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) Abstract
Ind=3 d.lmensmns the (5p(d|2) algebra admits a non-trivial: mod,lﬁca,tlon We

show that 3-dimensional Chern-Simons theory in Landa.u gauge has 2 global symmetry -

: based on this large L1e superalgebra.

*Partially supported by CNPq

Interest in the quantization of a gauge theory based on a pure Chern-Simons action
in d = 3 dimensions arises for several reasons. This type of theory is one example of a
quantum field theory which is topolegical in the sense of being independent of the space-
time metric.on the three-manifold on which it is defined. As such it certainly deserves
to be studied in its own right. Another approach to Chern-Simons theory comes from its.
connection to conformal field theories in ene dimension lower{1,2]. This latter connection,
and ifs relation to knot theory, has recently been explored from several points of view,
and by now various groups have also performed. explicit. one and two loop perturbative
computations: in Chern-3imons theory, some of them motivated by the relation of this
gauge theory to 2-dimensional conformal field theories[3-7].

" One remarkable property of Chern-Simons theory is the existence of a.so far unex- .
plained new "supersymumetry” when this theory is considered in Landau gauge[3,8,9]. It
is only a symmetry once the gauge has been fixed (it couples non-trivially between the
Chern-Simons term and the ghost sector), and it appears difficult to extend it to-other
gauges.. This'is a quite puzzling situation which ought to be better understood.

In this note we shall demonstrate that this new symimetry ir fact.is only one part of a
larger invariance group, based on a slightly modified I€25p(3]2) algebra. Before doing this,
let us recapitulate a few: facts about the ordinary I0Sp(d|2) algebra, and show why the
case d = 3 is rather special. Many details about the IO S5p(d|2) algebra., and-in pa,rtxcular
its importance in string theory, can be found in refs.[10,11}. .

The usual inhomogeneous orthosymplectic IO5p(d|2) algebra has bosomic generators
Jow = —Jipett = 0,1+, d =15 Jap,4,B = 1,2 (or + , -} and P, The fermionic
generators are - J, 4 and PA.. It is-a superspace: generalization of the usual Poincaré alge-
bra, with J,, generating ordinary Lorentz transformations, and P* generating the usual
space-time translations. The objects Jug.and P4 are the corresponding: generators in
the anticommuting coordinates. The full algebra is defined by the foliowmg non-trivial
(anti)coinmutation relations, with n,, denoting the space-time metric in the d- dlmensmnal
space, and Cag belng the symplectic metric in the two extra dlmens:ons :

[Jum'fp'a] = TI,upr_’?quVP+77Uaan_TIupJpa - o)

[JasyJep] = Caclsp +Canlec + Cocdap+ CBDJAG - (2)
{Juas Js} = “nuJap 'i‘CABJpw - : (3
(s Foa] = Nupdua — nl{pjwt ) : R (4)
[Jas,Juc] = Cactus+Crodua : (B,
EPWPV] = {PthB} = [PM:PH] =0 . (6)
Jun B = 0P~ by : BT & §
W Pa] = [ap, Pyl = 0. o _ (8)
(Jap, Po] = CacPs+CrcPa L _ {(9)
[Jufiv PVi. = TuPa : - ' ) (10)'
{Jua: Ps} = —CusPF, ' o an

with all other (anti)commutation relations vanishing, The special situation arising in
d = 3 dimensions is due to the possibility of also using the €,,,-symbol in the defining
equations of the algebra. One point in the above sequence of equations where this s




poss:ble 15 the case’ of {J,, s .L,g}, consuier the replacement of eq.(3) b}r

- Maklug the double replacement of; p ovand 4 < B, we see that this could be a consistent
onsatz But:of course weialsoneed to check if all Jacobi.identities can be satisfied as well.
be the case prowded we s1mu1taneously change eq. (10) bo:

index:

To speclfy the mod.lﬁed algebra. more preclsely, we introduce an ‘ordinary Lie a,lgebra.. :

Gy defined by the 5em1s1mp1e product between $O(3) & Sp(2) and space-time translations.
This is just IS 0(3)69.5' 'p(2): Our graded Lie algebra G is then given by G = Go®Gi, where
the Go-modile Gy is defined by Gy. = {Pa, Jua}. Tt is easy to see that with a product
* defined by’ the commutation relations (1)-{11) (and the modifications (12) and (13)},
we have (; * G; & G,ﬂ for-4, 7 € Z(2). With this - Z(2)-grading, and all Jacobi identities:

satisfied, G does indeed form a Lie superalgebra. There is no change of basis (redefinition
of the generators} which can relate this super Lie algebra to that of IQSp(3|2), although:

the two- algebras are so:similar in: form. (This. would in any case be rather surprising;
since ot algebra is very specifically related to d = 3 dimensions, while that of IOS5p{d|2)
c[epends on. dimensionality in acompletely trivial way).

" Curiously, our super Lie algebra can also be obtained by an Inbui- -Wigner contrac-
tion of the simple exceptional superalgebra D(2|1; o} (in Kac’s classification scheme(12]).
D(21; a) has. bosomc generakiors. @4 (g = 1,2,3; { = 1,2,3) and fermionic génerators
Raipc (A B,C,= =4, —) The: commutation relat:ons can, be written

Qhel '.=-:'s{e..y_pczp-
[Q,‘,RABGI = —3(e")waRunc
_ [Qu,_RABc]' |
(@ Rascl = —H(PocRaner _'

{RA'BICURA'B'G'}.-_ = lﬂi(CU“)AA'CBB'CCGfQI + mzcuf(CU'u)BB CccfQ
S -+1¢13CAAﬂCBgl(CJ”) caQS . (14)

S
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where ¢* are the Pauli matrices and C = iag?. The real numbers «; are arbxtrary, except
for the constraint. a; + ag+ az = 0- :

We can realize this superalgebra if we modify our algebra as follows (let J,, = €,,,J°
ind=3 dlmenmous}

YR R o

{'I;uh vE}—euvpCABPp . . L (12) .. .

HawRl=0 oy

So the'systern of: equatlons {1) (11), with: the mod.lﬁca.t]ons (12) and (13), does: indeed -
"define a non-trivial modification: of the I O.S'p(d|2} algebra; peculiar-to d = 3 dimensions. .
Notice that this is an extension. .of thie usital space-time supersymmetry a.lg;ebra. where the -
anticommutators. of the supersyinmetry generat.ors yields a space-time translation. Here .
we have an. extended supersymmetry generator which: carries an a.ddmonal 5pace—t1me _

[T P = €upp

[P.,Bl = mPe,,,J”
[J.u’ JHAE = 5;_:»in
[JurPa] =0
+ .
[P.u.s J.VA] = _mzl %2 r.r,uuPA
) . 1.~
oy o
.[PMP'A]'= mai_azJpA o N
. - oy + & N - @y + oy
[JM,J,,_B] = fuvpCAB-(Pp+@me) — T . Jaip
VusrPa), = ~Cap (Pt mE22r,)
1 3 .
[Pa,Pg] = —m(on—o2)ap
[(Jag,Jop) = Cacdpp + CapJpe + Cacdiap + Canlac
[Juva JAE] = 0 ’
(Jag.duc] = Caclin +Crodua
(Jag, B = 0 R . '
{Jap, Pe] = CacPp+CrePi . . . . o {15)

" When m — 0 we get back our superalgebra. The transformatmn between our genera-
tors and those of D{2[1; &) 11sted above Is -

Q;ln = '2'(Jp + ;f')

1 P,
Qi = 5(‘]&' - ;:‘)
Qi = i('ffuC)A.BJA.B_

1 . — &g, i ill +C!2—

R = i:— ——(Co*) 4B, e
ABC . 3 — #( JaB uc?z\/m

This contraction. transformation is indeed singular when m — 0. However, as we have
seen, the algebra:itself is well defined in this limif, where it reduces to ours. _

What is the relation between this large graded Lie algebra and 3-dimensional Chern-
Simons theory? Let.us first fix notation. We define

CasFo (16)

scs[Au]___ j d"’a:Tr{e,,.p(A“a"A"+QA”A"AP)} (17)

where k is restricted to be an integer (since otherwise the exponential of the action is
not invariant under large gauge transformations). As in the perturbative treatment[6], it
is convenient to introduce a more conventional coupling constant g* = 4mk~! and then
absorb it partially by a rescaling of the gauge potential, 4, — g4,. After gauge fixing into

‘Landau gaugs (8, 4* = 0) the resulting action is of the form § = Ses[4.]+Sar(4., & e b):

3
S = j PaTr{eup( 440 47 + ZgA* A A7) + 80, D% — 10, 4"} (18) .
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where the trace is taken over the fundamental representation of the group {SU(N) for def-
initeness). With #* being the generators of SU(N), the trace is normalized by Tr(¢%:")
58°°. The covariant derivative is, on account of the shift A, — g4,, defined by D, =
-8, +gld,, | To avoid unnecessary notational inconveniences, we have restricted our-

selves to a.manifold with flat metric g,,. Otherwise, although the-theory is still generally

covariant;.explicit detg factors appear in the gauge fixing terms.
" The full action (18) is.of course inveriant under the ordinary BRST symmetry

§A, = eD,c
fe= —e§[c.,c]..-
62 = b . _ o _
b= 0T )

as wé_lll as'-:th':é éntiiB:RS’If}réj'mmetry-- co

6A‘, = ge
oc = —Eg[c,é}r_'

The surprising observation of ref.[3] is that in addition the action (13) is.found to be

invariant under the following transformations: :

Ay = e
§e = 0 '
8'e = ¢4, _ _
§b = e Dy @

and a similar set: of transformations éorreéponding to the anti-BRST invariance[9]:

S'A‘u. =y T
cf'c = &4,

céE = : )
&y = en,e- S _' (22)

These transformations: involve anticommuting. vector parameters €, and E,; and one -

is naturally led to the idea that this new invariance could be related to the TO5p(32)

algebra, - either in its usual form, or in the modified form discussed earlier. If true, the only” .

possibility would be to identify the generator of (21) with J,; and that of (22) with J,_
. {the choice of + or - being a matter of convention). To see if this first step in identifying the
. algebra is a consistent assumption, we first compute the anticommutator {J,y,J,- } using

the above identification, and indeed we fird that {&,8'3[A,, ¢, ¢, 0] = €578 (A, E.c,b],

| which precisely correspends to eq.{12). This holds only when one uses the equations of
| motion;so-the symmetry can at:most.be realized on-shell: -.~ - )

5

o= (e : (20)-

Next, we identify P4 with the BRST and anti-BRST generators.. In.this respect
we differ from related work on JOSp symmetries by Siegel and Zwiebach[10], who in-
stead identify the BRST generators with a light cone component of J,4. Now all other

{anti)commutation relations of eqs.(1)-(13) involving J,4, Ju, P# and P4 are easily seen”

to be satisfied as well. In a few instances the equations of motion must be used.: -

" It now only remains to identify the penerators Jip. Since they involve rotations-in
the anticommmuting space of coordinates and refer only to the theory after gauge fixing,
we expect. them to act trivially on the A, field. Ghost number counting gives us yet
another hint of what kind of symmetry it should be, since the ghost. number of ¢,z and b
have already been fixed (at -1,1 and 0, respectively}. Combining this with the constraints
imposed by the scaling dimensions of these fields, we find after a little experimentation:

Ad, =0

Ac = &t .

Ag =0 . :
.as well as -

A4, = ¢

Ae = 0

Az = &c o

Ab = E%g[c,.clﬁ.' S

The commutator of these transformations yields yet ancther symunetry, __which turns-

out to be generated by the ghost number charge Q.

Ad, = 0

Ac = —ic

Az = sz . _ ,
CAb =0 : {25)

- We identify the generator of (23) with J,, the generatorof (24) with J__, and finally
the generator of {25) with J,.. In fact, one could have guessed this from the beginning,
since these generators simply satisfy the Sp(2) algebra o E )

[o%,07] =0%; [o° 0% = £20% - o (26)

of general gauge theories in Landau gauge({13]. . o
Actually, Landau gauge seems to be rather special also at this point. As one can easily
check, there is a different invariance: : : )

A4, =0

Ae = 0
AE = ed*4, . S .
Ab = £9*Dye : B {2

e,



and the- related anti- BRST type symmetry obta.med bas1cally by replacing the ghast by :

its antighost.

Note-that thlS equa.tlon of mot:on svmmetry” (it reduces to the identity on-shell)
holds for-gny. Yang- Mills theory gauge fized to Landou guuge, in any number of dimensions.
Thereis clearly an infinite set of such symmetries, all reducing to the identity on shell. Very

similar kinds of equation of motion symmetries have been found for particle, superpartiele )

and string actions[14].. However, the generai:ors of this type of symmetry can not be
identified- Wlﬁ}l JAB- .

It is'now stra.lghtforwa.rd to conﬁrm that including the former identifications of Jz
(eqs.(23):(25)); we indeed: have a full set. of generators of the supe r Lie algebra defined
by eqs.(1)-(11); with the modlﬁcatlons (12) and {13). . To summarize, the identifications
are the foilowmg

— &
P &
S p—
: 'II'+-+. — A
ST e A
R 4—»[1

_ A number of queshons obwously still: remain’ to-be: answered Wha,t is the deeper
" reason. for’ the appesdrance. of this: large. symmetry group. for this pa.rtmular theory, and "

. this pa.rtxcu.la.z gauge? Can it be extended. to othér theories or to other gauges? Can it
be thade to: ¢lose; off: stiell- by additional axiliary- fields' (without changing the theory)? It
- would:also: be' interesting to understand. the consequences of this extra. symmetry. Is it

- perhaps’ responslble for the perturba.twe mﬁ:a.red ﬁmteness[4] of Chern—Simons theory in .

La.ndatt gauge?
* In fact very s:m.ilar symmetna-' do appear i other gauge theories as well As 2 trivial
'example, consrdet pure (free) QED g1ven by the action

5= [ ddz[—F Fﬂuca?c+ba A" ,wabz] (28)

Apart.from the usua.l BRST and a.nt1 BRST invariance this theory in o =—1 gauge .

Tis also mvar:a.nt under .

§A, = —e,c

de = 0

88 = e A" : )

§b = —ed%c S (29)

and a similar symmetry with the ghost replaced by the antighost. A systematic analysis

of such accidental symmetries of Yang-Mills theories in certain gauges, and their conse-
quences in terms of further constraints on- the usual Ward Identities, will be published
elsewhere. . N .

Finally, one obvious. question.is whether the exira symmietry of Chern-Simons theory,
which has been demonstrated at the classical level only, can be anomalous. There have in
fact been indications that this might be the case[6], but a recent. analysis[15] has shown
that- at least the subalgebra (18)-(19) is non-anomalous.! It thus appears very unlikely
that the full global symmetry group discussed here will be broken by quantum fluctuations.

" Acknowledgment:
P.H.D would like to thank the Department of Physics at the University of 530 Paule
for the hospitality extended to him at the time when this work was initiated.

1See also the recent study of scale invariance in this theory[16]."
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