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ABSTRACT

The- periodic orbit family with the shortest period in a twe
dimensional anharmonic oscillator is responsible for oscillations in the
smoothed density of states. We have computed the energy spectrum for a
specific potential and compared the oscillations of the smocthed density
of states with those predicted by semiclassical theory. We also verify
that the ‘scarred’ intensity prefile for these orbits is net éffected by
the periodrdoubling'bifurgacion cascade .Chat breaks up the surrcunding

tori.

1. INTRODUCTION.

The formal semielassical theory for the quantum energy spectrum ,
developad_by Gutzwiller (1971), ascribes to each periodic orbit a term
in the density of states. Generically, these orbits are embedded in
families parametrized by the énergy (or the period) and the phase of
each concribution Ls basfcally the actien S5 measured In units of
Planck’'s comnstant fi. Balian and Bloch (1974) obtained similar resules
for the smoothed density of states, with the difference that in this
case not' all perioedic orblts contribute but ouly those having period up
to a flnite value T, reclprocal to the energy smoothlng §£ according te
the uncertainty principle T6E = #. It Follows that by increasing
sufficiently the smoothing 6F we can elimlnate the contributien of all
the periodic orbits se that only the average {or Weyl) density of
states remains (see e.g. Berry, 1983, or Ozorlo de Almeida, 1982, for
reviews of these topics). By decreasing §£ we can then incorporate the
contribution of the family of periodic orbits with shortest period. The
resulting smoothed density of states should exhibit, superposed on the
averaged background, a nearly sinusoidal escillation in energy with

frequency 1/r; where
r o= d5/dE . (1)

is the period of the orbit.




The wave functiors for these quantum states may also display
'scars’ in the neigﬁbourhood of the perioedic erbits, as.discovered by
Heller (1984) . These scars become particularly sharp if we superpose the
intensity of all the wave functions in a range $E. Heller's theory.for
wave intensitie§ was cast in a form quite analogous to the one for the
spectrum by Bogomolny (1988) (see ‘alsu Ozoric de Almeida, 1988).
However, so far it is neot certain whether the intensity peaks at a scar
depend- on the combilned contributien of the many states in the range §F
or whether they can be ascribed to a single strong state in this
interﬁal.

The formal semlclasslical results that we are discussing cannot be
completely verified by a caleulation using a basis of states and a given
valve of Planck's constant. Conversely, the semiclassical results are
useful only if they describe the approximate features of such particular
quantum systems. It is therefore iImportant to ve;ify computationally
which are the features of these theories that can be relied on in less
than ideal conditions. S¢ far most work has been concentrated on the
easily accessible periodic orbits of biliiard systems {(as in Heller,

1584, Bogomolny, 1988). However, nonlinear oscillators,
' 2 2 v 2
H,Y:py Py} = (p" + p.7)/2 + V(xuy) (2)

provide more realistic examples. Of these, the Hénon-Heilés potential is

the most studied, but here we work with

Vix,y) = (x2 + 3 yz)/2 -2 v o+ x"‘/tz. (3

3

.This potential (codename MARTA) has a minimum at zero energy and
two saddles at an energy of 0.75. The symmetry in x Implies that x = 0,
Px = 0 is an invariant plane in phase space; hence this is foliated by
the family of 'vertical' (y direction) periodic orbits. The peotential
along this plane Is quadratic, se¢ these orbits have constant peried
r=2rn//3. Numerical studies of this system by Aguiar, Malta, Baranger and
Davies (1987}, show that this is the orbit with the lowest period below
the saddle energy. Furthermore, this family generates a period-doubling
bifurcacion cascade starting at £ = 0.103. Below this energy the motion
in its neighbourhood is mainly regular, becoming Ilocally chaotic at
highetr energies, though the system still exhiblcs ipvariant tori (Aguiar
and Baranger, 1988).

The spectrum and the eigenfunctions of the MARTA potential can he
calculated by diagonalizing the quantum MARTA Hamiltonian ian the
harmonic osciilator basis corresponding to the quadratic terms in the
petential. In the following section we display the smoothed density of

states of the spectrum corresponding te 395 states in the energy range

[0.0797,0.1%37] with £ - 00,0029, which thus includez the chaotice

cransition .near the symmetry plane. Qur numerical results are then
compared with the predicrions of éeriodic orbit theory.

In section 3 wn display wave incensitlies, averaged over y, as
functions of x. These can be cowpared with the wave intensities given by
the hypethesis of Voros (1976,1977) and Berry (1977) at the same energy,

i.e. that which results from the assumption that the Wigner function is




a2 delta-functien over the energy shell. Comparison with this average
background reveals-thac individually scarred states aré stili present
sbove the period-deubling bifurcation that destroys the neighbouring

tori,

2. DENSITY OF STATES.

Below:qhe saddle energy (0.73), the eigenvalue problem of the MARTA

quantum system,
H‘ﬁj_(x:J’) - E'i‘#;_(x,}?)' v &)

was solved by using the expansion

2 N
b7y = B 3 e ) oy . (5
n=0 m=0

where wn(x) and wm(y) are eigenfunctions of- the . one- dimensional

harmonlc oscillator Hamiltonlans Hx.and Hy'

2

B = (0,2 + D)2,

Hy = oy + 3502 - 6

The prime in the summation means that only even n (even parity} or only
odd n (odd parity) are included.

The value n = N, at which® expansion (5) is truncated, is chosen
according to the emergy interval to be Investigated, which, of course,
has to be much below the saddlé point energy.In this region we can
neglect the connection with the centinuum through tunneling under the
saddles,

As al;éady mentloned, one of the families of periodic orbits of the
classical MARTA Hamiltonian (Agular, Malta, Barangg; and Davies, 1987)
is the so called vertical family which consists of harmonic oscillations
of period 2n//3 in the y direction. This family undergoes a first
period-doubling bifurcation at £ = 0.103 and, in order.?oaverify its
effect on the level density, we calculated this level density in the
energy interval [0.0797,0.1997]. This.range of energy is much below the
saddle energy, therefore the expanslon method with truncation can be
safely .used. Semiclassical results are obtaine¢ by using a small &.
However, tﬁo small a value of # implies the diagonalizaéion of too big 1
matrix, so the value # =~ 0.0029 chosen by us represents a compromise.
With this value the level spacing of the vertical harmonic oscillator ic
] vy = 0.095 and the above energy interval of energy contains 595
states. We made the truncation of expansion (5) at ¥ = 40..

. The density of states (histograﬁs) as function of energy has been
calculated ir the above energy interval using 6E ~0.001 and §£ = 0.002,
For the value of & we are using, the number of states contained in such

smill 6& is small giving rise to spurious fluctuations, but this problem
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can be cifcumventea by maki%g. é Gaﬁssian sméothing. We have wused
normalized Gaussians of half width =qual to §E£ and the resulting
smwoothed level densities for §£ =0.001 and 6F = 0.002 ave diszplayed in
figures L and 2, respectively. These densities were numerically cbrained
at energy peints separated by ¢.0005 and & line was drawn joining tlese
points. .

. According to the'periodic‘orbits theory, the density of states may

be separated in two terms (Berry, 1983, Ozorio de Almeida, 1988,
d(E) = dg (E) + dy  (E), n

where d,, Is the average density of states {(the so called Weyl term)

corresponding to zero period orbits, and d__.. is the  oscililatory term

&
which incorporates the contributilon of periedic orbits of perlod greater
than zero.

Numericaliy, the Weyl term d,, is obtained by using a sufficiently
. big value of §E in the calculation of the density. The term d,_. is then
obtained by subtracting the Weyl cefm from the total density d(&).
Therefore, the contribution to dosc of the lowest period orbits may be
analyzed bv appropriately cheoosing the wvalue of 6£ wused ir the
caleulation.

The Weyl term has been approximated by the Gaussian smoathed level
density calculated using §£ = 0.04 (see figure _3). S50, using this

approximation for dav'we obrained d,,. for §E = 0.00L and §E -~ 0.002.

c

These results are displayed in figures &4 and 5, respectively (solid

ilne).

In theory , each perindic orbit and all Lts repeticions contribute

to d,... When a period n-upling vceurs, new orbits are generared and the

sumnation will include the nth

repetition of the oripginal eorbit plus all
the new period n-upled orbits generated at the bifurcation. The vertical
family is the family of periodic orbilts of the classicai MARTA potential
(3) having the lowest period in the energy range under consideratiom.
So, for the smoothing that we used, d,.. 1is basically obtained by
considering only the coutribution of the vertical family, without any
repetition. In this approximatien, d_,. ;s nearly a siousoidal

oscillation with the same period of the wvertical family, cherefore it

can be approximated by

dosc(E) = A sin ((2x/huy) E + B). (8)

The dominance of this peried in d .. is confirmed by the Fouriec
analysis shown in figure 4. The dashed curves displayed in figures 5 and
6 were obtained by fitting the corresponding d,,, te the above sin
function.

It Is important to mote that the amplitude of a bifurcating orbit
goes through a sharp peak (Ozorio de Almeida and Hannay, 1987). However,
in this case of period doubling, the peak appears only £for even
repetitions, justifying the approximately constant ampliitude aver a
narvow energy range in (8) for the first return of the orbic.

Now, d obtained numerically incorporates the contributions of

osC

all periodle families having period up to fi/SE . It should be noted




that, depending on the emergy wvalue, already for a peried twice the
pericd of the wvertical orbit, there are several orbits contributing te
the density of states in the energy interval considered by us (Agviar,
Malta, Baranger and Davies, 1987). These contributions are. not
completely. cancelled by the Gaussian smoothing In perilod. Therefore, it
is quite remarkable that there should be such clyse agreement between
the Erequency of oscillation pf dyge and that of the sapproximation

glven by (8). As for the amplitude of d it should vary smoothly in

osc!
the semiclassical 1limit, according to the theory. So, the large
variatiors In emplitude observed in figures 53 and 6 cannot be accounted

for in the semiclassical approximation (8), though it may result frem

the influence of the orbits with longer period..
3. AVERAGED WAVE INTENSITIES.

As we wanted to detect the existence of scars due to the vertical
periodic family, we have caleculated the state density distribation

averaged over y, given by

N
pi(xy = [ | ¢1(X’Y)i2 dy = z ?in m Cin’m. Pplx) wn.{x}.(9)
.n,n‘m-O- . '

evern

{The odd parity. staces are zevo at the origin and therefore cannot
exhibit any scar due to the vertical family.:

Se; this averaged wave intenmsity was caiculated for those
eigenstates with eigenvalues lyving in the energy interval considered in
section 2. The solid lines in figures 7, 8 and 9 show pi(x)
corresponding to the eigenstates of energles 0.1040, 0.1042 and 0.1044,
respectlvely. The dotted curves shown in cthese figures are the
correspunding scate density distributlons pie(x). resulting frem the use
of the erpodic assumption (Voros, L%76, 1977), which in the case of two

degrees of [reedom liamilrenian of type (1) is given by (Berry, 1977}
pif(x) = J dy 8 (£, - Vixyds, - (10

with 8 the step functiomn.

Qe see that the wave intensities displayed in figures 7, 8 and 9
exhibirv completely different characteristics. The state discribution in
figure 7 exhibits caustic peaks which are the sigrature of quasiperiodic
motion. The corresponding eigenvalue is just above ©.103 which is the
energy value at which the wvertical periedic family undergoes its first
period-doubling bifurcation. The scarred wave intensity profile shown in
figure 8 is virtually identical to the ones found belew the bifurcation
where the vertical orbit is stable. These scarred stace§ are found near

the quantized actions

AS = n fi, (i1)
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as previously discovered by M..Saracéno. Thie wave intensity digplayed
in Eiéuré ”9 seems Vto exhibit antlicaustics (Rerry, 1983), with the
oscillations. more or less following bte(x). However, as the classical
undeflyihg ‘motioen 1s not globally chaotic, further verification is

required in order to confirm the presence of anticaustics.
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FIGURE CAPTIONS.

Figure 1. Gaussiaﬁ smoothed dens;ty of states d{£) with §£ = (.,001.
Flgure 2. Gausslan smoothed density of states d(£) with £ = 0.002:
Figure 3. The Weyl term d, (E), corresponding to the Gaussian smoothed

density of states calculated with §E = 0,04,
Figure 4. Fourler analysis of the smoothed density of states with

SE = 0,001 (figure 1).

The soifd line is dosc(E) with §E£ = 0.00L and the dashed 1line
is aproximation {8} with A = -7.290 (standard deviaticn 0.653)
and B = +0.693 (standard deviation 0.08%9}, obtained by a least
squares non-linear fic.

Figure 5.

The solid line {s d _ (E) with §£ = 0,002 and the dashed line
1s aproximatlon (8) with A ~ -3.364 (standard deviatlon 0.240)
and B = -0.516 (standard deviation 0.130), obtained by a least
squares non-linear fit.

Flgure 6.

Figure 7. The solid Iine is p; (x) for the eigemstate with £ = 0,1040,

exhibiting the caustic peaks characteristic of quasiperiodic

motion
The dotted line is the corresponding pie(x).

Figure 8. The solid line is 2y (%} for the eigenstate with £ = 0.1043,
exhibiting a scar due to the wvertical periodic Family. The
detted line Is the corresponding pie(x).

Figure 9. The solid line is pi{x) for the eigenstate with £ = 0.1044,

that

apparentlz exhibiting anticaustics with oscillatlons

follow pyo(x) (dotted line).
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