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ABSTRACT

We extend, to arbitrary spin massless particles, the usual chiral components
associated to massless spin 21- particles. In 'the case of spin 1 particles the nonzero
generalized helicity components satisfies Weyl's equations and are associated to observables
{Electric and Magnetic Fields) whereas the zero generalized helicity components ave related
to non—observables (Electromagnetic Potentials). We show that nature, as described by
QED, is asymetric with regard to left and right since matter couples only to some chiral
components of the zero mass spin 1 field. In this way we have shown that the minimal

coupling substitution is just a physical consequence of the left—right asymetry of nature.

[3%]

I -INTRODUCTION

For massless spin % pa.rticles one can define chiral components w»  and Yp of a

L
basic field # as follows:

by = 5+ F) v
1
Y = sI-F)y

. It is an intriguing aspect of the fundamental interactions that, at least at low
energies, the right and left components interact in a different way with ordinary matter.
As a matter of fact there is no evidence at all that the right hand component interacts with
ordinary matter.

Nature, at low energies, is definetly asymetric with regard to left and right. The
first clue in this direction was given by the old V—A theory of the weak interactionsl}.
The empirical evidence for this asymetry comes from the breakdown of space reflection
invariance by the weak interactimg). .

This paper deals with the guestion on whether there are other evidences in nature of
an asymetric coupling of chiral components of zero mass particles to ordinary matter.
Besides the neutrinos the next, nontrivial, zero mass particles that couples to ordinary
particles are the photons. The question that we adress ourselves in this paper is whether
the coupling of photons refleets some kind of asymetry between the coupliﬁg of chiral
components to ordinary matter. We find that this is indeed the case that minimal coupling
is nothing but a reflex of this asymetry. _ .

Obviously one needs to specify what we mean by chiral components .of a spin zero
fleld. These components have a well defined meaning if we work within the Bargmann
Wigner (B.W.) method. If 4 represents the B.W. field associated to & spin L particle

than one can define generalized chiral components for the field as follows:




Vpg = 7+ eI+ 70

B = SA-Peka-Fy

TR S T
Yy = SA-Petas Py

" We will show that QED can be completly formulated by taking only the interaction

of g and” ¢y with ordinary matter fields. Within- the context of QED, we will see

that the uéuél-;ninima.l substitution prescription 6‘“ 5 B‘u —ieA " is nothing but. a reflex of
the left—right. agymetry in the case of spin I particles.

"I-Til_& plan of this paper is the foiibwiﬁ'gf .' _

‘Tn .cha,ﬁtér' Il we extend to particle of arbitrary spins s, the usual spin % chiral
c'ompoﬁénts.' Thi's exteﬂsidn is possible in the context of B.W. theory. - The totally right
(left)'compor_lent;s have generalized helicity components s (—s) and obey the generalized
Weyl's .équaéidn'; _ . ' '

~ As a:ﬁi ekercise, and in order to illustrate how the B.W. theory works, we present in
R chaptér IIL the B.W. theory for spin 1 massive particles. The interesting point here is that
_ clééily B:W. theory leads to a complete description of massive particles by associating to
these particles a symmetric rank 2 tensor field instead of associating particles to a rank 1
tensor (the usial procedure). The subsidiary condition &* B = 0, for instance, foilows
naturally from the decomposition of the basic B.W. field into the spinor space and the
BW equation.
- In chapter IV we make the extension of the B.W. theory $o massless spin 1

particles. In this case it is straightforward to show that the two components of the chiral

components are associated 0 the potential whereas. the other components are associated to
the potentials.

In chapter V we f i i

n chapter V we formulate QED in terms of the. chiral components beR » Yoy LR

and qDLI". Here we show explicity that one can: formulate: QED- as long as matter couples

“only to some components of the chiral fields. That is, QED is manifestly left—right

: asymetric.

" In chapter VI we touch on the question of the quantization of the B.W. fields. This
is achieved by imposing .appropria,te commutation relation among the B.W. components.

We end this paper with a chapter dedicated to conclusions.



H — THE BASIC FRAMEWORK

In this chapter we will describe the general framework for studying massive and
magssless particles of arbitrary spin. _

Our starting point for describing massive hartic!es is Bargmann Wigner (B.W.).
theory3). In the case of massless particles we define generalized chiral components that are
an extension for particles of any spin of the usual oneg for spin %pa,rticles. Some of these

components satisfy the usual Weyl's equations,. the others satisfy equations analogous to
Weyl's equations. '

Remembering that a rank_one sﬁinor- transforms, under Eoinéa,ré transformation as
ox) — 7'(x') = DY) n(:XJ
where, in 6rder to ensufe the relativistic invariance of Dirac's equatioﬁs one has té require
DG DO = #v s
then, a. 2s rank spinor #(x) transforms as |

Y(x) — ¥ (x') = D)@ @D(6) Yx) .

2 factors

Analogously, the 25 rank spinor #{x) defined by

=T (R e e

S——
_ 2 s factors

trangforms 'liice

C WY - F) = WY DYY e - 8 DI

-2
25 factors

where we have used the property thai

P0G+ = DU

Throughout this paper we use the notation of Bjorken and Drell book4). In an
appendix of this paper we present some of the matrices and notation that we have used.'
Within the BW theory3) a massive particle of mass m and spin 5 s described by

a 25 rank spinor field

walaz...azs(x) 4 =1234

that is symmetric in its spin indices, obeying a system of 25 Dirac equations:

id ' X} =m X
ayay oy a. 2, (0 Va,.. 0.2 )

k=1,2s
or in g different notation
#ele...2ly=my
18i4®- -8l p=m ¢

[81® ... @iFp=my . (IL.1)

’Ihe symmetry in the spin indices of the BW spinor field ¢ allows us to express




this field _in terms of a linear combination of symrmetric matrices of the spinor spac'e.. In
this expansion, new fields appear {which, as illustrated in the case of spin 1 particles, are
the vsual spin 1 fields) which are coefficients in the expansion. Some properties for these
new ﬁélds.:ca;n- be: deduced. from Dirac equatioﬁ {I[.1) for the BW field.

For the:sake of completeness let ys. write the: decomposition of the rank 2 spinor

field 4, , associated toa mass m and Spin 1 particlé in terms of the symmetric matrices -
. 2

admits the following decomposition:

(Tuc.):. ‘-a,ﬁd.'_(&”"'(j). Yo,

walaz(x) = ym B#(X)('?#c)al%_ﬁ G#y x)("p C)ala2 (1L.2)
where the field: B‘M(k). is a vector field (that.as will be shown later is the usual spin 1
field), and Gpv(x) is a field not yet determined and that, in principle should involve
derivatives of the B ,u(x} field. This is actually what happens. As will be shown in the

next section, from (H.1) and (IL2) it follows that

GW(X) = 9,B,(x)=3,B,(x) . (11.3)

In the case. of massless spia % particles, one starts with Weyl's equation. In this case the

basic set of equations is:

Il
=3

(~i0%8; — i V) £(x)
(IL4)

(—i6%8, + i3 V) i(x)

il
o

where . £(x) .and %(x) are two component spinors. These spinors are eigenstates of the

helicity operator % -1 [ i= 1—E’—i] with eigenvalues % :
p

1 1
FEh)E = ¢
. II.5
1 . -1, ( )
5(F/x = 51
If one write a four component spinor as o
b = [ ¢ ]
X
then one can define; as'usual, the right and left components as
- 1 -~
(11.6)

by =5 ()

With the definition (IL.6) one can then show that Weyl's equations (I1.4} are equivalent to
the equations:

i, =0

W, =0

For particles of arbitrary spin we assume (like in BW's theory for massive particlés) that a

particle of spin s, without mass is described by a spinor
¢al'__ak”_a23(x) L a‘k = ]-s 2’ 3; 4

of rank 2s, symmetric in its spin variables, which obeys & system of 25 Dirac's equations:

a0 =0 with k=12 . (1L7)

10, a i‘{) 1
akak a’l-n-a’knun

i



i

The definition of chiral components for massless particles of arbitrary spin is:

o Y g E YR g
BT TP | 25 .

U p¥) F @Ra{"Raz Iy x) =
8- 5

R % (I+75)a1ai .

1 S Ll -
2 (I+75)325-1 a'E's-l 2 (I 75).'1253.55 ¢ai. ) '%S(X)

iZIL...L(X) = ibLa Ly (X) = %(1_75)3131 e % (I—"[B)a% aés {ba;. . .a}ls(x)

1 P

From the equation (I1.7) we:may derive the:following equations:

i ¥ x) =.0
aalai wRai Raz"'Ra.zs( )

ia’a. al ﬁ’R R L (x) = 0
171 ai- 2, a25 -

i et x)} = 0
Pa!a; Lai Laz...};a?s()

() = %(Iﬂs)ﬁai%(Hﬂag% %(I-F’fs)azsaés Y.

(118}

(11.9)

It is clear that if ¥ transforms under the Poincare group like the tensor product of

23 bispinorss) :
o - - [El] o [EIIs]

then, in chiral representation, representation that we will use from now on in the massless
case,

wR.._.R , wR...RL.’ W L will tra_,nsform like:

10
§ 0 g
y ~ EI®._® 'EIIS _ 0
R..E 0 o 1= :
0
- 1]
¢ .§ 0 b Sie Vs
by I IS _ 0
wR.-..RLN{O]®“'®[ 01 e:[. }_ .
XTI, :
0
1]
- 0 0] : .
YLt G'"‘s[. ] = ) . (IL10)
Xy Xrg _ 0 '
Xy oo Xygg )

o
. 0
YR " :

-0
0
- :PI
YR AL 0
0
0
'?’L...L ~ (IL11)
25—1
‘p( _)
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Where ¢, ¢, e , 99(23_1} , are respectively the only non zero components of {bR R

EbR RL® 1}1, L and are two component spinors of rank 2s:

v =9
bibg--+bzg

b — b,b,..b =12
v Phgba--bas 1’2 261

90(29—1) _ A2s-1)
. bybg---bag

2s—1)

Using Eqs. (I1.9) we can see that ¢ and (p( satisfies Weyl's equations (11.12):

(~ic%9, i) ele -elp(x) = 0 (I1.122)
U (-8, +itV)ele-. ety 25-1)(x) = 0 (11.12b)
(25—1)

where ¢ and g are symmetric two component spinors of rank 2s.
Eq. {I1.12b) can be derived from (II.12a) by space reflection, so one can consider just one of
the Eq. (IL12a) or (IL12b). '

The other components ¢, ..., tp(Es_l) satisfy equations analogous to Weyl's.

12

IIf — B.W. THEORY FOR MASSIVE SPIN 1 PARTICLES _

This chapter is intreduced in order to show how one works with the B.W. theory to

desqribe spin 1 particles. We will see, in an explicit way, that the method is, formally,

richer than the usual ome in the gense that it allows us to write equations in terms of

"ohservables" (Fields analogous to £ and 1T in Maxwell's theory) and leads in a
straightforward way to the subsidiary condition c'?”B# =0.
Althongh the method is formally better it is just a little bit trickier, as we will see,

t0 get the physics out of B.W. method.

Free field
-Within the B.W. method a spin I massive particle of mass m is described, in the
non interacting case, by a rank 2 symimetric spinor qbal a,(%) obeying & system of two Dirac

type equations:

(7o) = my
- {I11)
(1&id) ¢ = mp .
Equations (TIL1) may be derived from’ the following Iagrangianﬁ)
)= #{ jiter1e Mo, —mrielly . ()

If we treat the field %132 as the independent variable, one gets in particular:

(5= by oy Vs (x) = 0 R
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We replace gba,lag in {IIL.3} by _its_decqmposition (IL.2) and obtain
. . 1 4 .
192 4 0, {80 (HC) s, 8 B9 (4T |

= m{Bﬂ_(x) (%C)alég—%—mG#y(x) (U#V_C_)afz], . (IIL4)

In order to see that (IT1.4) leads to the usual equations one bas to make some simple
operations involving + matrices. For instance, if one multiplies {I11.4) by (C'l)alza “and

sums over a,a, one gets:

. . : & _,‘
i BaB‘uTr('r 'r") = ¢
from which it follows that:

8, BY = 0 (TIL5)

Tt is interesting to see that the subsidiary condition & B =0 follows directly
from BW equation. If, on the other hand, one multiplies (II1.4) by (C‘lqﬂ ) 2y one gets:

— 459G Tr(v*™ %) = m B, Tr(#4P)
from which one gets

7 _—c‘;\“G#ﬁﬂn2 By = 0 (111.6)

Finally if we multiply (1IL.4) by (c-'ﬁy*)azal one gets:

iaa B'u Tr(_'ya#"vﬂfy)\) = —%EGWTr(aﬂy?ﬂ'yA)

14

{rom which it follows that

2,B, P pfoFpt - P (IILT)

By using (111.5) in {IIL.7) one gets

P = P pfo g (IL8)

that is, in the decomposition (II.2Z) of the field v, the only acceptable tensor is

= -

We have then seen that BW equations leads to the foflowing restrictions upon the
fields B¥ and GHY ‘

G, =94,B,-9,B, . (IIL9)

2 _
—3“Gw+m By =9

In order to see the equivalence between the BW method and the usual approach,

in which we assign to a vector field B,u a spin 1 particle, let us now write £; in terms of
B . ' ' '
I

By using decomposition (IL.2) one gets:

£ = 4m?B¥B —2G"G (I1L.10)

uy
or also using (II1.8)

#-—6 B)

Ly = 4m?B*# B, +1 # B B ; i (IIL.11)




If ‘we consider B as the lndependent field then one gets from (IIL11) the usual Replacing by 14 decomposition (I1.2) we obtain for £

Ealer—Lagra,nge for the B field that is: :
£=4m*B¥B 26" C g {B*‘.‘ R TS ey n’bﬁyﬂ}_%-ﬁ (10— my) 7.

. pi 2m T uy
wB,— G, =0 (IIL.12) (s

where- G, =9,B,-9,B,. : Using G* = 8" B¥ — " BY we can write £ in the following form

Eq. (I1.12) is the same that eq. (IIL6). : £, = dm? B B, +4 a“ B*"(a B,m8,8,)- LR | B
Tnteracting fields. . _ : =& m {B 77" 7 + B, (n a‘“’n)} + n (lé”— mg) 7

Let us: congider the interaction- of mnassive spin. 1 partlcles with massive spm L
patt:cles, described, as usual, by rank 1 spmor field . ' : Writing now Lagranges equations with reépe_(;t to. BY and 7

H-we.restrict: ourselves to lagrangians that are linear i the. ¢ fields (that leads, . '
ultimately, to- renormalizable: modelsy then, the forms that are compatible with Lorentz _ 4L P [ L _ | (IIL16)

: ) i ) o ¥V  ar ol ¥y | * :
invariance: assume the form (ITL13)- B HFB™)

o : i [ L .
Ao e T € v 4 g 7 ¢ e - c 7 7 T—a“[ } =0 . (HL17)
Lo ™ BrVan T W t& U, 15 5 Fhe = g0+ dnthe  (TL13) | N a(o"n,)
we obtain from (T11.16)

N ) S g 1y - 1

where g, 'and’ g, are constants with dimension [L] /%=
: 251 g2 . W g, .

In- the following we shall take g, =0. -At least in the zero mass .lmut nature 4m? B, - gl_v’rﬁ 7,0 & [ 4(0,B e 6ﬂ B —Jfrﬁ 7 Jﬁu 7 } =0
prefers this type of couphng '

We shalb-study’ the following total lagra.ngea,n for a spin 1 massive field 1nteractmg or also remembering that G.W =3, B,u _ a,u By
with.a spln.z-.masswesﬁeld:_ ' ‘

. . Lo . : . . - Ulvla _ gl o ’

ey o —#G g = N AT IIL18
L-'=w{%{7”'®A-I+I®7”)6ﬁ—mI_®'I}d)+g1n°zbn+n(1.3’—mf) 7. (HIL.14) # ,w/+m v £ T am (”a;w’?) ( )
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On the other hand, we obtain from {IIE17)

{ 17— my ]Eﬁ.’ T, = 21 "ﬁ{ i - Gy o

Treating now @, 52 e 'a2 ,
1

Lagrange:equations:

r._, [ oL ] _
- | —
Bwa 132 a(a'ul{pa.la?)

the following equations

{'rua' éa' +94

L - o=
23 ’#;23‘5} aﬂ wai"i " T‘baf% &ty Ny = 0
2g ﬂ:.l- @alaz - mfﬁa? - iaﬁ(ﬁ)a 7}; a,
Replacing ¢, , byits decomposii:ion (I1.2) in (FI1.20) we obtain
)
@ 1 o v
0=358, { Bﬂ('r #C)alaz_'m(}py('r ot aa }
ig

’j { B (7}1700 Gﬂy(ouy‘yac)ala?.]

1 v gl C.
w { B0}, o~ GOy |+ 17,

1
} B3y Ty

(11119}

n as-independent fields we obtain using (II1.9) and

(II1.20) -

" (I1L21)

18

or using (I11.9)

e ar
a,u( C)aa2 Zm a ,W[{"’ug

gy e
-mB (7”0 + a*‘WCI +2208
ﬂﬂ 2m ,w/ aa, Ja 2, fa

Now multipling (II1.22) by {C'+"), , we obtain
2

%Gpu = —mng—'rgl@ﬁ'ypn .

Model (111.23) leads to equations analogous to Maxwell'
massless case, we name .
Gk — gk

Gik = ik gl

we obtain from (IT£.23) the foliowing set of equations

A {
-s™c|,

(1IL.22)

(1I.23)

. In fact, in analogy with

(I11.24)

(111.25)
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Egs. (II1.25) are analogous to Maxwell's. That is we get a set of coupled equations -
of first order.in term of the observables £ and H. .

-Finally eq. (IIL21) gives rise, after taking the complex conjugated and replace ¢
by its decomposition (IL.2), to (IIL.19).

B Haﬁli}tonian _ _
We take the form (III.14} of £ as a starting point. The two fields n and ¢ are

independent. We construct conjugate momenta from £ by the siandard prescription; so

we obtain
oz, = 4° B 'waiai-% { 72{3:63&&2 * 6“‘2*‘172:':“2 }
P M), :
(I11.26)
ac .
,ra M. 178

The hamiltonian is defined by
“H = _”%Maﬁz + :rélaﬂnal —£
Replacing 4, , (%, , ) by its decomposition (I1.2) one geﬁs
¥ 4

: _ o o * 1 kp
H= 4{.(}*0“ 8B, ~ B, 8 G} + 7 (13)n -4 m2 BB, 5 G GW} +

+ gym [B; R R e Lt n} -7 {i‘fk3k - mf} n (.27
pr=0,1,213 :

k=1,2,3

Or, integrating by parts:
q = * ok * ol _ 2 n*itn 1 A%y,
H 4[(} 8B, + 8 BG ] 4{m BB,-5G GW}+
+ gm {BZ =g G, 0 0 n] -7 [irykak _ mf] . (I11.29)

where k,j=1,2,3

b, V= 0: 11 23 3
Now, following Bjorken we adopt the nptation :

"= EB+E =-28"-8

E
and we assume that the fields ¥ and ﬁ are real, 50 we obtain:
+2 -2 =2
0= 4[H +B | -4B-am BB, +

0_ | \ " _[. .
+g1\/ﬁ{B M"?HBJ-M’n—..lmGw,na””n}—ﬂ[m“Bk—mf]n__

kj=1,23
e =0,1,2,3
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IV — SPIN 1 MASSLESS PARTICLES

The extension of B.W. theory to massless particles is not straightforward. For
example the zero mass limit of the decorhp’ositidn (IL.2) is mea.niﬁgless. Fufthermoie, for
massless spin 1 partlcles, the a,ppropnate La.grangla.n is not the zero mass limit of (IIL.2).

The approprla.te lagrangian in this case'ls”
L = {g{'%['w'éx+té'qﬁ]'a“l¢‘. (IV.1)

As pointed out in chapt.er II for wassless Spm 1 pa,rtlcles one can work with a rank

2 spinor field ¢ but the only: relevant combinations are the chiral components

b = pAFPIOFA+P) P
by, = 3A+PeF-7 % .
- (IV.2)
bp = 3A=1)850+7) P o
by = 3U=P)ez (P9 o
The equations satisfied by these components are
(iBeDg,, = 0
(ige I)‘%.L =0
S (Iv.3)
(178, = 0
ey, =0

22

It is simple to check that the lagrangian that gives rise to these equations is:

By = Yy (89 g+t (00 by, + g (00 Difyy + ¥y (80 DY, . (V)

- Wewill verify that £, given in (IV.4) is Lorentz invariant.
By a Poincaré transformation of the coordinates, the fields transforms as below:
Far(®) = Ppp(x) = D@D F(I+det ¢4 &1 (I +det £ F)P (x)

Pep(¥) — Py (x) = D@D (I+det £45) 8% (I—det £9)P ()

“(Iv.5)
Bpl®) — ¥(x') = D@Dy (I—dei £15) @5 (1 +det £ %) (x)
¥ (x) — %, (') = DeD3 L—dete 7*) @ (I—det £ ). (x)
So we see that by Poincare coordinate transformation
Vo 10® Ly —— 'RL iael {/;'RR if det £ = +1
—— Gy iAely,  ifdet{=—
{IV.6)
Vpa 17819y, —— fppid®ld,  ifdeit=1
_ {bLL ige I_E;LR ifdet £=—1

80, £y is globaly Lorentz invariant. On the other hand, it is easy to see, remembering tilat

¥ = pp t ay t Up Yy (Iv.n




that the lagrangian (IV.4) is equivalent to -

b= pEFONP

In fact if one substitutes © by (IV.7) then the non zero terms of the above
' lagrangian are those of (EV.4). It is interesting to note the difference between (TV.1) and
(IV.4). Although the difference at first sight seems to be just a matter of symmetry, it is a
little. bit deeper. The difference is, in fact, chiral invariance. In fact lagrangian (IV.4) is
invariant under the chiral transformation .

o o= ey (IV.8)
whereas.in the-case of {IV.1) there is no simple extension of the usual chiral transformation
to spin T particles. ' '

Let 'us-consider now the set of Weyl's equations in the case of spin 1 particles. In

this case one writes:

I 11
5 3 3
s~ el
% i
R [ 1 'H.
) o ~ 3 ® f
SOI Yrr K _OJ

24

Weg;l's_ equaﬁion_s_ ca.n bg. .de-rive_df in_; this- case, by :taki;igr._op:lx;___tl}é:_‘_ &RR": by
components and are _ o o _ :
(io% itV el =0 ?

' v

(163 + 8- V)par s 45 = 0

where fl f“ axid )‘c[ ,\'{H are supposed: to.be s'ymm_et'rised' in spin indices.

The generalized helicity operator for spin I particlesis- = - .

%(E-lﬁ®I+-I®E;ﬁ)tE W f =T§_} .

It is straightforward to show that w.RR.’ Ve Vg ,-'v,bi‘[; are eigenstates of W

with eigenvalues +1, 0, —1 that is
sE-net+1031) fog = 1
TR EY I £ 5,0 ) S A

sEae1+ I@E-ﬁ")',i’m ~ 0

1 -~
sEaer+1eda) g, = -1
In order to ilustrate the difficulty with the zero mass limit let us write the

expressions for the chiral components in the massive case. By using the decomposition



(TE.2) one can write:

! 5 1 5 = L lay pye 2 B
gj}R R §(I+'Ya)alai§(1.+ f}azaé d’a'la'z_ ﬂ[Q( +.f!)aﬂ C]ala.2 £V

wRa i'aa = %{I + 75)513.'1 % (I - 75)3,23.% %’llaé =_ V,ﬁ [%(I + 75)')ﬁ c }3‘1&2 B[.L
1

(1V.10)
= H b P = @(F0- ),

2% A% 2
¢L L =_ % (I - 75}313;_ % (I _-Ys)azaé_zpai.aa_ =, J_l_ [% (I._ 75)0#1/ C] d B

I
3 T a2, I

From: (IV.10) oqé can seg:that' the zero mass limit leads to'chiral components that
are zero or il defined.. However, from the requirement that ¥ is a symmetric field in its

spin indices one can write a decomposition analogous to (IL.2) for § that is:
- _ ! ’ _ o )
Uoa (K} = 0 Ayfx) (FC)a 5 — 0o Epfx) (0*Clya, - {Iv.11)

Cﬁﬁlparing deéoﬁlp(;sitions ('IV.lrl) and (I.2) we see that constants ¢, and c,
, ) iy 1 L . .
must be respectively of dim [M] /2 and and, in case of QED will be determined
'{M]ijh :

later. Using Eq. (T1.7), we sce that. we must have

iaaia'l waia,z(x) = 0

or using decomposition (IV.11) -
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s G v
(170 ) { & 4,00 (FO)y o —6: F 0 (0 ] = 0. (V.12)
Multiplying (IV.12) by (C")aza we obtain

1

#‘Au =0 (IV.13)

that is, the field A p satisfies the Lorentz condition. Furthermore multipling (IV.12) by
{(3'1'}'6)aza we obtain
1

#E, =0 (Iv.14)
‘Writing FIW as
Fu = 9, A= 0,A,
* we will then, get
oA -p Fat =0 = waf <0 .
For a massless field we must have following cqnditions.:
F A p =0
#F w =19 (IV.15)
o A,u =0

and we note that in this case A u and F.W are, in principle independent fields.
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The most general form for ¥ is

o 1 of
- whére- f,[l:b' =37 Euyap f

_By' using - the decomposition (IV.11). we get the following express_ioné for
Yano Yar 0 Yiro Vi

“.__ _l N _'___.1 v
wRBIRaz_ B (I + T))ala; 3 (I + 75)3.2&% u‘)aiﬂ-é - Cy [2‘(1 + f)ﬁ)aﬂ ¢ }81.8.2 F.m}

L1, 1 S| )
= g+ 'Ys)aiaif(]:_’fs)azaé Yaray = G {g(“"}s)’}pc]aﬁaz A,

o | (IV.16) -
PAUE G 1 i = L
Py, = B0 P b+ Py By = (30 7Lt

T LA U by, = 2 | 3 (1= P
L _§(I “F)a!aig(l TE)azaé wa'laé =G [2(1 7)o C]af’z Fﬂy

As-:a. final result we will stiow that the right—right and the left—left components, or,
éqqivale_x_ltiy Weyls componenis give rise to Maxwell's equations.

For this purpose we will use notation (IL1I1) which gives the expression of

{[JRR (@LL} in terms of two cemponents spinors.
: @ 0
- - _ 10l 0
One has wB.R = 0 if’LL = t]
: 0 A9

Thie symmetry of ¢ allows us to write the following decomposition
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p(x) = T{x)2C, (IV.17)

from we get the following equations for the vector 1 (%)

v.i=o0"
£ - B3 . IV'
i8f = ¥at : (1v.28)

Now if we define ¥ = pHY _ {FAY

PP = g¥aF — ghaY
gy _ 1 pvaf _
B = g€ Fag -

where

A# - . ] -upy . - _ ~ - N :
A¥ being the vector potential and - Y obeing & F = &FF =0 andif

' 1. 1

L) = 360,07 Blx) = L F(x) L avag)

#saaﬁ=1’253'

equations (IV.18) for f‘u(x) imply Maxwell's equat.ioné that is, equations (IV.18) imply:

-
e

vl
==
H
1=

AB o+ By " (1v.20)

=} =1
.

where



V —INTERACTING FIELDS — QED N ) _ . _.
.. Vg M (g W) o g m (Bty) I det =1

= = . . _
Let us c0n31der now the mr.era.ct:on of rnassless spin.1 ﬁelds We will be mainly L T (% 5°n) i detf=—1

. concerned w1t.h t.he mteractlon of these partwles with ordmary matter. That is we will be . ' ' (V.2)
concerned with the most geuera.l mtera.ct;on la.gra.ngla.n describing massless spin 1 particles {DRL-.W (&RL Py —— 17)R.L 7 (g:{)R'L 71°0) if deté=1

i H = ’
mtera.ctmg w1th spm 5masswe (mf} parr.lcles ¢LR - (wLR ) i det £=—1
By imposing; that . the lagrangian.is. linear in the ¢ fields, then the most general
féﬁﬁ thét is—_biliﬁea.r in:the matter-field: #- that. wé can construct with the four independent

_ Sa that in order to insure Lorentz invariance one has to require that
fields- Yog "#’RL.-’ quR a.nd-g[)LL is:

r _—.A: ‘: +B: . +D: E +E: - co . )
e - wﬁar_r‘._'a;_]a'lna‘z' lDLal;Laznaln% ﬂ)ﬂalr‘aznaln% wLalRazﬂalﬂaZ

A om oo
1l
M- =3 oo

= . ¢ = o = . : c = - ¢ .
x ngaiRaQWaE”az_ + J"")Lal[,az";"'ilnfa\z + Kﬂ‘bRalL,.izmll']a2 + Lg[)LalRa,.;]ﬂlT"’ﬂ2 + be. (v.1) The most general interaction lagrangian is then:

where A, B, D, E, F, J, K, L are arbitrary constants. ‘
The reason for so many terms.is that we shatl assume, to start with, that ordinary

: ‘ ' Flgp 70 + ¥y, 7°0) + K(9gy 10+ G 1°0) - (V.3)
matter. couples: with different coupling tor the chiral components of the field %. As a
matter of fact we shall see that, in this case, only the zero helicity components couple with We now consider the particular lagrangian of interaction obtained for
ordinary. matter, A=D=K=10

The number- of coupling constants can: be. reduced to four by imposing Lorentz

. L = PO n+ o 1) . : .
invariance. - In fact using the transformation rules (IV.6) of the fields wRR , wRL ) z[)LR ' e (wRR T T " (V 4

and" ¢, - one can see that, under Lorentz transformations, one has: )
- The total lagrangian is then the following
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L = gy (90 1) Y + Vg0 1) Uy + Upp (00 diy + ¥y (1901 Gy +
%'F@Rl.i 7+ ;’LL wen) + 9 (b &= mey . - (v.5)

Wiiting the Lagrange equations explicity one has

WI;}L.R.‘F.FT?CTI =0 (V.Ga.)
pol @RL+Fncn =0 (V.6b)
1&51 Von ;_ o - (V.6c)
mwm:o . | . (V.6d)

Eqs (V.6a) and {V.6b) imposes in: pa.rti'cﬁlar the following restriction
%, A =TFing
/3
#F,, =0
F ““In'this case we do not get QED.
R :I.Jet.ﬁ"us--cbﬁsider now the following interaction lagrangian for the spin 1 massless

' 'pé.r'i;ici'lés'an&' the usual mastter
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Liny = K{ B T+ Vg 'né'n} - v

By adding the free ficld lagrangians we end up with the following total lagrangian
£ = Ug1800) Dy + G200 ¥y + D800 By + 9y, 180D g+

. One of the most- interesting aSpéctfs:.'Of. this approach is that although oaly some
chiral components. couple with the usual matter, all chiral components should be considered
as dynamical variables. That is one should write five Euler—Lagrange equations:

L _, L _
LA
quRR - Y YRR
IL__, /N 0
L €
c’iubRL - Y R¥RLY -

- 3£-

= 2 by
awLR L 5(3“¢LR) J

oL -8 - BI_C ] =0
= & 7
oo, KTy

at -
mr"%[a%m]‘D'
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Equations (V.9) and £ given by (V.8)leads to: . - .. - . e Now adding (V.10b) and (V.10¢) and replacing beR and {bLL by there expressions
_ _ N . (IV.16) we get
el =0 ' e {(V.10a) _
. o _pv ’ -
| —i cg(y_a“ Caa, aa_FW+ Wain, =0 . | (V.13)
igelyp  +Kifp=0 . . N {V.10b) _
. Multipling (V.13) by (0'176)323 we get:
. . 1 .

igel @LL + K ¢° 7=20 _ . : (V.10c}

) _ 9, P = Kogiby (V.14)

igel ¢LR =9 _ _ ' (V.10d) 2
- - We see that equations (V.14) can he obtained from equatjons (I11.18),

2K | Yy, + Fpp | =me 70, () = 0 (V.10¢)

Similarly adding (V.10a) and (V.10d) and replacing # _ and % by expressions
& LR YRL

(IV.16) we get:
From Eq (V-10e) it follows that

0. ' o (V.15)

\ o _
ey 7}"’(3)alaz a, A,u =
oK c.{z +: } —E 7 _ig R e o T ) F.
??’1 ¥aL _ Yip 3,2, naz-_ w2y ’)‘};1"_2 ' So multipling {V.15) by {C), , we have:
R - . . X . . 21
Or replacing. $RL and Z’LR by expression (IV.16) . . ' FA =0 : (V.16)
. and 5 .
- - i V . . * . 2 ’ P ‘ : . ' - - . ) .
-2K¢ 'Ial Aﬁ('ru)ala‘z_ f“r 'J‘az___ 1 3;5 ’?al 7};1% =0 . (V.11) that is, one gets Lorentz condition.

We have seen in IV that the most general form - F.W is
Taking the hermitian conjugate of (V.11) one gets. .

F = £, +il,, - (v.i7)

(i#mp)y o 7, = 2K cl(w/‘)aiaéA e (v.12)

By . -
Replacing FLW by {V.17) in Eq. {V.14) we get an alternative form for Eq. (V.14)

Note that by imposing 2K ¢, = ¢ we get the usual minimal coupling. .~ " - : that s
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Bu - K- . ' : o ' . '
3” £ = 1c, 1 7‘3 n . _ _ The total lagrangian as a funciion of Ap' and F,uv'
(V.18) . - - . -
2 1 B _ 0 . ) Replacing wRR , gf)RL . q‘)LR and z!)LL by the expressions (IV.16) we obtain for the
# free spin 1 massless lagrangisn
These are Maxwell's equations in Lorentz gauge if one writes
. f,w/ = BV_A'#— 6” Ay )

and imposes: the restriction : = dogy Y Fuv ~Ke, AZ P+ nlid-min (va)

K
Note that the product c,c, is dimensionless and we impose now that
In order to-see this equivalence in.terms of the observables. E and H one writes as

_ 1
wsual o ¢ . . CC = g -
’ ok k ’

Tk 5, T=1,2,3
fF = syt
: A‘-u and F r as independent fields

_ g Replacing 4 Yo 5 %o and ¢ h. i . : i
" Equations (V.18) give rise to the following equations. - _Replacing o s Y - %5 and ¥, by the expressions (IV.16) we obtain for the

free spin 1 massiess lagrangean (IV.4)
. * i v * -
L = dec, {FW [a"A —#A ] —a [a"Fv"ﬂ BVF”V]}

(V.19) where we have considered A¥ and F* as independent fields.

The total lagrangian (V.8) may be written

&
L= oy, [0 4%~ a“-A”] +oe AL [#Rf - F”y] -

' . —Ke, A p+ nG@-mpy. - V.22
(V.19) are exactly Maxwell's equations. Ly ) : _ . { )
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Writing Lagrange's equations for A#, F*¥" and » we obtain

oL —a“{ oL ] =0 — a"F‘“y=BI§—21‘77‘”n

gAY 6(3”A*V)
@—c’»‘”[-ﬁgw]. = 0 = (i#—my)y = Ke, A% p
am  Ladmy S -

(V.23)

(V.24)
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VI —QUANTIZATION

In this chapter we will consider the qu_anfization of massive fields within the BW
theory. We propose also an extension to the zero mass case. We show that there is no
hasic distinction between this and the usual approach. The only interestiﬁg point is that it
is possible to quantize the BW fields.

We quantize the BW fields by imposing the following commutation rules for BW's

massive fields:

[wala.z...a‘zs (X), "'/}aiaé.,,aés (y] s =

— [_:y2s-1 ofe . TS - : x
= (=) ; l(lﬁ,’(+m)a!a; i(i2+m), e A {x-) (\(1.1‘.)

where a, e -ai ;e =1,2,3, 4, A(x-y) is the Jordan Pauli function, % is a constant to
be determined; P denotes all possible permutations among the spinor indices and where we

use below convention

9l = v+ (-1)*" 99 (V1Y)

s being the spin of considered field.

One writes the BW lields as & linear combination of the symm.e'tric matrices of
spinor—space and introduce so new fields which are the coefficients of this expansion.
Imposing commutation rules (VL.1) and replacing the BW fields by the precedent
expansion, we obtain commutation rutes for these new fields.

For a massive spia 1 particle we adopt the decomposition of the BW field in spinor
space: - '

- L g
o (X) = VB {B() (#0)q , ~ s Sl () )
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By writing the plane wave expansion of the new field B u as:

B,(x) = f ; {A(p,A} () e®x + BHH(p,\) e M(p.)) eﬂpx}
(27 }/2

(V13)
the properties of the polarization < {deduced from the propertie (I{L.5) of the Bt field)
are:

ple,(pA) =0 . (VL4)
Adopting the normalization

eth (p,) Sﬂ (pa’\.‘) == ‘SA,\u : {VL5)

we-obtain the sum over the polarizations

Xp) = Y F N eN = —[g‘“’—b"r}l%y] - (VL6)
q

Finally we-can deduce the Feynman propagator for the ¢ field

i) = —pr:"'“ﬁ%TiE—XW(P) . (VL7)

Massless BW fields’)
' As shown in chapter II, for a massless field the fundamental thmks are the two
. 2 1
components spinors of rank 2s, ¢, ', - z,a & )
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For the massless case we quantize the two component Weyl's spinor p (H.11)

 assuming commutation rules (VL8).

- (—i)2s—152i(i A By —i &)y o ili o B —uaV)b b D(x—y) o '.(VI.S)
11
7

‘where D{x—y) is the Jordan Pauli non massive function, & is a constant to be

determined, 7 denotes all possible permutations among the spinor indi.ces and where we
use convention (V1.2).

Then we_.expa.nd the two component ¢ fields in term of the new field f (IV.17);
imposing (VL.8) we obtain commutation relations for the T fields.

In the particular case of a spin 1 particle where (1V.19)

ﬂ
£,00 = 5€00p7" )

2‘ opafl
postulating the plane wave expansion of A¥(x)

2
M = A [ L o [apy e AT ] (vi9)
(21)3/2 20 3 '

where p = {p’B)
| (AL AT U] = £B -8,

A and A are polarizations and using (IV.19) we obtain one more expression for the

commutator between f fields.



-where we have adopt Bjorken's notation
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- We obtain so following expressior for sum over, polarization for a massless particle Consider now the 3 below cases:

of spin 1, momentum- p, massless: . . _ ' 19) 5 and #' are positive energy particles, so
2 - t t
) = ¥ #Hp N = —g¥ 4 A -9 (VL) o T e
)|=1 . A : - - . . ‘ er — LLI

the vertex above takes the form
b= (1,0,00) ' ‘ R i
= (1.000) | () | - (0, o | W)

o= A jii }2 - Ez ) : ' 29) p and 7' are negative energy particles, 5o
P~ (p-m)®

b=t = —4C
7=
Feynman. rules: .
the vertex takes the form
Weiake £; . (IIL13) with g, =0 as a starting point

- . i '. _i Ly
Ling = 8 Tf"ala2 Wa[- 715112 = gy /m 0(py) { 7# m (Pt),, } v'(pa)

-3%) 5 is & positive eriergy particle and #' i_s a negative energy particle
We assume that ¥ corresponds to a.particle of four momentum p, and spin 1, 7

has-four momentum’ p, and 7' has four momentum p; and spin % . t
So we obtain the following result
the vertex takes the form

—tm (O, @, (€105} - C (v

i 90a) | 7k 0, | v




H
§e
i
|
t
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Appendix. — Pauli matrices are défine as below by

) e=t] =) 2]

By convention o == {¢* = 1,3) designate (cr‘u)aB.

The metric used is By (1-1,~-1,-1) _ . o= [0 .
— Dirac's matrices corumutation rules

We have used also the property that: : . !

(Pgp = Py (Fgp = (005 -

C, denoteés the charge conjugafion matrix in (2,2) s'pace and obeys
i, =—C,cT = ¢ ' ' '

P i

2 = PPt

" —In chiral representation

) - 0 (o))
P=[5t) X=[33) - IR
w'iaaﬁzcl 0
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V1 — CONCLUSIONS

In this paper we have extended, to massless particles of arbitrary spin, the usual
spin % chiral components. The extended chiral components are eigenstates of generalized
helicity operators. In a particle of spin s the eigenvalues of the helecity states are, as
expected, in the range [—s, s]. The chiral components associated to the —s and +s
eigenvalues satisfy Weyl's equations. The other components satisfy equations, in terms of
two components spinors, é.nalogous to-Weyl's.

We have:made: a systematic. analysis- of the spin: I particles. In this case there are

four. chiral components: Ve Y0 Yry 34 ¥Yyp - The helicity eigenvalue +1 (-1) is

associated -to quR;-_{qL-LL)' whereas: the- 0 - eigenvalue is agsociated to the components

Pars wLR - These components; on the other hand, have a very simple meaning in this case.
They:-are. associated to.cbservable fields (like the- electric and magnetic fields) or to

potentials.. That is.

"")RR wLL ——— observable fields (E or H)
(Gauge invariant)

+——— potentials (A )
{not Gauge invariant)

wLR ¢RL

We have shown that all chiral components are, in fact, important dynamical
variableé for getting 2 complete deseription of electrodynamics. The equations associated
t0 sore-components are just Maxwell's equations whereas other equations give constraints
in the potentials, that, in.this case, is Lorentz condition.

One of the advantages of this approach is that it allows to formulate
eiectrodyna.m.ics in terms of potentials, by ﬁsing two components spinors, or in terms of the

observable fields (Maxwell equation} E and H.
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The next question that we asked ourselves is if ordinary matter prefers, or not, to
couple with some chiral components. If matter does not distinguish between chiral
components, then it should couple with the field # . That is not the case.

On the other hand, if ozdinary matter couples only with the wRR we would

YL
have electrodynamics formulated entirely in terms of observables. That is not the
alternative thal nature chooses either.

The usual QED is compatible only with a theory in which onty wLR (wRL) couples
with the ordinary matter. From this point of view QED is another example of an
asymmetric interaction between chiral components.

The coupling of ordinary matter with some chiral components, in the case of the
photon, does not have any consequence like parity violation. It is just a dynamical

consequence that in this case is the minimal coupling,.
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