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ABSTRACT: A new systemn: of coardinales’ was found end a mc'm.ad was devcloped lo
determine a loreidal cqut’ﬁbﬁum; of plasmas wilh: an arbitrary curren! disiribution and
arbitrary plasma cross—section. Thé-nﬁe&had depends on the knowledge of the equilibrium of
a siraight p!asma.ca_fumr’z.-'of-si.mﬂag cross seclion. gnd similar current distribution. Large
asﬁect—mlio- is assumed. By successive-approrimations betier solutions can be obluined. An
explicit: formula for the poloidal fluz of a ucarly circular plasma is prescaled. This can -be
writlen in.@ very suggestive fore, i lovms of @ fuuciion related to the asgmanclvy af the

poloidal ﬁc!ﬁ.d_u'e to loroidality. The melhed works provided there is ouly oue magnclic aris.

" Work pariially supported by FAPESP and ONDPq.

L INTRODUCTION

MID equilibrivm in axisymictric tokamaks can be described by the poioidal
flux ¥ which satisfics an elliptic partial differential equation (Shafranov 1966):

RIV. (R2VY) = '“oja = nlte = %, §F qv — ﬂ”lm (n

Here R is the major radius and J P the toroidal current density. The plasma pressure P and
the poloidal cusrent T are susface quantitics, thus, depending on position shiough ¥ ouly.

Equilibrium distribution of the plasma current in a tokamak cannot be
totally-arbitrary (Coppi 1950; Brusatl et al 1984; Biskamp 198G; 'P_ﬁrs_ch and Pohl 1988}
The question of profile consistency in tokamaks is still unsoived. However, sume. relevant
results have been reported in this context: Egorov et al (1987} developed.a method to
measure the direction of the magnetic field in T-10 tokamak which can be used to
caiculate the prbﬁle of the salety factor q. From this result, eurrent Jistribution can be
‘uferred. Kuzneisov et al {1987) observed that magnelic measuremcnts external to a
Lokaimak plasma can nol only seveal some ghobai 7pro;_\ei‘Lies, such-as Lhe total current and
the mean kinetic presure, but it can Le used to find the current .disr.rilml.iun, provided
restrictions are made as'w the class of pussiiﬂc current profiles. .

The profiles of torvidal cursoni ch and g“ip,' are c.xp('ctt:-d Mo be very similar
(Wuznetsov ey al. 1986}, 1t seems. (hat, in general, the. current. fh“-trmuuun i5 ot 4 linear
function of ¥. Thus, the sell—consistent C‘ra,d——Shafra,nos equatmn is a nonlmear elliptic
equation containing a scarcely }.no\m function. of ¥. 1i secms that AL tokamak plasmas
conditions the solution. is umque ({Field- and Papaioxzon 1977} il Dmduus boundar\

condition is assumed.




Yoshikawa (1974) developed a method to determine a toroidal cqulibrivm of

plasmas using local polar coordinates once a cylindrically symmetric linear solution is
known.'_ Arbitrary curront distribution can be treated by this medind. Tlazehine and
Montgomery (1988), adupled the sama approach o flud the equilibitun of a nearly circular

low 4 plaxms using & different coordinates sysiem,

We found a curlous system of coordinates to describe toroidal equilibria of

plasmas with an arlﬁitrary current distribution and arbitrary cross section. In the ilimit of
large aspect-ratio it becomcs the standard loeal polar coordinales systen (§2).

The idea of bending a stralght cylmdnca.l plasma into a torus'is Laken from
Yoshikawa's work, The modlﬁcau_on in the equilibrium due to teroidality is described by
“an almost linear-elliptic equation. The nonlinear term is & quaniity of the order of the
inverse aspect—ratio:

In axially symmetric systems with large aspcct.—raﬁio. the correction can be
treated as a perturbation and Lhe equation solved by successive approximations. Thus,
tesults known for the case of straight cylinder of any cross scction can be taken over to
toroidal symmetry (§3)

A fundamental assumption in this work and the foriner ones {Yoshikawa

1974; Hazeltine and. Montgomery 1988) is that J é has the same functional dependence on ¥

as in the corresponding straight cylindrical plasina.

In §4 the equation (1) is solved for the case of nearly circular plasma, correct
up to first order in inverse aspect—ratio. Bending straight circular cylinder of radius.r ina
torus results in a mearly ciliptical toroid with cccentricity = rf2R. Dirichiel boundary
condition is applied on the outcrmost efliptical torvid with eccentriciiy =af2R. This

corresponds to taking a fixed plasma boundary. The poloidal flux can be writien in a very
suggestive form as a sum of iwo terms, The first term is representod by o evlindrical
plasma function which contains much of toroidal effect through the coordinuie that is l.b(,d.

The second term, which is of the order of a/Rg, is writien in terms of a function related to

the asynunetry. of the poleidal {icld in the equatorial plane. A curious resalt is that for Jow
’BI? the shape of the magnetic surfaces arc glmosl, model independent. The assimetry of
poloidal field in the equatorial plane depends on ﬂp ard on he current distribution.

The model works. provided the poloidé.l field does not vauish inside the

nlasma.

2. TOROIDAL POLAR COORDINATES

The usual toroidal coordinates systent as used by Shafranov (1966) and
denoted here by (&, w, i) are defined in terms. of circular cylindrical coordinates (R, ¢, Z)

by:

Ry sinhé Ry sinw
R= - . T =
coshi{ — cosar and L= —GERT o5 - (2)

where Ry is related Lo the geometric major-axis Ry of the plasma by:
"RE=Tyy 1 = a¥R]
A new set of coordinates (p; 4;; ) is defined here by: =t
p; = Ry/ (cosh& — cosw)
and . o L R (3
. b, =5—w
The micaning of the coordinates p; and § can be pcfccii;ed by ohsérving the figure I.

Relations between this and local polar system (p, 0, ) with the same origin

= p(l -—Hl;'—cmﬂ-i- (ﬂpr)"'/"

and (4)
e o .._1/2
sind, = sind (1 “‘g— cosd + ( HB)Z

These clearly show that in the limit p/Ri<<l g, and 8, become p and 4,

&



&

[

respectively.

.. @y = conslant. is nearly clliplic surface. . .
3. EQUILIBRIUM EQUATION
~ The equiijbrium equation (1) in terms of the {oroidal polar coordinates

becomes (Appendix):
2

1 3 v .1 @Y P, P Py,

—_— .a.ﬂ_t -g-- 2— 602 ;zono(\IJ) + ,uaRﬂz ( R:B CDSUL + F 8111201)
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where

2 72
#y 1
#o30{¥) = — 1o Rp? %"“%TT {6)

" The contravariant componeits. of poloidat field are given iy

.
B %0 = o,

R B,
B¥o= —we am, @)
and the toroidal ficld by: -
B; = RB¢ = —fiol {7)

In the Kinit of large aspect—ratio, the zero—th order cquation s Laken as:
PO e '
10 o 1 u.
C == = ¥
7, '3‘0—!3 7. + 002 Hod30(¥y) (8)
This expression is identical to the Grad—Shafranov equalion for a straight cyvlindrical
plasma with an arbitrary cross scction cxcept for the definition of the coordinates. In both

cases W, does not depend on. a. third coordinate. Once the eylindrical solution W, (p ) s

kanown, the zero—th order solution of Lhe toroidal system will be given by WO(ﬁL, g).
. The equilibrium solution iz, then, written as: .
Vpy, 8) = ¥y (o, ) + 6%(p,, 0) ©)
Here we assume that the current terms can be very nearly represented by:

30 (¥) = I3 (‘I’o) + ( Jso {¥y)) é¢

and.

T (9 = J- PCvy) + (j—q;; () 64 | (10)

The pressure profile in the c¢ylindrical approximation is t.aken as:

R G5 (0= 8,00 (%) oy
where ﬂp is the poloidal beta deflined as the ratio between the average kineiié pressure and
the magnetic pressure at the plasma surface due to the poloidal ficld.

Witk these assumptions and obsérvixlg that:

V (VW) = gy (gma J30 (o)) ¥y (12)

the equilibrium equation for 6 can be deduced from {5) as:

" ) Py .
(Fobo) Viow = (VW W) 6w = ' x 0, (13)
¥, and ¥? are the cylindrical gradient and laplacian operators relative 1o Lhe coordinates p,
and 4,
- d é
V.= (Vo) s, + V0, o0
id 9 1 &
Vet p 0 2 & : (14)
tT oy Tp P dpg 02 o '
and
3y 1 ¥ . L av 1 3y
= ¥ L JpY: ; 2 — . L
X c0<0L 2 P — TN deﬂt,.]ao(‘-p}] + bmf?,_(p%. IS T

L 9 . - . ' . . )
~§; S 0, ﬁpl‘aJso(‘l’) | : (15)
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- . . -

Delining a funclion ¢g 2 ¢, Y Vywhere Clis an arhilriry constant veelor ;
? S Y & e '
Gol¥7 0W) — (Vi) 8% =y r— x (16)

Writting ¥ = T:f% f weget:

T (D0 =g x am
Here, x depends on ¥, The 1% order approximation is obtaincd subsﬁtuting
¥ by ¥ in the 2°¢ member of the equation (17). The solution of the . (5) will he:

v \P0+l-r—¢0fl (18)
where f; iz the solution of the nonhemogeneous lincar “elliptic equation {17), the
nonhomogencous term will be a known function of position once Lhe cylindrical solution is
determined; ti‘.is corfcct.iOn is of the order of the tnverse aslncct~r§Liu.

Equation (17) cén be dealt as a partial dilferential cquation in conventional
cylindrical coordinales. tn order o solve .this cqu.atiou E} can be chosen as Lhie unit veetor in

: o
the direction #, = 0 50 that ¢ = '(')p_o cosf,.
t

For a piasma-' with fixed boundary the ‘outermost magnetic surface can be
determined by ¥, (p,, 0;) = constant and 6% = 0. The solulion i3 expcctcd Lo be unique
under tokamak conditions {Field and Papaloizon 1977). '

Higher Iaccuracy can be reached by éucéessive approximation method. The

original problem is significantly simplified by this method. -

4, f\PPLlCATlON TO'A TOROIDAL PLz‘\SI\-i-A.\-\"l'l‘U NEARLY CIRCULAR CROSS
SECTION.
0% order solution is assumed to be an’ axially symmctric solution of the
cquation: . )
d dg . : -
aﬂﬁa“—— ttgdao(Wo) = ppld 5 “_9}

Taking $, = ¥icosd, and considering Lerms up 1o the order of pf ity

(=g

Here, the primie is the dcrivnl.ivu with reapeet Lo gy,

. cosd,
V. (Vi cos®d, W7 (pU])2 — w2 {20y

There is & sviution {or { depending on p; cmi}

1-8, p N 3 -
' < g py I J L_L‘L"z dp - (21)
Defining A(p): : _
. df . 1 P S oo
Mo =--gh=1-g - [hoere, @
| Cn a“; Pt S
the f)oloida] flux becomes: : '
U=y {p) + Vi) cost, | RLA(p} dp (23)

It is curious to notice that. A(a.)’ls ihe coeflicient of asyvnunctey ol the
paloidal field defined in terms of poloidal ,ﬁ‘b znd the normalized internal inductance per

unit lenght (sce for e.g. Mukhiovatov and-Shafranov 1971) RS

Lo
A(a):—.zi_+ﬂp+l
a
ll=' Z r B%pup {(24)
BY a*

p, = ais the outermost plasma sur[a(‘e.' ’

—

Other chmce< of C must lead to 1110 satie 'owtl, once’ the Loundary

C couci tions are ental»hklw(l

© Figure 2 shows thc, :url’aces -8y =rcoﬁstant_-;:ng} circles around the origin

co.mcpem'ng to locai polar coordmatc p constant

“he poloau&l :mn o :Cd is calcu]atcd from (7). The teroidal magnetic

field is dcc.uccd from ( ') as:

RB, = —I{‘ilﬁ)+1—%W{1—JDJJ30(QJ0},<-.9 _ TS

¥
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In the outermost surface the poloidal Reld is very nearly given by:

Ygla)
—r (L "}Tt— A( ) COS!?")

(26)
Poloidal flux and magnetic field in the equatprial plane were cdleulated
numerically assuming a peaked current densily:
' 2
Jgo = constant {1 — (—)2)° (27

and using typical values for parameters lound in TBR~1 tokamak (Vannucei ¢l al 1989):

. plasma current Ip =10 kA
major radius Re=030m
radius of limitator 2=008m
toroidal field - By=05T

' Afa) = 0.28

" The first order correction is very smaill. 0% order and 1%t order solutions

cannot be distinguished in fig. 2.
"" Figure:3 shows the peloidal ficid in 0*® order and 1"" order apprommatlons It

seems: that the magnetic surfaces for low ,6 and nearly circular cross seclion plasmas are

almost model independent. The 1% order correction accounts for tie asymmetry of poioxdal_

ficld on the magnetic suzface. This term dcponcls on ﬁp and the (:urrr'nl. profile.

3. CONCLUSION

Following Yeshikawa, a meothod was dcr\'('iup('d_ w sulve a seil cousistent
equilibrium cquation with toroidal geometry using a new sct of coordinates. The majur
problem is- reduéec_l to scarching the cyiindrical solution with more realistic curront

distribution and cross—section. Once this solution. is found the method developed here

allows us to find the departure from the cylindrical solution due Lo toroidality. The method

is-simple although some mathematical developments have to be performed.

~In- the-case of ncarly circular cross seclion plasma the 0t order solution

10

contains much of the toroidal effect: For low ﬁp_ this term is weakly dependens oncurrent
profile. Also, the shape of the magnetic surfaces depends very little on curreut distribution.
The next order term takes account of the asymmetry-of the poleidal ficld un the same

magnetic surface.
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APPENDIX' _
EQUILIBRIUM EQUATION IN TOROIDAL POLAR COORDINATES

Coordinates
Ry .
A= =
X AT CosEF cos,
Rzl =r—uw '

Bz

Contravariant. Basis

sinhf sind, ,
¢ =V =—a SRyt S np

¢

ez'vet=7‘.
X t

93=an=§1'%—_

Contravariant Matrix Elements.

i 2!’[, 1 sinﬂb
g “1—7{6(:05{% g“:.R_é_
7 _1 : a3 _ 1
[13 = ———— g =
TR Tl
. 2, f’% R .
VE= Ry, R = 11 -z cosd, + " sin20,)'/

Equilibrium Equation:
g 1 @ 1 ijov
s ey -
vz o' R?" ax!

¥ . . . > .
== 0 W =48 L g = = R g =

p e,
+uy RE IT:, {2 cost, + T;r sin0,) g%

i1

¥

>
™~

Figure. 1 %Cou_rdinates systems. O is the common origin’.of the coordinates! systems. O ¢ is

-the geometric axis of constant £ toroid and (_)t is the gcmnct.ric"axis_ of constant pt

=
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Figure 2 — Magnetic surfaces. Solid lines are the ma.gnetié surfaces, coincident with

constant p, surfaces for TBR~1 tokamak, The points are constant g curyves.
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“Pigure 3 — The solid lines représent the polmdaj field iin 1“ order approxamatmn The

poinis correspond to ot order approximation, -
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