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" ABSTRACT

New distribution laws for the energy level spacings. and theeigenvector amplitudes,

appropriate for systems with a few degrees of freedom in the intermediate regime between
chaos and order, are derived By convenien_tly deforming the Gaussian Orthogonal

Ensemble. The cases of 22 and 3x3. matrices are fully worked out. The general case of

matrices with large dimensions are discussed. The Hubbard—Stratonowich transformation

in conjunction with the Metbod of Integration aver Alternate Variables are employed for

the pu}':p'oée..
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I. INTRODUCTION

It is well known that the GOE (Gaussian Orthogonal Ensemble) provides a realistic
description of statistical properties of complex quantal systems with a large number of
degrees of freedoml). In particular, the energy level spacings disiribution. obtained from
GOE approximates very well the Wigner distributiong) (W), which describes quite well
data. Independently of the spacing distributio'n, ﬁhe_GOE predicts a Porter—Thomas (PT)
la\;vs) for the distributions of eigenvectors. Nuclear resonance data systems lends support
to the correctness of the PT 1aw1}. '

The statistical independence of -the eigenvector and eigenvalue distributions, a
characteristic of the GOE, must however, he revise.d for cages involving systems with a féw
degrees of freedon.1 in the chaotic 1'egime4).

The purpose of this paper is to develop a theory for a mixed eigenvector and
eigenvalue distribution which should déscribe situations intermediate hetween chaos and
order. For this purpose we employ the maximum entropy technique subjected to several
physically motivated constraintsé). The GOE results will always be used as a guideline.
The case of 2x2 matrices are worked out fully analytically while the 3x3 matrices are
developed semi—analytically supplemented by nuwmerical evaluation. The general case is
then discussed using the Hubbard—Stratonovich transformation in conjunction with the
Alternate Variable Metliod of Integration (AVMI) development by Mehtas). A shorter

version of this work is contained in Ref. 6).




. THE GAUSSIAN ORTHOGONAL ENSEMBLE DISTRIBUTION FROM THE
MAXIMUM ENTROPY PRINCIPLE

" Using the maximum entropy technique the usual GOE distribution is obtained as

follows. _First we define the entropy as

§ = '—f dHP(H) In P(H) . (1)
subject to the constraint -

<TrH> = deP(H) TrH? = _ (2)

and. the normalization condition

deP(H-) =1, (3)
Maximizing S subject to {2) and (3) one immediately obtains the GOE distribution
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where A, and @, are Lagrange multipliers determined by the constraints (2) and (3).
From (4) one can- construct the joint distribution function, P(El,...,EN ; Cl,...,CN)

using already well known procedme’S)’G)'. and obtain
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where the C;5 are the component amplitudes of an eigenvector,
Integrating (5) over all the C,s and all the 'Ei—Ej,s , except ohe §. one obtains in

the N - limit the Wigner distribution
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where D is <s> = [%] .
Similarly integrating all the E;s aad all the C.s exéept one ¢, one finds in the

limit N =+ limit the Porter~Thomas distribution

Porte) 2 [5]" exp[-N ] )

As seen from 5, the E and C distributions are completely independent, (P(E.s;Cs) =
= P(E,;s) P(C8)),  which is a consequence of GOE. namely P(H) is invariant under
arbitrary rotation of the basis. _

Before turning our attention to the constrained GOE, it is helpful to mention that

the constraint {2) above gives rise to the Gaussian distribution {{) with the second moment



o
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with @, being independent of the label.

- II: THE: DEFORMED GOE
To generalize {4) and thus eventually make the joint distribution non—separéble_, we

~ have- to:-impose: Turther constraints im the construction of P(H) from the maximum

entfopy principle: - We thus redo the caieulation with Eq. (1) with the additional condition

<Tr(PHQHP}> = » , (9)
where P is a projecton operator that projects onto a given vector in the basis space, e.g.
Pr= Ji><i| ;- and. Q = 1-F.

To understand the .I'nea.njng of this constraint we write the trace in terms of the

elements of the Hamiltonian matrix, namely

TH(PHQHP) = Y. Hy o (10)

which; . when expressed in terms of the eigenvalues Ey, and the components

i .
. C=<i|E> of the eigenvectors [E,> . becomes

| TH(PHQUP) - Y @y’ E;uz el (cy’ Ei E, . (11)
: v ke A

where the completeness relation Sli»<il =1. has been used. Therefore the new
’ i

constraint, Bq. (8), with P = |i><i| involves all the eigenvalues of H and the
projections of the corresponding eigenvectors on the basis state |i> .

By fixing the value of <Tr(PHQHP)>, we are therefore deforming the Gaussian

“ Orthogonal Ensemble. OF course, the systern still maintains full axial symmetry about the

{i> “direction". The new ensemble is invariant under transformation which leaves the
vector |i> unchanged. Further understanding of the new constraint, Eq. (9) can be

gained by realizing that the second moment is now given by

1

<H;Hp> = 5jé+ big by ot 26 o] bl (12)
The new distribution function P{H) constructed from
45fP[ulnP—z\—aTrHZ—ﬂTr(PHQHP) dH = 0 (13)
i thus given by
P(H) = exp {— A=l aTrH - g Tr(PHQHP}]
N-1
- pOOF( TR [, 1T o
where the Lagrange multipliers o and § are related to the p and » as follows
v= Nl o crrpHQEP> : o (14a)
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The symmetry inherent in the GOE i§ now broken because of the favoring of a
particular vector spanned by P. This guarantees that the joint distribution
P(EI,...,EN ; Cl,...,CN) i3 not any more separable, and accordingly significant deviations
from both the Wigner and the Porter—Thomas distributions are expected. Since the
Jacobian that takes us from P{H) to P(Es; C,s) is independent of the particular
ensemble of real matrices under consideration we c.onjecture that the joini probability

distribution corresponding to Eq. (14) is

N-i
e = #Piecon {144,] 7

(15}
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where Tr(PHQHP) has been represented explicitly in terms of the eigenvalues and the
amplitudes of the eigenvector which is projected by P . From the joint distribution,
Eq. (15) one can then calculate the spacirg and amplitude distributions upon integration.

In the following we discuss the cases of 2x2 and 3x3 matrices.

IV. THE DISTRIBUTION P(s) AND P(c} IN TWO AND THREE DIMENSIONS

In this Section we derive the distribution functions, P(s) and P(c) for 2x2 and

3x3 matrices. For 2x2 matrices we obtain

$s] (16)

and

17
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Eq. (16) represents a spacing distribution which still shows level repulsion but .
deviates {rom a pure Wigner one. It is interesting to note that when #=0, the Wigner
surmise is fully recovered. On cthe other hand, P(c}, Eq. (17), is necessarily different from
the Porter—Thomas distribution even when 8=0, owing to the smail dimension of the '

matrices. For 3x3 matrices the spacing and :impiitude distributions are given by
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where A = %a-ﬂi(l—(}?) C® . A= %a+,§(1—(33-0'2)(03-:5-0'2)
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Q = Za+gu-cmor ' )
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In Figures 1, 2 and 3 we show our results for P(s), P(c) and P(y=c?) for the 2x2
and 3x3 matrices cases discussed above. An important result which deserves a special
attention is that the spacing distribution P(s) for small s dives 1o zero as fast as

FRLL ) 8 1/2 ; \ }
[0.86 [I-+ ﬁ} + 0.64]5 for 3x3 matrices and as [1 + 20:] s for 2x2 matrices,
as 3 is increased further (@ was kept comstant = 1). In thelimit 5 -+, which should
tepresent . the regular (ron—chaotic) limit, the- P(s) and- P(c) distributions attain the

following form:

P = Feo[-%] , N=z. (20)
R T P 2 [
P0 = b [0+ ) + Her) LNz e
P = b0 den s dern] . N=3 )

Our results above for N=2 agree fully with those of RnbnikT) and Alhassid and
Levine®) and disagree with Berry and Robnikg) who claim to have seen no level repﬁlsion
even for moderately smail values of # {the chaoticity parameser is defined differensly in
Ref. 9)). At this point we would like to point out that our work is very similar in spirit to
that of Alhassid and Levine. In fact, the case fully caleulated by Ref. 8), n.amely the 2x2
matrix, agree completely with our Egs. {16) and (17} with the identification .of their

parameter = by the following relation

e=—L e

16

Thus the GOE limit obtains by setting =10 or £=1. Similarly the fully regular case
corresponds to F=w or £ =0. ' 7

We should, however, point out two major advantages that our theory carries in
relaton to Alhassid and Levine's namely, first, we deform the GOE by merely favoring one
particular vector in the basis space spanmed by P and accordingly introduce just one more
Lagrange muitiplier in the maximum entropy calcuiation, whereas they introduce N—-1
Lagrange multipliers to go beyond the GOE. Secondly, our chaotic parameter, 5-, could
take the full rantge of values from 0 (fully chaotic) to  (fully regular). Thus, interpreted
as an inverse of a "temperature", one may use knowledge in statistical mechanical studies
of phase transition phenomena, to better understand the transition from. chaos

(high—"temperature” behaviour) to order (low—"temperature" behaviour}.

V. THE GENERAL CASE OF N DIMENSION

Finally, for the general case of NxN matrices, a la.rgé body of numericé.l calculation
would be required in order to pin down the Struc.ture of the distribution functions P(s)
and P(c). However, one may get a feel for this structure through perturbation expansion
in 8. It is clear that, from Eq. {14), higher order terms in # (arising from the expansioh

of exp(— 4 Tr PHQHP)), contain terms of thé form & C;E:; as well as more complicated
- @

combinations of the C,s and the Es. If we ignore the latter combinat.ions, the
integrations over the E.s Or. the C,s can be straightwardly performed5). The resulting
series would involve higher—order derivatives, with respect to o, of the GOE distribution -
function. _ 7

A more exact treatment, which we are presently developing, is to. first apply a

Bubbard—Stratonowich transformation on the second. term of the new constraint vis'
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exp{ﬁz C, CYE, E,
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= p| —x+ 2x 8 C E, | . (25)
= Ek, kK

With the above, all terms in the exponents become quadratic and the general

" methods of Integration over Alternate Variables developed by Mehta5)’10)

can be applied.
Of course when N becomes very large, the deformation of the GOE introduced in
this .paper through the constraint Eq. (9), with P = |i><i| would represent a tiny

perturbation on the original GOE, since it corresponds to a 1%— effect. In such cases a

generalization of P to include several vectors, e.g. P = '§1]i><i| would be desired in
i=

order to inflict & noticeable qualitative change in the distribution of the spacings and the

amplitudes. Work along this line is in pmgressm).

In conclusiou, we developed in this paper a theoretical scheme through which the
transition from regular to chaotic quantum behaviour can be conveniently studied with an
approp;iately deformed GOE. We were able to derive closed and semi-closed expressions
distributions of level spacings and eigenvector amplitudes for 2x2 and 3x3 matrix
Hamiltonians respectively. The transition from chaos to order is then studied in a very

convenient manner. The general case of NxN matrices is also discussed briefly.
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FIGURE CAPTIONS .

Fig. 1~ Calculated energy level*éﬁacing distributions P(s); a): for 2x2 matrices and

b} for 3x3 matrices: The value of o was set equal to.unity (sedetails).

Fig. 2— . Same as figure 1 for the amplitude distribution P(c).

Fig. 3 — Same as Figure 1 for the transition strength distribution . P(y=C%). See text

4

for details:









