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Abstract:. A semiclassical version of the inear o model is studied in a .variational approach
for the generators of the mesonic excitations. The method offers a convenjent framewark
to study.the mesonic spectroscopy. for-both bound states: and resonances. The strength
distribution of the pionic mode is obtained, -

: *supported by INICT-PORTUGAL

The linear ¢ model is a field theoretical model originally introduced by Gell - Mann and Lévy
[1] as an example of a phenomenaciogical model which realizes one impertant characteristic feature
of quantum cromodynamics: chiral symmetry and partial conservation of the axial current. It is
generally used to describe low lying hadronic properties of the barinie sector [2,3], whereas the mesonic
sector is generally described by models such as the Nambu Jona-Lasinio (NJL) model [4,5], where
mesons are geen as collective quark-antiquark (gg) modes built on the non-perturoative vacuum.

A natural question which arises at this point concerns to the possibility of deseribing both sectors
with the same model. In ref.[6] it is shown that the chiral soliton model can be considered as an
approximation to the Hartree solution (zero-boson and one-fermion loop) of the NJL model. In such
case, the o model would also be appropriate to describe the mesonic sector. .

The aim of the present paper is twofold: First the study of the mesonic sector of the chiral [inear

¢ model. In particular in this model the physical pion.must be understood as composed of two very.

distinct ingredients contained in the model: a) the structureless pion field term which gives rise to
the Goldstone boson; b) a coltective ¢§ component built on the ron-perturbative vacuum. The qF
part of the pion is the part which couples to the axial current which is bilinear in the quark fields.
Second, we consider excitations of g pairs. whose energy lie in the continuum. The mesons in the
continuum show up as g resonances with a certain spreading width. The positions of the center of
gravity of those resonances can be compared with the experimental mesen masses.

We will restrict ourselves to the time dependent Harsree-Fock a.pproa.ch in the small amplitude
limit of the mean-field description. Therefore we will obtajn equations which describe the dynamics of
the collective modes in the framework of the random phase approximation (RPA). Up tonow mainly

the discrete low-lying modes (hound states), i.e., excitations whose energies satisfy the coadition

w £ 2M where 2M is the threshold of the gFcontinuum, of the RPA like equations have been

considered. However the collectivity of the RPA modes is a characteristic of the bound states as well
as the mesonic excitations in the g7 continuum. The mesons in the continuum appear naturally as

gg resonances,

Previous analysis of the continuum have been made in the NJL madel [7] ard in a semiclassical -

apptoach in the scalar plasma model [8] and have shown good égreement with the experimental .

spéctrum. Ref.[8] deals with a continuum of particle-hole states in hadronic matter (both the particle
and the hole refer to positive energy states, above and below the Fermi level, respectively) while in
ref[?] ¢F states are produced by creating a particle in a + erergy state and 'anih.ilarjng another
particle in a — energy state. In the present paper we study the pion excitationin the continuam in
the context of the linear & model. We determ_ine the. strength distribution of that mode and the

tespective sum rule..
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In a semiclassical realization of the linear o model, the scalar field o and the pseudoscalar-
isovector field ¥ are classical fields. The effective hamiltonian describing a system of N fermions
occupying either positive or negative energy states, interacting with these classical fields is

. N
- H = 300558 + g8i(a(=5) + ivs(3)75. ¥ (<))

=1

3 2 .
+%fd3m (M2 + Vo' Fo + TG + 290900 + [ & (32—(02%1"—03)2—00)

=l -

vae [T oW - + 85 [saant), )

where & , # and 5 are the usual Dirac matrices, ¥ correspond to the matrices of the fundamental
flavor representation $U(2),II, and Iy are the conjugate momenta associated with the classical

fields' o and ¥ respectively .The constants ¢ and g are given by
e =miMofy : (2.0)

2
g*a5 =M€—% @b

so that the Goldberger-Treiman relation on the quark level (ga(quark)=1): fr = Mu/g is fulfilled
and the o field expectation value in the vacuum gives the constituent quark mass : ¢ = Mp/g. In
equation {2) m, is the phenomenological pion mass. The last two terms in eq. {1) are renormalization
terms, which depend om a cutoff parameter A. These terms insure that all physical quantities
are independent of A in the limit A — oo, The second renormalization term which contains the
parameter A allows for the definition of the scalar meson mass in the vacuum. The factor £ stands for

. the degeneracy of the system and will be taken equal to six { we shall be considering three colours).
The ground state of the madel is described by the density matrix pg, which is determined varia-

tionally. In quark homegeneous matier we can write

1 Fi+ AM s a1 Fa+BMN, . ..
== patp¥ - N L L0 T S 3
£o 2(I-I- pan 2)0(1’;- p}+2 I NCEYTE { P (3}

Here M is a variational parameter, representing the quark mass at the momentum Pr, to be fixed

by the usual energy minimization procedure.lt gives:

M=go, (4.a)

v, =0, (4.6)

and the self consistency equation is

_2692M dSPB(szi'”pz} (5)
(2x)3 Vot M2

af M2 2, mi 7 _
(M—Mo'f"?)MﬂMom*:

The time evolution of a density matrix p(t) corresponding to a Slater determinant slightly dis-

placed from equilibrium can be written as
p(1) = St pogmist) (6)

where 5(t) is a hermitian, one body, time dependent operator. For small amplitude fluctuations,
it is sufficient to consider the effect of $(z) up to second order. Due to the coupling terms in the
hamiltoniaz (eq. (1)), there will also be fluctuations in the scalar and pseudoscalar classical fields:
do and 6\11.-; which are non vanishing and time dependent. Consistently we shall treat these terms
only up to second order.

The Lagrangian describing small amplitude oscillations around the equi}ifarium state is [9]

L= %tr(pg[s, 3] - %tr(pu[S, (o, 1)) — itr(polS, 8A]) + % (@ " ié‘i’_)"?)

: mg_ i d3nd3 2 1
— (347 - M — T )80+ (01 - 3 - TEY(6) - 5° [ o (%(60)2 - ;(aw;)?) %
where 7 )
ho = F.&+ M, ‘ . (8.a)
§h = Bgbo + ighvsT.60 , (8.8)

e=/pt 4 M2, . ) (8.c)

and §1 is the renormalization volume.
The generators of the scalar and pseudoscalar homogeneous excitations for zero momentum trans-

fer are respectively given b)'r
S, = FEBL(p%, 1) + iBF.EB2(0%, 1) , (9)
Sg = ipys7 5P 1) + 17 5t ) {10)
Inserting eq.(10} in eq.{7) and usiag the dirensionless quantities :

0 =6%/M, ' (i1.a)




P =Ty ME =60/ AMF

= fME
m= M/Mo _
z—-m?
fley= "

we get. :
L"b 1 e A

i = 34— By —m [ dafta)S3 6 - 5.8

(11.6)
{11.c)

(1L.d)

(11.e)

’ 'z, _ - . ’ - A -
~2 ["daf(a)m? |5 P15 P + gm@. [ dsf(a)5,;
DL NERL L . - . . F .

._ TA - - -
+gnd. [ daf(2)6 = A1 PP 440t |G
zF : : - R )

where all time derivatives are relates to 7 = Mat'.a.nd'
- ot = 2m? -1+2M,)+g f dzf(z)-
._ 'T]%g'-_Eule_r - _Lagra.n_ge\equ?,_tions- a_.!é -
| @ ~AF=0 y
B +463G - 2mg f dz f(z)5a(z) =
| _m.S.:'g(z)-— 2z.5'1(z) =

§1(z) - gQ' + 2m§g(z) =0.

The aﬁsatz : -
. Q(") ; qw o
i P(f) - ._ PW Twrr
51(32, T) - 5_'1;_,.-(.'5)

; '5.2(3'-7)'. 'S-‘:Zw(.'-")'

leads to the equations for the normal modes

Ciw(u = AP, ,

RN -‘ L B
wF, = —40*Q,, + 21'11.5,!./-‘,L dz f(2)S2.(z),
! TF B .

{12)
(13)

(14.2)
(14.5)

(14.¢)

(14.4}

(15)

. (16.2)

(16.b)

iwSiu(z) = ¢Qu — 2mEau(z), (16.¢)
iwdl(z) = %S"W(z) . (16.d)

There are, as usual [8,10,11), two types of solutions of eqs.(16). If w = 4w, , w? < 4zg, there

are two collective modes described by

By = iﬁ‘i'.aﬁ, : Sy

- fi i
Sia(z) = im;gm‘ (17.c)
Srslz) = = (17.d)

2m z —w2/4

where w, is given by the dispersion relation for "zero sound”

2 2 g,z . o '
Wr _ o2, 8 _ __
oot 4];P de fl2) =gy = 0 _ (18)

and # is an arbitrary unit isovector.

H, on the other hand, 4zp < w? < 42,4, there is & continuum of solutions:

g, = —?—a(u”ﬂﬁ' , . o ‘ (1%.a)
B, = —ng?ma(w J07, (19.5)
Siu(a) = iwsFafz), (19.¢)
2 . ' '
Saul(z) = (a(u=/4 -5+ %) i, L (19.d)
\-vhere a(w? [4) satisfies the equation
L)) ‘
aw/4) = c.ﬂ/,\ i + g [P dof(z) sy . (20)

In €q.(20} and in what follows, integrals involving the factor 1/(z - w? 4} have 10 be mterpreted as
principal value integrals.

From eqs.(16) we can show that solutions defined in eqs {17} and (19) satisfy the following or-
thogonality relations .

(PGt om [ ae e i = $750)) = LS gty 210

6

=7, (17a)
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i (Q’i.ﬁ-w -~ B, - 2m-/ “'dzf(x)(s‘li.s‘-,u - s'gi.s’-m}) =0, (21.5)
zp
- — - - . T, - - = -
i (Q:i:-P-:k = Pp.Qry - 2m_/ ' dz f(z){(S14-5"22 — 5'25;-5‘&)) =7, {21.¢)
zr

where.

It has been shown by van Kampem [12], for the electron plasma, and in ref.[10] for the nuclear

cage, that this set of solutions is complete. This means that given an arbitrary initial state

o G
_| Ao || A
Y= S | T | e %)
S0 | | )

there is a function (i} and numbers Cy,C such that

@1 (e (e ¢
P _ Ta P, Py F_
By | ™ hes 19| gty |+ Swie) | 7| fetw |-
Ha(z) : S2u(z) Sa4(x) - - S2-(z)

Following van Kampen [12] we get,

Ca= 4 (P1Go-Gufo-2m [ daf@) =) B - Bz 5ue)) ,  (25)

)= T (26}

tw/4

#w) -W(@oﬁ;—ﬁo.é; =tm [ dr ) 5oule) - =) @) - )

The unexpected factor in. the denominator of ¢q.(26) appears because of the singularities in §,(z)
and Sg‘,,(z)

The solution of the initial -value problem satisfyng both eq (14) and the initial condition eq.(23)

is therefore

w1 Te IR A
P(T) — s -Pw Swr P+ e T P —iw, T
%(z,r) —]2\/5 elw) .5-:-_1&,(2:) eTdw + Cy .5-‘_:11.(::) e™sT + O -5'1 (2) e .
| Sa(z, ) S2u(z) - S24(x) 5y (x) 28
7

2 _
7= 2 ( 94] de f(z) w2/4)2)‘ (22)

The use of sum rules is a complementary approach to the use of equations of motion when one
is looking at the collective states microscopically . Following ref.{12], we find that the amplitudes
&w),Cy and CL satisfy the following energy wheighted sum rule (EWSR):

W e Aw)
wEr wf21+ wzaz(u2/4)w2/4)

4m? L0 (1027 +1C-1) = 3 (MBI + 4% Gal?)

42 [ " de U 4 =) - g, [ e (01 ) = . [ ) ae) - (29)

The strength function representing the pionic mode in the ¢7 continuum is

4m|E(w)| f(w? [4)

=) = SRt e atTa (30}
The simplest example of initial condition which favours the mode in the continuum is.[8]
0
0
Ty = 0
' 7
for this condition, the strength function in the vacuum (Pr = 0,m = 1) becomes
' 2 4
selw) = wIB (e [4)rme/2Mo) | (31)
(%T o d”;’}:—: + (Tn‘fs) - 4A) +x % T f(w?/4)
and, from eq.(29) the EWSR is )
‘ my = 2_/ " dzf(z). (32)
1 . .
The {raction of the EWSR exhausted by the discrete frequency e, , in this case, is
w1 me \2 1V 1 '
o= () -3) e
and w, is given by eq. (18)that we can rewrite as .
. 1 gg T4 f(-'l:) (m"_)z
L el —_ ———rr— = —_— . 4
w,(k+4'£ w2 = (GE (34)

At his point we may as.k what is the value of m,. We must remember that m, represents the
mass of the phenomenological structureless pion related to the pseudoscalar isov_ectm_-_ field ¥. The
mass of the physical pion is w, and we will choose m, such that it gives :;J, = 138MeV/MD.

As said before, the parameter A allows for the definition of the scalar meson mass in the vacuum,

and if we choose m, = 2Mp ( a known result of NJL model [9]) we get [13]
1 4 f (3) '
= 3
- [ (35)
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We are now in a position to derive numerical results. In order to reproduce the experimental pion
decay constant, for instance fr = 93MeV, for a constituent quark mass Myq = 320MeV we get

§ = 3.44 for the coupling constant, In spite of both m. and the maximum in s(w) being independent

of A in the limit A — oo, we have to work with a finite value for A because the result of eq.(32} is _

divergent. The strength function eq.(31) shown in Fig.l was calculated with AfMy = 15. It exhibits
a pronounced maximurm around 2200 MeV which is of the same order of the experimental mass of
the {not: well established) resonance: 7(1300){14], which is indicated by an arrow.

For this initial conditioﬁ, 98% of the total EWSR lies in the continuum.

In conduslon, we have analyzed pionic collective modes in the ¢ linear model corresponding to
smail- a.mphtude ascillations: around. a stationary:state, including the continuum. We- have obtained
a set of stationary linear modes of excxta.non satisfying orthogonality and completeness relations,

a.nd the corresponding EWSR. Qur calculations show that the strength distribution fufiction of the
. pionic excitation in the: aQ continuum exhausts almoust all the EWSR for our choice of the initial

state, and has a pmnounced mammum of the same order of the pion resonance.
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' FIGURE CAPTIONS

Fig.1- Strength funcsion representing the pion resonance, as a function of w. The arrow idicates the

experimental mass. .
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