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ABSTRACT

An average invariant which describes average magnetic surfaces Jor a system
without symmelry wes oblgined. The system is-a-tokemak toroidal equilibrium perturbed by
resonant helicel windings. Analysis of the average surfaces showed that the magnetic islands

move Lowards the plasina centre and decrease in width as the pressure increases.
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I - INTRODUCTION

When the magnetic field has symmetry, there are magnetic surfaces that can
confing the plasma. Perturbing fields that break the symmetry may destroy these magnetic
surfaces(l).

Resonant helical windings on a tokamak with the same helicity as the
magnetic field are known to improve the equilibrium of the tokamak(2). However, these
helical windings spoil the symmetry of the system.

The magnetic surfaces of a plasma are studied in a tokamak where the toroidal
equilibrium is modified by resonant helical windings. As the amplitude of the current in the
helical windings is much smaller than that of the plasma current, the helical windings are
regarded as a perturbation of the equilibrium. The magnetic field is thus considered to be a
superposition of the magnetic fields of the equilibrium and the heljeal windings.

The field lines can be described by means of a variational principle(s) using
the vector potential of the system. Applying Noether's theorem to the Langrangian of t.he
problem, one can conclude that, if all components of the vector potential are independent
of one of the coordinates, the component of the vector potential corresponding- to this
coordinate is an invariant(g).

Our problem has no symmetry since the equilibrium has toroidal symmetry
and the windings depend on an helical variable. Noether's theorem then cannot be applied
directly because there is a dependence on all three coordinates. An average vector potential
is therefore defined in order to allow an average invariant to be used to- describe the
problem approximaltely.

The method used 10 vbtain the a.verége surfaces is explained in Sect. 11(4). Its
application requires that the vector potentials of the equilibrium (Sect. IIl} and of the
toroidal helical windings (Sect. 1V) are calculated. In Seet. V the superposition of the

helical windings on thé-equilibrium is analysed. The conclusions are given in Sect. VL.




Il - AVERAGING METHOD.

"~ As th_e current in the helical windings is much smaller than ‘the plasma
“eurrent, the vector pot;ential‘ of the system £is the superposition of the vector potential of
the equilibrium .° and that of the perturbation a:
Ep, 0, Q)= A (p, ) + 3 (p, 0 9), (1)
where g, 8, ¢ are the local coordinates shown in Fig. 1.
The helical windings are described by the foilowing equations:
u = mé# — ny = constant {2a)
g=h (2b)
The average vector potential is defined as the average over the poloidai angle ¢

on-&:line where u is constant(4):

. . rerm . : _
R, (o1 ) zﬁ—jo 40 Ayp, & = Ln“] : @)
The average vector potential is of the form:
F (o, 0)=Fp (5, 1) &, + Ky, 0 &g+ K (5, 1) 8. 4)

L is- natural to use the variable u instead of @. The average vector potential can then be
‘written as(¥) . o
f— : . : « 1 N
Hp,w) =Ko u) &, + [Kylow) + 2K (5, 0)] 8- LK (0. w) e, - (%)

~ In this coordinate system the average vector potential does not depend on the
poloidal angle 8. Therefore, in aécordance with Noether's theorem(4) the component 4 of
"the average vector potential is an-invariant: .
¥.(p,0) = Kplp, u) + —‘I‘l‘— A, (p, u} = constant. {6)
Although ¥ is an exé.ct invariant, it is not the exact invariant of the problem.
The validity ~of the method  derives frmﬁ the fact that the average vector potential
approximates the exact vector potential. The invariant of the approximate magnetic

surface is thus an approximate invariant of the exact magnetic surface( ).

- INAL EQUILIBRIUM
Shafranov analysed a plasma confined in a toroidal apparatus, using toroidal
coordinates(5). It is possible to transform these coordinates to local coordinates. It must be

mentioned, however, that this transformation is not valid near Lhe magnetic axis. The

invariant which describes this equilibrium isB)
.ohﬂolpRﬂ [ gepEn e
= g [1~_~—§—2]_[1-R§_(A__+1) cos a}, 1

where the major and minor radii of the plasma are R, and a respectively (Fig. 1), I, is the

plasma current and A is defined by(T)

L

In equation (8} ﬁp is the ratio between the'kinetic: pressure and the magnetic
poloidal pressure of the plasma and [; its internal inductance.
Figure 2 shows the magnetic surfaces described by curves of constant ¥°, on
the basis of the parameters of the TBR~1 tokama,k{s):
a=58cm, Ry =30cm, [, =18kA, A =028

The function I related to-the invariant 4 is

R2 ' L gy .

2 _ 12 2 [ 3

P=i+2—0g) [T—A][l——fz-][l——ﬁa{/\+l}cosﬂ], (9)
where [e is the current in the tokamak coils.

The magnetic field can be obtained with the expression

1 o . Hy I(d’o)“ o ;
F= [P xe, v Tp—e ) (10)

where R is given by (Fig. 1)
R=Ry—pcosd . (11}

The vector potential can be calculated with the equation(w)

A= TI—TVp, (12)
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where y is the toroidal flux of the magnetic field (Fig. 3a),

’f="’i"ij£-dsT . (13a)
and 1 the poloidal flux of the magnetic field (Fig. 3b),
anlx—J.z.ciSp'. (13b)

Using expressions (12}, (13}, (10), {7} and (9) it is possible to calculate the
vector potential of the equilibrium, making some approximations and keeping terms to the
‘order of (p/Ro}?.' A.ve'ra'.ging the expression obtained; émploying definition (3), the average

vector-potential is finally found to be

=0, (14a)
o ‘
B 3 5 D 3
Y. C B e e [ s
S=1-{¢ |4 s Temg| T ot
D T 1)) A B '
- M+{A+1 + ) (14b}
o1t )[sag 12a?R3'”
kolp 2 2 2 4
B2+ L1+ Lo g2 A+ 1)}, (U4e)
9 71?{ R & R2 2R§'( -2a2Rg( }
where
212 o
[ 5 _ .
D= ] 5
and
lo. &
C= DB+ R‘; (lsb)

IV'—TOROIDAL HELICAL WINDINGS

A number of equidistant thin conductors wound on a circular torus carrying

cnrrenis Iin alternating directions is considered. The torus has a minor radius b and the
torcidal helical windings are characterized by the numbers of periods n and m of the helical
ficid in the poloidal and toroidal directions, respectively,

Fhe scalar potential for this system has already been obta,ined(u):

b= (_l)Nm + 1 [1 + Eﬁ-—o cosﬂ] E;%E { [—g— senN (mf — ny) — Iﬁ_o {[_ﬁ

Nm—1
Nin+2 ( N ' '
Nt sen [(Nm—1)¢ ~ Nogj + 'ﬁg‘} RmT 5o 1(““’*‘)"‘N“"9]]]‘ (1e)

]Nm ]Nm+1

where N s the harﬁwnic considered and m the number of current pairs. Each term of the
scalar potential corresponds to a certain resonance, The first term relates to the resonance
m/n and the other two to the sccondary resonances {m—1)/n and (m+1)/n. Only the most
important resonance is considered, since near the rational sqrfaces the contribution of the

other rational surfaces is negligible. The expression taken for the scalar potential is then

Nm+1 sg) Mol Nem
6= (—1) [1 + 58l [—H senN (mé-ny). (17
The magretic field can be obtained by means of '
2=V} (18)

The same procedure adop'ted for the equilibrium is used to obtain the vector
potential by means of the magnetic field fluxes. The vector potential is then calculated

from eqs. (17), (18), (12) and (13). Using the definition of the average vector potential (3),

one obtaias
Ep =9 (19a)
- Nm Holm Nm o
ag=(-1) _—9HNR [—&] Tr%?’ senN {mé-nyp}, {19b)
= 9
_ N feIm Nm .
a,= (- N [—%] cosN (mé — ng} . {19¢)




—~ AVERAGE MAGNETIC SURFACES

Asitisa superposition of the vector poténtial that is concerned here, the
average ‘vector potential is now known from eqs. (1), (14) and (19). An approximate

invariaﬁt '(6}‘Cah-ther.efore be obtained by the'method described in Sect. 14,

_Qp_“; [V A
{ [_5_+ 2 161{41 8Ca? e+ SR} 12%R}
.+——I [ +Jl— —L[ —P—l —P—(A+1)+—L(A+1)]}
T @ wmg)oom 4R}
' pI < Nm 2y o1 N .
+( l) {#;{—E; —N-l—wzz{-%] senNu +-m—lf-;r[—%] mcosNu]' ; (20)

where w wad:defined in-eq.. (2a} )
o ; Flgures (4a} and” (4b) show: curves: of constant ¢ usmg the parameters of
. TBR——I a.uct m = -3 I = - N. =1 In Flg (43) one uses, A = 0:28, 2 typical value for
B TBR.—I tokama.k(lz) e Flg (4b) one employ& ‘A = —1, ‘which corresponds to. the lumt. of a
- -zer(r ratio: between the Kinetic-and- magnet.lc pressures of the plasma. '
 From the fi gures.-:t.- can: be seen that.in the limit of zero pressures, the average
még'n'éiic islénds are bigger and are nearer the plasma boundary. The effect of the bressure
on the |sla.nd width can be verified by calculating: the :sland width using usual expressions.

I should be stated that. cons:dermg the pressure of the plasma is equivalent to

a displacement of the magnetic axis, because when the pressure is not considered the.

' magﬁetic axis coincides with the geometric axis. The effect of the island width has already-

.been-robserved by. considering the displacement -of the magnetic axis analytically and

nu'rﬁericaliy('l_s}.

VI — CONCLUSIONS
-Th_e. magnetic surfaces- of a tokamak perturbed by resonant helical windings

were ua;jaed, although the system has no symmetry. Ao average invariant which

approximately describes the problem was obtained. The average magnetic surfaces which
form average magnetic islands were studied on the basis of the parameters of the TBR—]
tokamak. o

It was found that the positions and widths of the islands depend on the plasma
pressure. As the pressure increases the islands become smaller and shift to the centre of the
plasma. o

The same analysis was. made using an expression. for the helical windings
without the toroidal effect(g)..lt-. was.concluded. that. the toroidal effect results in magnetic
islands whick are slightly smaller than that obtained from the Cylindrical

approximation(g) .
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Fig. 1 — Coordinate system.
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ig. 2 — Surfaces of ¥° constant for A = 0.28, plasma current [

= 18 kA, tokamak coil

current Ie = 600 kA, major tokamak radius R = 30 cm, minor tokamak radius a = 3

cm. The scales are normalized to the minor tokamak radius.




" Fig. 3a — Toroidal flux in‘a tokamak.

. F‘ig, 3b — Poleidal flux in a tokamak.
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