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~.. Abstract

We consider a three dimensional model of spinor fields wi‘th. a Thirring

like quadri]inear self interaction. Using either two or four component Dirac

8pm0;s, we prove f.hat the 1/N expans:on for the model is renormalizable

if a gauge structure to select physical quantmes is introduced, For certain

values of the coupling the leading 1/N approximation exihibits bound state

- poles. Dynmﬁicn.l breaking of parity or chiral symmetry is shown to occur as .

a cooperative effect of d.iﬁ'erenl' ordersof 1/N i N is smaller than the eritical

value N, = "r, where D is two or four depending on wether I:he fermxon field .

. has two or four components. . - 0 Uy
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1 Introduction

An important characteristic of field theory in three space time dimensions is.

the possibility for Dirac fields to have cither a swo or a four component repre-

sentationi. In the wo component representation a variety of interesting effects
occur. Among these is the fact that a mass term in the Lagrangian violates
parity and then, if the Dirac field is eoupled to an external electromagnetic

. field, a Chern Simons term is induced. The breaking of parity may have a,

dynamical origin as it happens in the three dimensional analogue of the Gross E

Neveu model or may be present from the beginning in the Lagrangianill, In

any case, the induced Chem Simons term is the source of mtngumg pecul:an- =
ties as exotic statistics, &a.ct.lonal spvu:tB 31 and a mass for the gauge feld®5),
These features may be relevant to the quantized Hall eﬁ‘cctlﬁ] and to high

T, superconductivityl”). The presence of 2 Chern Simons term seems also’

to be essential to a recent conjecture on bosonization of fermions in three

Himensionsls].

Other elass of effects may be present if four compoﬁcnt spinors are used, .
Indeed, for massless theories a continuous chiral symumetry can be implé-‘ a

wented and mechanisms for its spontaneous breaking may be investigated.

To some extensmn this has been done in the context of QED;, where an

adequate use of the Sdlwmger Dyson equations and the 1 / N expansion has'

revea]ed the exxstence of a massive pha.sefg]
" Asitis well known, the_Feynman amplitudes of the 1/N expansion have):' a

better ultraviolet behavior than those of the usual perturbative scheme. This

makes possible to consider more general interactions than those allowed by the L

power counting criterion of the perturbative 'approa.ch_.' Within this extended

e
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class, quadrilinear self interactions of fermionicit® ﬁé_lds,are of primary inter-
est not only for methodalogical reasons but also because they are the basic

interactions in fermienic formulations of bosenic Chern-Simons modelst11],

In this work we investigate the theory of N Dirac fields interacting via a

quadrilinear, Thirringllike interaction, specified by the Lagrangian

=T - L GrilFre) : )

We will study two versions of the theory associated to (1), y having eiuiu_ o
'~ two or four Dirac cqmﬁouent_s. For_.large N, in the general case whc_i’e a mass
term My is added we found vectorial bound states with mass? m? in thg '
region 0 < m? < 4M*. This happens for g positive in the four component -
version whereas g must be greater than ~2x /M if two component fermions

are used. If g is outéide these values, complex poles signaling instabilities. b

occur.

In analysing the renormalization of the 1/N expansion for this model, we
will show the natural .emergenée of 8 gauge structure providing a principle ‘I ol

to select the phys.ical content of the thebry. Using four components fermions

we will prove that, to any finite order of 1/N, the model does not present

_anomalies in the conservntmn of vector or the a)ual vector cu.rrents Thﬁe
conservation laws correspond to an U(2) symmetry which arises due to the ~ .

' reducibility of the reprﬁentatlon used for the Dirac matrices. For large N,

the absence of anomalies prevents the genera.tion of a mass for the fermion
field. Mass generatlon may occur only at not very large values of N, as a
oooperatlon of dlﬁ'erent 1 /N ordets, and we d:scuss this possibility for both

two componcnt and four co‘mponcnt versxons of the model.

. The paper is. orgamzed as follows~ In sectmn 2 the propernﬁ of the :




three dimensional Thirrng model employing two component Dirac fermnions

are discussed. A version using four compenent spinors is considered in sec’
tion 3. There we prove the abseice of anomalies ss we mentioned before,

The possible occurrence of inass generation is analysed in section four, us- .

ing the Schwinger Dyson equations as a _ba.sié tool. After some reasonable
oo . .

_simplifications, a solution violating either chiral or parity symmetry is found.

2 Two compohent representation

" The most eﬂicxent. way to derive the 1 /N expansxon for the model { 1) is to_ s

use the eqmvnlent Lagrang:a.n

= T - M - \/—(VJ )+ o A" @

where A, plays the role of an auxiliary vector ﬁcId {classically, 4, = j—v'rr,ﬂb

.la.ndaA“—G)andamd.sstermhasbeenadded o

‘Whenever convenient we could adopt

¥Y=0% =i’ and P =ic’ - {3)

'

as an explicit realization for the Dira:: matrices. Note that the dimension of ¢

is one so that the Thirring interaction has dimension four being comequently

perturba.nvely nonrusonnahzable To generate the 1/ N expansion one elther '

_ :ntegrar.es over the ¢ field or, equxv‘deut.ly, swm an infinite chain of femnon .

"bubble graphs. In parr.:cular. the two point proper vertex function of the
auxlhaty field is equa.i to o

1.

I'w(_p):;;gw-ww(za)_ DIP @

F(pz) = (2”)3(‘:2_1‘!2)((]\: +p)2_M2)
", and _ _ . .
| —2f BE (k4 Pk + (0 s ¥) — g (k+p) = M?)
B O R T ¥ (T R

. where F(p?) is the integral

: where the pola.nzat:on tenaor. pw, is g:ven by

PP = jm);rrlq T ETE . e
Taking into account that_ ’I‘r[‘y“'r"'y"] = —2ic"* we obtain .
e (p) 2=Me“"”pnF(p )+r"" S (6)_

k 1

(7)

The first contribution Lo‘ the right hand side of (6) is a non local Chem.

. Simons term. This t_errr; is essential to the large distance ;;hysics.. causing .

| t_ransmﬁtation (;f the spin of ﬁeld; It breaks paﬁty and time reversal and, .~
Being propt.)rtior;x_al to M, it indicates that the cause for this Breaking is the

/.. mass term in the Lagrang{an {2); actually, ‘that is a well known result®91, -

. The second term on the right hand side of (é) is (linearly) divergént.

. _' Now, By its very definition, p.. agrees with the lowest order contribution

to the two point function of the current $y*ih, It is therefore natural to

enforce its conservation by. requiring that the renormalized p,,, be transversal.

This imposes the same restriction on T Clearly, it i3 convenient to use a
regularization scheme furnishing a transversal tensor. For example, one could' '

use, a.!tematwely, the dimensional or Pauli Villars regulanzatxon. In any ca.se,'

.the final result is

!

Pz .
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As it happens in massive QED, the propagator obtained by inverting [',,

has a longitudinal piece which behaves as & constant when the momentum

P is scaled to infinite. However, as the auxiliary field A, interacts with a

conserved current, t}us bad behavior will not affect observablés constructed
a3 gauge invariant comb:nat:ons of the basic fields. Alternatwc!y, one could
:mprm'e the ultraviolet behavior by addmg to thc original Lagrangian a gauge
ﬁxmg term *(8 A*) and postulating that the obactva.bles are those physxcai

quantities that are mdependcnt of A. ‘As in the former case, these physical

quantities coincide w1th formally gauge invariant combinations of ¥, ¢ a.nd

A,. The propagator, after the introduction of the gauge fixiag term is

- i(G+1/g) N S

8% = (1/g+G)=~-4M2 F Al PO Apz_lfg -
IMF . L o
+_(1/sv+G)=~4M!p=Fé Pa SRy

where F(p) is given in (7) and

G(p)_zEI;[M+£2w(4M’+p’)F(p)] o oy

The last term in the denominator of the transversal part of As¥, namely -

4MPP F?, arises due to the induced Chern Simons term. It is absent if four

componente spinors are employed. In that case, the propagator has a simpler -

form
A*(p) =

For each _posit:ve g this propagator. shows a bound stute pole in the

region0 < p* < 4M?. However, for negative ¢ tachyons are present indicat- -
ing the breakdown of the l/N approx:matmn These concIu<.1ons are dra.wn- ’

" from a close exa.mmahon of the denominator of the transver: sal part of Lhe-

I AR : \
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(1/g+o'a"“>{9 B R vyl N

- propagator given above, The function F{(p) is given b)‘/

2 . o
; Vi
F(p = Art'u:h . - (13)
for 0 < 3 < 44M’ Outside this region, Fip) is get by an anlytic continuation ~ ;v

of this formuln. _ _ _
The fact that the mode! is unstable for ¢ negative can be understood
by a variant of Dyson’s a.rgumentllm. For g positive the interaction among

fcrmion.s through A“ has the same form as in QED. We have then that parti- .

cles with unlike charges are attracted whereas those with charges of same 51gn .

are ropeilcd For ¢ nega.twe instead, p'i.rhc]cb w:r.h charges of same sign are B

attractc(l and thoae with charges of different signs are repel]cd Clubtermg of

femuom. in one region of the space and antifermions in another is favoured

and the vacuum is unstable, _

The addition of the Chem Simons term, which, in the two componens -
case, is dynamically generated, stabilizes the model even at some values of -
g that are forbxdden in the four oomponeut version. The propagal:or (10)_

presents bound state pales in the region

+=>6 o (14}

and complex poles are found if this relation is violated..

The Thirring like four fermion interaction is perturBai.ively non renor-

RS mahaabie In the 1/N expansion, however. the qua.dnlmcar interaction is

replm:ed by the trilinear interaction between the auxlhary field .4 a.nd the '

current y’)‘y"xb Now for Iarge P, the 4, propagator beham as’

Aw(p)’%“(gw.—.";f"’),—};_', B )




and this provides .deltmnal dm.avmg fa.ctoxs whzch a3 we w1l1 see shortly, '
- turn the expansion renorin 1lu¢hle '

At any finite ovder of the 1/N¥ cxpansmn Feynman a.mphtudcs can be
" constructed using the rules ' .
i

- Fermion propagator: . o—-—

-M

A, propagator: S, gifeq'abcve a

Trilinear vertex: the vertey; associated to the term —%(E’y“qﬁ) _(16) .

Graphs coﬁta.ining as subgraphs the one loop 'éontribution to the A, propa-
_ gator should be omitted since it has been explii:i['.ly taken into consideratibxi‘
With these rules, we obtain that the degree of superﬁc:al dwergence assom- '

' ated to a proper graph 7 is gweu I)y

d(’r}“3~Nr Na, - - an

. .where Nr and N4, ave the_uumbcr of external fermion and A, lines, respec-

. tively. From this we see that the  expansion definies a renormalizable theory.

. Graphs with three external A, lines are logarithinaica]lf divergent, but, as -

_can be rapidiy checked. the diverrent contr:but:ona ‘always mvolves an odd
" number of loop momenta factors and a symmemc regulunntlon is c:mubh to
. eliminate them. Graplw having N, =2 zmd Np = () are linearly d]w‘rg('nt.

but again due lo to. the fact that A, couples to a conserved current, the '

resultmg expression must be trum versal. Th:s imposition eﬁ'ectwely reduces -

the degree of dwergeuce by two so that no count.erterm is. needed. Dxﬁ'er— .

A\,

_éntly, in four dxmenmons the same type of d:agram is quadratlcally dwergent.

8
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and needs a counterterm of the type F*F,,, makmg the 1/N erpansnon o

unrf‘norma.hzable

" The discussion of the observable content of the theory is the same as in

massive QED4[13]. Ob_servable fields are tho;e fields O‘-(::.-) sat:sfm the

following two conditions: . . ' '
(1) Each’ O; comnutes w:th 8,4*. This implies that the covananhmi

time ordered function of those fields should obey.
(OITB A¥{(z) H O.XIO

.,)Ap(:r: - ). Norr Ho X, |0)

1

.
1

Mz

o+

0
T '3.—[.—-
M._

il
-

J .

(Ap(z wii g )—AF(z )(OITIIOXio) (13)

. where X is an arbltmry product. ‘of the ﬁelds,

X= IIAy.(z)II:»(w,)Hw(zk) e

and X; is equal to X with the field A, (=) deleted.— S

L2 I_ndependexic_e of A. This means that et e

%{BITH O,X |0} = terms vanishing onshell” = (20}

It must be stressed that our construction is solely mativated by the bad

_high momentum behavior of the longitudinal part of the p‘rdpag;ator 6( 'the s
aux:hary field, In two d:mens:on:. the imposition ofa gnuge structure asin (1) '

: and (2) would be too much restrlctsvc since the bcha.wor a.t iarge momr:nt.um '

is hxghly improved and A can be put equal to zero ftom the ve:y beg;nnmg




3 Four Component Representai:ion o

Theories using a two component fermion field have the prope rty that the

fermionic mass terin produces a vmi’mun of parity.- A pdnty conservating . - -

Lagrangxa.n can be construuﬂ[ by doubling the number of fermion felds.

This .lead:, 10 a four compoucm representation which wses four by four Dirae

matrices. These t.hree Dirac matrices can be taken as the first three Dirac’

‘matnues used in four dimensional cais,uldtmns For (lthmtomss we choose' -

the foilowmg representation

. 29 ig! 0 _f ot 0y
7 =(0 ) _a,.']') 71-:( 0 -—io‘) 72: ( 0 _ich (21)

In the free field s:t.ua.tmn the use of thc above matmcs leads to Dlrac

_ equations § for two component spmnrs of masses M and —M. Desides those -

maf.nces we will use

(o I ' . ory
73:‘(—4* 0) and'r“"'z'r‘r‘*r’"r:‘“([ 0) {2y

Because the Lagr:ingia.n uses only three Dirac matrices, the parity trans- l

. formation, corresponding to r; — —-31;
W% 2 ) = Pyl ot ) (23)

- may be implemented by any of the operators

(1+E)‘. (I —¢)
=lp

P = P2

P| = —l‘n‘]; . Pg. = =YY . : (25)

: 'dependmg on the paramctcr £, lel = 1. Other discrete symme tnv:. as charge

comugatxon and time rev ers-tl may also depend on free parseters. We have,

CyC-! zurC,, for charge couju;at.ion' S ._ ' (26)

g

‘ P ¢ T

Hip(z) + |+ +

Brbia) | B30} | —dyride) | Brapl(d)

(SR R R S

Table 1: P, C and T transformdhon pmpcmes of some sca.la.r blhnears

_'wf- = Byb(~20,) for time reversa._l_ | (27)_'

wheu, Ci is umtary and Tis anh-umta.ry B, and C are four by four matr:ces
given by .

1+ L1 S o
Ly — (=L : (28)

1+ 1 . . .
5+ (i @

Bp_=‘(

'_C,,-

where p and 5 are unitary complex mumbers, Observe that both B and ¢
are unitary matrices. Bilinears in #, ¥ or their derivatives, regardless of the

valucs of the pira.mel:ers & 7 and 2 have simpler i.ransformation properties

if they involve only the 7“ mal:nces This happens for exdmple with the. -

bilincars present into the Lagrangmn Some of these bilinears are considered
in table 1.0 There, for notational simplicity, we introduced the m:ﬂ.:‘it ",
defined by §° = '7 "{‘ = ol and ¥ = 77 The arguments of the transformed '.
fields are 2 = («°, ~z, %), in the case of panty, and ¥ = {-r°, .::"'), in

the énss of time veversal,

‘

As .‘iu couples t'u the current "4, the invariance of the Lagx_‘mlgihn unde
e C dil(i T tiplies that .

v ,‘(i A3} under P

o .A,(x)..- —~ . =A4,(z) under C -

It




dyile) |~ + + =, + =

RS €3 1 N N A 1 - - |+

- Table 2: Tmm;fdmmﬁiun propertivs for special values of the frec pairafnctérs.
: - . *
Az) - 4**(:) wder T - (30)
irrespective of the values of the parameters €, 1 and p. The t.rausformed field
A, is dcﬁned by Ay = Aevdi = Ay and Ay = Ay
Due to )
PP Re 9P ~(Im 7 (31)

and similar equa.tmns with P replaced by € and B, bxhnea.rs mvolvmg T dnd

7* wxli in general mix among themselves, However, there is a constdemble_

" simplification if the parameters are real. Table 2 illustrates this fact.

The classical massless Lagrangian is invariant under the U(2) t.ransfon'naj.

tions

where J is a linear combination of t_ilfs' matriccs R=1I,4%«" and v*%. These:

syn)metm.s are ;,( acrated by the currents

Ji= v, e, et aad 4:7 T“'r"rb S5

For the ma.ssive case, the symmctries related to 4° and 7° “are (:xplicit.ly

broken a.nd the corr(‘spml({mb ulrrcms have dxvergenc:cs M Jn wiu,n. Jris

given by W19 and by’ zp rospectw: ly. At the quantum ievcl we must yet -

- look for possible anomalies in the conservation of the above four currents, As

we shall see shortly, they are fice from anomalies at any finite order of ,I/N .

1

T

&

borey @

Similarly to tha two component representation comidcrcd in the previous
-\ectmn the 1/N expansion muy be obt.uuul by using the Lugrimgmn (") In

the pre svnt situation, no Chern S:mom. tert is ge m.rate-d of course. The two

point vertex function of the auxiliary field 1, is equal to

Fw=;9pu+2“’nu . . ' (34) '

where m,, is given by (8). Tt follows that the four component theory has the

.. same ultraviolet behavior as the two component one. Thus, renormalizability '

_ can be achieved by introducing t_hé gauge structure specified in items (1) and

{2) at the end of last section.

The absence -of anomalies in the conservation of Jj can be pro';'ed by

' " Fuj.ika.wa’s methndim] I'n that method these zmoma]ics come from a possibly

non trivial Jacobian of thc transformation of the measure of t.hc funchonal

. mtegral mduced by a change of the ficlds. Following Fu]lkawa s steps we are

led to

OJn =0for A=land Py | . (35)

Q. =2MUID + A - (36)

where Ag ts the anomi\ly,

AR . luu M Tr[Rexp( [, 'y"}Fu,,} = G,_ , (37) _

4r M?

as consequence of the propu‘h(s of the Dxrac matrices.

More form'xlly, another proof of the absence of uwmallcs can bc got by N

cons:denng the massive. theory and using the BPHZ procedure for subtractxng

d’ncrgent d:agrams The formal currents in (33) are qua.nt.:zed with a N3 -

13




) ﬁorma! product and, as a direct dpplic_ation of the BPHZ algorithm, we get’.[w’ o

J=1

A (OITM($7¥)X|0) = Z(ﬁ(r - ;) 6(: - z))0ITX|0} ('38_)..

" and

' BB(UITM(%“'P?’WX 10) = 2_00r*7* Ju, 6z —w;)~(v"7° )., 82, ){OITX10)

J=1

(39)

o where X is given by {19) and the superscript ¢ indicates the transposed ma-

o trix. The ferm:omc mass term breaks the conservation of the other currents,

.gwmg R
a wsmm P UXI0) = M OITAC V). o |
+Z{(7°)w,6(z w,) ), Bz = )OI X10), - --(‘4_o)
- = . o

" aad

(U|TN2(¢"! 7 ¥)XI0) = Z!M (OITN;,(w-y"’le) X10) -

A0 ) - (P, iz = )HOITX0), <415

. i=

Notice that the degree-of the normal products on the right hand sides of these

equations has increased by one. They can be related to rnininlally subt‘.racte.d.

. normal products through the Zimmermann identities. Technically, this is the
cause for the existence of anbmaiies_. More formally, the anomalies should
have the same quantum numbers as the terms already present in the clé&sical_

" conservation laws., This puts a very étrong restriction on the possible new ‘

r._erms. In fact, since A, itself transforms urider_P,_ Cand T independently

of the values of the parameters €, 7 and p, it immediately {ollows that the

‘anomalies can not have termps depending only on the field A,. Moreover, the

14

-

arise, L. €.,

. and

anomalies should be polynomials of canonical dimension 3, as it follows from

" general considerations on the definition of composite fields. Since the ¢ and -

A, both have canonical dimensions equal to one, it follows from tables 1 and
2 that the possible anomalous terms must be independent of A, altogether.
Thus, only.terms bilinear in ¥ and ¢ and having one derivative at most

can contribute to the anomalies. Using tables 1 and 2, it is easily checked

that only terms proportional to the divergence of the currents themselves can,

Na[’f'ra%b]=N2E1177311’]+31M[3u(157""r“'b)] S (49

where the coeﬁicxents 8 a.nd 32 can be computed order by order in1 fN

So, as cla:med hefore. the anomalies are very m_xld being possible to absorb

them into the normalization of the currents. |
4 Fermion mass generati_on

Let us now consxder the model (1) with M = 0 and investigate if a mass

can be dynamlcally generated implicating either panty breang or chiral

symmetry brqakmg in the two or four component versions. For sitmplicity we -

choose to work in the Euclidian space. The Sclrwinger Dyson equations are

depicted in figure 1. The propagators represented by single lines are the ones

. read from (2) t'a.king N = co. The propagators.represeured by double lines
" arethe compler.e ones, with many belf energy insertions as indicated in ﬁgure
2. In the domma.nt orderof 1/N, [, is gnen by the trivial contnbutuon \/— :

. and the four fermion kernel decouple:s fro_m the/system of equations.” The

‘15

MY = Nl + sl o (43):-7'




“relevant Schwinger Dyson cquations reduce to the photon amd fermion sclf

: energy parts as shown in figure 3. Writing the fermion self energy as

=) = A - S o

the full fermion propagator reads:

¢<1+A(p>)—z(p) .
L A F ) | (45)

For the moment we will keep ourselves fror doing an 1/N expansion for

S(p) =

Z Let us instead consider the possibility of having, as the result of some

- coopcr#ive effect among different orders of 1 /N, non vanishing values for & -

- and A.
To proceed with the analysis, it is necessary to make some assumptions,

the validity of which may be verified using consistency checks on the results.

Specifically, we will assume that both Z(p) and A(p) are small compared with -

the characteristic mass o = --— - of the model and also that they tend rapidly

to zero for values of [pl above a. D is equal to either two or four for the fwo -

" or four component versions of 'the model. _
Let us first look at the ;;hoton self energy. Adopting the aforementioned
apprmdmations and considering ahat most of tﬁe contribution to't;he fermion
loop comes from the region of i mtcgratxon [&| > , L and A can be taken as

zero. This is the same kind of approximation used in QE D31, The result is

. given by (4)-(11) with A put equal to zero, In the Euclidian space, we got -

1 P.qu 1 PuPu
SRy 46
7RI R v S )

Aw(P)

In more accurate calculatxons,'whe:e in the fermmn Ioop Yis not tn,l\en as -

zero, a non local Chern S:mom term would also be mduced if two component

i

.

spinors are used.

‘16

.Tl:c.simpliﬁud Schwinger Dyson equation for the fermion self cnergy’

' 1ok i L
Fp) = = e -k . 47
=)= | Gapletr bt @D
with [, = .«-ﬁlv-, after the substitution of .(-1.6) and after some traces are .
computed, gives l
PP N R B+ AGR)) B8 1g + Blp— ]
&£k Tk ' 1 .
¥ 3 12 { Z 201 2 (48)
N J (ZaPP B(1+ A(E)P + E3(K) 1/g + A(p — &)
and _
o ..' . o e m '. L _ : - .
PAp) = = &k 1+ 4 - ; . (p k) p(p:.k)_k X
N (‘?Tr):’ 1+ AP+ £ /g + ylp—~ K (P—k) -
' - [ 1+4 1 : Lo
Gr P T AT TR R
=K -plp—k):k . '
x -k R {49
- e )

- Expanding A and £ in powers of 1/,

A =, + +_‘+--..

N+F A _
R A% A S LR

and équating the same powers of 1/N in each side of (48) a.nd (49), we see
that a, and all o} s are zcro, that is, A{p} can be pos..s;ibly ncn vanishing only
at non leading orders whereas a mass is not gcqerat;ed at any Gnite order of

%,. To be fair, these results are strictly valid 6nly to leading 1/V order.- In .

. computing subleading contributions one should also consider correcticas to

‘the trilinear vertex and also to the four fcrmlon Lemcl tang into account

" all the four Schwmger Dyson equations of ﬁgum 1 We must stress. that

1
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the results are in accord with that of section.three concerning the absence

of anomalies in the conservation of the currents. Hovrever, this does not

preclude the possibility for ¥ to be generated for small ¥, due to cooberhtive '

"~ effects of different orders of 1/N. To explore this [mselbz.lty we put A(p)

in (43) After the angular integrations are done, we get

atlpt+k)?

'_'161«:‘;-3(1;) o
lp=kltey 1 1, k()
AL g At ) . : _

E(p) is a gauge &’.epende_nt quanhitjr. However, the fuct that it is not iden- .

'tic&lly zero has physical consequences {pa.rity or chyral symmetry Btea.king)

and it is therefore a gauge invariant statement. For simplicity, we chose to

work in the unitary (A — 0} and the La.uda.u gauge (A -+ 00). Moreovex' we |

- will restrict the study to the region E(p) <pZa. Expa.n <ling the loga.nthms .

and keeping only the dominant terms in 2, we get

, . _BE(R) 2
Po) = wpr ={fd Mok p+a

+/dk KS(k) 2 '5_/0" JE(L)} '(52)

A+ ZE) Fta +a k2 + E2(k)

.On the lights of the above approximations, we disregard the contributions

. ofk>»a to the integrals on the right side of (52). £ isoneor zero, respectively, -

- for the umt.a.ry and Landau ; gauge The above integral equation is equwa[ent

i

" to the follow:.ng differential equahon

} . ) 2 . ’ : ‘.
2 = p P B

{(p + a) } ' NDr’p + n* o (53)

18

subject to two boundary conditions®8l that we choose to be

2a(1 +£)—| +zr,_a =0 (54)

0< Djpmo < 00 - ' . (58)

As we, already know, mass generation does not occur for N big enough.

Thus, if it occurs for N small there should exist a critical value Ne. For N

_smaller than but near V. we must have a region in which E(p) € p < a and .

there, the linearized equation

d S, 32
—-{(p+a) dp} = D
s a. good approxlmatmn to (53). _
S:mxia.rly to what happens in (‘?I_‘}'Dﬂl?l (56) has the solutxons
i =1/(p+ a)‘f’*'/2t'~s%".r>*" - 57y

128

. Nevertheless, in-our case they are real only for N >N =gk and S0 do not -

satisfy the requirement that N be small. Moreover they do not sahsfy (54) :
a.nd are not solutions of the integral equation (52). .

For N' < N, (56) has the oscillatory sqlut.:ons.

- 128 121 I’+ﬂ
E“(P) - (p+a)u2 {2 VD 2' 1) Yex . )
4+ 5} n=0,1,2,... : .8y
where 6 = =7 for the unitary gauge and 6 = —(F2=; —1)"/2, for the Laﬁ&au _

© gauge. E satisfy (54} and are so solutions of (52). The osc:llatory cha:acter

of these solutions is essentlal to the compatxbxhty of the assumption that we

ha\(e made: before, namely, that-z tends to zéro above a c'ertmn_value of p. . o

18
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In fact, in the unitary g;h;gc:‘ the last term in (52) is a constani independent
of p. To be consistent with onr nss.umption, this constant must vanish, what

. can be true for an oscillatory S(p}.

Wiaiax of the solutions E, is cnergetically preferred should be inferred =

from an ahnlysis of the effective action.
-

It is interesting to observe that the mechanism of mass generation in this

model is more similar to the one found in QED;;IQ] than that working on the '_ '

Jona Lasinio-Gross Neveu mgdcl[l‘wl. The fact that mass generation occurs -

due to contributions of terins of different orders of 1/N could be inferred by
an examination of the identities among quartic fermionic self couplings listed
at @he end of reference [1). In. the case D = 2, as far as E(p) is non ﬁnishing
a Chern Simons term will be induced but it will be highly non local.

To sum up, we have got a non varishing I(p) both in the unitary and in

the Landau gauge.The difference in the result for the two gauges is only due -

to the phase § in (58). The unitary g:a;uge is a known to be an ultraviolet

problematic gauge, at least perturbatively, In the Schwinger Dyson self con-

" -sistent approach the main trouble comes from the last term in (52). But, as

we saw, a finite solution is possible due to its two characteristies, a. a rapid .

decay of £ and A in the ultraviolet region and b, osciilatory hehavior,
- The pasition, p* = —m?, of the pole of the propagator is a physical qua.n-.

tity that must be independent of the gauge. The restriction of the validity of

the solutions (58) to the region Z(p) & [p| does not allow to invcstiga.l:.e this- -

poss:b;hty although it scem greatly ‘plausible. In any case, smce E{p) is-not

identically zero, either parity or ehyral symmetry is dynamically broken. - ’ o

QOur analysis is still a bit crude und a numenca.l verification w01_1_ld be |

. ¢
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 FIGURE CAPTIONS

Figure 11 The full set of self coupled Schwinger Dyson equations for the

T'hirring model, as described in (1)

. Figure 2 Expansion of the full propagators of 4 and A, in terms of the :

- 1P parts appearing in the Schwinger Dyson equations. , - o

Figure 3: The system of self cbuplcd Schwinger Dyson equa.tiohsbn the

lights of the approximations of section 4. -
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