 , (3.10.)

and we get the usual chiral boson modell’]

H=GY (311

ety = —reda—y) - (312

The only loophole in the argument is the fact that the gange symmetry
(3.7) is anomalous, and one should thus add the Wess-Zumino Lz term
to the Lagrangianf® - _

e Lwz=aly0-D_¢ {3.13)

and the system acquires a quantum-gauge symmetryl®l
: e
bp=e,D_p— 53_..64. (3.14.a)

6A++ = "6+E+ + E+B_A++ - A++6_E+ . (3145)
The Hamiltonian obtained with: the new term (3.13) is

. .
H:EHf

'1—|—a
2 ". 2

A2+(n AL - CATI4A, (T+¢ Al—H +.

_aHA++(H —¢) = 'X+“?H)_‘++_ _Zx_z(l * A*‘_‘,+)H§++ T (3.':_1_.5);
Tt is clear that the system has no longer a coﬁstra.inf: for ), . How--

ever, we follow ref. [9] and fix the qua,ntum ga:uge sym.metry (3 14) w1th the
condltlon ' '

| | Ql..)\+++1~0' R 316.3)'
Then we’ obtam new constramts from successive.-time. conserva,tmn
G=ll-p'~0 o «&m@”

= HAH ~0 . . (316.)
and the same conclusions as before hold.
There is another Lagra.ng1an formulatmn wh1ch does not ma.ke use of

the auxiliary field A, , avoiding the ‘anomaly problem at the price of not
having manifest Lorentz invariance : - -

1 : 1 1 e B e
L= ifdyx(w)E(ﬂ:"y)x(y_) —5X -] WF“ + A A“-{-
Hmfwﬁ,]_ _,@m

which equations of motion imply

x(z) = 3 fdye{r - y}\({y +24_ (3.18.a)
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O4E = —ad, -2(x— A_) (3.18.c) SRRTE e A= -41'= —ﬁx o (3521-.f)
E=(1-a)d,A" (3.18.d) for a = =1, _' - - :
a : The model above agrees with the chiral. bosou model proposed in ref 7
(A + ( 1) =0 . (3.18.d) in the absence of the gauge field A,.
a— .
1d is related to o(z) through ‘ o
The scalar field x(z) is related to ¢(z) & The Lagrangian (3.1) may be written as
=v20 ; )= V2[4 e(z — y)x(y) (3.19.0) L | o
X=vap 5 pE) ="y Y . . : ngﬂ‘-"u 00,0 — ZFMVF#U ( ‘W—-E”V)A 31/(‘9_{_2_4 A# . {3.22)
x=0,x+ \/Z_AL, . {3.19.b) Which is the boso_nize_d form of chn‘a,l QED, -
‘Dirac-bracket quantization of (3.17) leads to: ) 75)

. |
Loqens = Pi P+ eAuiy* — —F,F* + -‘25,4“4# . (3.23)

¥ 4
1, 1 (e—1) 5
=- 24,2+ 112 Al+ V2x+A;:- 3.20.a
& 2(X+f O 2 it 2 i 2(a — )( Bordi=IL)* ( ) First notice that the solution of egs. (3 2) is given by:
Dx(t: %), x(t,9)] = ih6 (z — v) (3-20.) —lop L (324a)
[A1(t,2), T 8, )] = —ih6(z — y) (3.20.0) | o, T
) 4= (“a Lo, - G I )
o= 2 fdye(:c —¥)x{y) (3.20.d) : 2 L ' o
A =0 o (3.24.c
I, =0 (3.20.¢) A+ ez ))"" v B2
A, = ( i 5 (V3x + A1 — 1) (3.20.f) while the solution of (3.23) is gwen by
fora # 1, and : . 3 ’ AL —‘——6_ ' S : 1 (3.25.0)
H= —x2 (3.21.a) ' s o
4 (““2)8a Byh 325b)
[x(t, 2), x(6, )] = B (= — ) (3.21.5) T T ROTO e
1 : : The massless. field & is trivial, in the sense that it does not cont.nbute
o= 5 f dye(z — y)X(y). (3.21.c) to the anomaly. The mass of the ¢ field can also be read from (3.24.¢).

_ However the i field has a chiral’ commutation relai:mn {see (3. 8)) while
O,=90 (3.21.d) o has a canonical one,
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- 4. CONCLUSIONS

We have discussed different versions of chiral bosons interactions with
gauge fields. Our first main result concerns the way we implement the exter-
nal constraint, with Lagrange multipliers: as it turns out, the correct results
are obtained using first class constraints; in turn, they become first class
if we square them (sce eqs. (2.6), (2.9)). Using the modified Lagrangian
(3.1), we obtained a bosonic model related to chiral QED,. However, the
fields have the so called “chiral” commutation relations (3.8); nevertheless

-the solution of the gauge fields in terms of the bosonic fields is exactly the
same as in the chiral QED, case (compare (3.24) with (3.25)).

The first class symmetry obtained is a generalization of the Siegel sym-
metry. However, it is anomalous and the solution of the problem requires
the addition of a WZ term to the Lagrangian in order to cancel the anomaly
(eq.(3.13)). In this case the symmetry is recovered at the quantum level
(3.14), and a short discussion shows that the naive results obtained in the
absence of the WZ term still hold, after fixing the Siegel symmetry (3.16).
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