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_ABSTRACT

We investigate the effect of the Coulomb and strong interaction on double nucleon
emission in peripheral heavy. ion collisions for incident energies above 1.0 GeV/u. We find
that for lower bombarding energies (~ 1.0 GeV/u) the two contributions are well separated
and the two processes lead to double nucleon enﬁssion in distinct kinetic energy ranges.
The effect of the Coulomb interaction rises logarithmically and becomes dominant at

increasiug.bombé.rding energies {~ 100 GeV/u).

1. INTRODUCTION

In the past ‘decade much  effort has been dedicated to the" understanding of
relativistic heavy ion collisions. Although the main expectation was always to find the
QCD plasma, which was supposed to manifest itself in central collisions, there was very
interesting physics hidden in peripheral collisions?. Among a variety of phenomeﬁa,
nucleon emission has been also object of investigation. As was pointed out by Feshbach
and Zabek? at increasing projectile energies double nucleon correlated emission tends to
become more important than single nucleon emission because of short range correlations
among target nucieons and because of the phonon nature of the target mat{er excitation.

Recently, Bertulani et al® suggested that in such peripheral reactions the
measurement of double nucleon emission cross sections could reveal something important
about nuclear structure: the typical length of short range correlations. The main purpose
of this paper is to inctude the Coulomb interaction arid investigate how the results. of ref. 3
are modified. As we shall see, such contributions are by no means néingib[e and cduld be
tested experimentally: while the nuclear induced double nucleon emission shows a weak
energy dependence, the Coulomb interaction has the typical logarithmic dependence.
Therefore it should become dominant for high enough bombarding e;:h_ergies (~ 100 GeV/u).
Moreover, the energy of the emitted nucleons could be observed in different ranges for
lower bombarding energies (~ 1 GeV/u): Coulomb interaction favors lower Linetic energies
of the outcoming nucteons. The situation of course changes as the bombarding energy is
increased. - _

We have dedicated special effort to derive analytical results in order to bring about
the essential physics of the process. This was possible by confining ourselves to nuclecn
emission along the incident beam axis (as done in ref- 3). Extensions of our resulis for
other combinations of projectile and target and/or bombarding. energies are therefore

immediate.




In what follo(avs we make use of the theory developed in ref. 3 and include the
Coulomb interaction. In sec. 2 we deseribe the formalism and for the sake of completeness
repeat the main steps presented In ref. 3. In sec. 3 we-show our numerical results and
compare them with the previously obtained by Bertulani et al. Finally sec. 4 is reserved

for comunents and conclusions.

2. FORMALISM:

2a. DEFINITIONS _
The-relativistic peripheral collision, which we will be ta.lkin"g';a;bbut, is depicted in
Fig. 1. To afirst order perturbation approximation the amplitude for this process can be

written:as .
. ' - +aw: i ) ' . ) . )
ag{b):= '}'ﬁ f dt 't f dir, f d¥r; et 2,) [Vs(ri,t) + Vi(1g:t)
. .

+ Velryt) + Vil )| ity ®

where:_-_\[:c('ri,t). and” V{r,t) represent the Coulomb and strong potential respectively,
acting between the projectile and the ith nucleon and hw = Eq—E; = €, + ¢, + binding
e_netgy-_ofthé.. pair {= 16 MeV). g, and e, are the kinetic encrgies of nucleons | and 2.
Thie c'hoi:ce of the nucleonic pair wave: function will be kept the same as in rel. 3 (although
thie objection should be made, that they are not orthonormal to each other. This effect has
been: studied by L. Barz et al.} with the conclusion that the results are not very much

altered for most-of the double differential cross section calculated in (3)) namely:

d(tpty) = it gl N (2)

where f{i (i=1,2) are the wave vectors of the emitted nucleons. The initial wave

function is given by

[ s 3 XL
(1,1, = Nexp e [ eXPi— ] —expi— —— (3)
-2&T 2&T . g
where N is the appropriate normalization constant, r, the correlation range and o the
Gaussian width related to the radius and diffuseness of the target density: Gy = 2 V‘aRT .

In order to simplify the calculations the Gaussian a.pproxirnation5 for the strong
potential has been adopted in ref. (3) and also here for the sake of comparison.

Accordingly, the potential created by the projectile centered at the position (X,Y,Z), with

b=y X2+Y?, and Z = vt, is given by

—x;)? —y )2 2
Vit = Wgexp{_(x < }exp{_(v v ]exp[_ L ] o

2 2
% % %

where 7= (1-v%/c2) "2 is the standard relativistic factor introduced here to take into
account the Lorentz contraction of the nucleonic density of the projectile which generates

the potential. The strength Vg and the range parameter o, are

ng-g—oexp[%—g] apzzﬁR_p . {5)

where R is the radius-of the projectile.



The Coulomb pétentia.l reads

Z
Vc(ri:t) = . - (6)

Vi X0y Y+ Pl

As can be seen from the above equation, the Coulomb interaction is taken to be that
of a point like pto_]ectlle, which follows a straxght line trajectory. In ref. 6 it is ‘shown that
the evaluation of Coulomb excxtauon processes, where the projectile remains in its ground
state in a field theoretical formulation, considering both nuclei as extended objects leads to
the same quantitative result as given by eq. (Sj.."

We shall now proceed the evaluation of (1), which can be decomposed into its

Coulomb and nuclear contributions,

Z .
'a'fi ( cl+ c.z) .( 51+a's ) . X (7)

VT V2

where s and ¢ stand for Coulomb and sirong respectively. The constant factors
multiplying the amplitudes mean that the purely strong part of the cross section is
proportional to A;/Z (the number of nucleon pairs in-the target)} and the purely Coulomb
part, of it:is propor.tional.to'._Z,-;/ 2z (the-number..df charged nucleon pairs in the target).

We first- evaluate- 2 cand By g and 3, -are obtained by just replacing
everywhere the'index:I by 2: :

2b. THE:STRONG-PART OF THE AMPLITUDE: %,
In this section:we shall simply sketch -the-main steps which led to-the analytical

expression for the strong interaction, since this has been done in ref..3. Qur purpose here is

the discussion of the energy dependence of the strong interaction cross section.

Using the wave functions (2) and (3) and the potential (4] in the definition of the

amplitude {1) one gets

te ' foz i [ (Xexy)? {Y-y,)?
= %—EJ. dt 't J.d“rl fd"‘r.z ¢ lhuti gikats TV eXD[* : ; } éxl{“ i }
-

&p o

p
r} r3 | #1112
x exp[ 2 (vthl)z] N exp[-——z] exp{— —Q—Z—J [1 ——exp[-— ! 22 } }
arp 2'1’1‘ 20:T T,

The integration over time can be easily performed

+oo

. , ¥ :
dt explist — L (vt—z, 2l = «a Jr €Xp{— —mm exp{igzl}
ag P v 47 2 v
—®@

and the amplitude can be written as an integral in cartesian coordinates

Ve Moy T ik Jd fd jd fd d
a, = expi— X X z, | dz

exp{ =1y X, + Ky Y1+ iy 21+ Ky X+ oy 3 + Kag )

al a?

[ (X—x* (Yy* } [ (xyHei+xi+yial) ]
¥ EXp|— ———— — ———— + exp]—
P p

i=z
v A 2
2&,1,

. [1 —exp[— (xyxq)" _ (v ya) _.(zx"’zz)z H o . S ' (8)

2 2 2
T s r

c <




We clearly see that the above amplitude is a sum of two 6—fold integrals. The first
one comes from the- constant term inside the brackets in the last line and contains no
information about correlations. These are in the second term (the exponential), which
mixes coordinates of particles 1 and 2. As can be seen from {8) all integrals are gaussian
and in.r.he-li_mit r. € Qp0, an analytical expression can be obtained for eq. (8} {details in

ref.. 3). We get

a —.iBexp{ | b® i— fr (k,,+k }bJ {exp[ i {k3,+kZ +1d )]
5 7 - ARy T Ry TR T Ray TRy
.4a(Rp+RT) (Rp+R.r) 4

2
+ exp{— 1 (Kie+kd, +ki, }

_ 2
exp[——g} [(k1y+k2x)2 + (kjy-i-k?y)zJ

2 a? o*
- ? [klz. + sz“%]zJ exp[—- “ } 9

where

L3

B=%-’r:~/—N¥9a2JR_R; exp{ }

The total cross section due solely to the strong interaction can be obtained as

8
o 2 )
o, = 21rf dob —L |a(b)]
R, +R,
N2VE. R -R
_ lég® I 2 6 p T
= -~A2 Ara (RPRT) RT(RP+RT] Iy exp -

| R ST
« fexpl— - k3] + expl- £ 1E|] expl— oL [(k1x+k2x}2 + (k1y+k2y)2]

2 .y D . _
;.T.[L +k,y, ]2]exp[— az"2 } : . (10)

We see that all the energy dependence {throgg_h the 7 factor) is contained in the
last term while the mass number dependence comes out through the radius Rp and R

(R, Ry ~ Al3,

2c. THE COULOMB PART OF THE AMPLITUDE facl. .

In this section we present the derivation of an analyﬁical expression for -a,.: We
show all essential steps: and necessary approximations in order to obtain such result. The
approximations were used due to the fact that in this case we do not only have to-deal with
gaussians. Numerical tests confirmed the accurateness of the necessary approximations and
we are confident in the analytical results which. follow...-As we shall see they allow for a
physically transparent comparison with the results of the previous section.

As before we write




“ o . o . A e 9
' a, = %RJ. dt & J.d"’rlfd"r2 ¢rikiti-ikaly —
o -m . : ' 1/(xl—X)2+(y YV (g vt)?
ri+1d) (21,
xNexp—( 12 l—exp[-—- P2 : _ (11)
202 _ e J

The integration overtime glves

+o0- . .
Lwt B
dt £

e XYy 1-Y)2+72(zl-—vt)2

<|E

‘él“

“ KD[ “’W Jox =X+ (7, =Y }

(12)

a.nd hence

'TT 2Z,eN fdxl fdxz fdyl fdy2 fdzl J‘dz2

x 'exp[—i [k,x X+ kiy v+ [k,z—%] Z + Koy % + kzy Yo + ks, zz]]

[ (x%+y%+z%+x§+y%+z%)] [ [ (xex)? (yy32)? (ar2)? ”
* eXp1— 1 —expi— -

20,%. r2 r? r2

. K'ﬂ[ -“.’T;-,/(scl—x)%(yl-—&’)z ] . | (13)

Comparing (13): with {8) ore realizes that both amplitudes- are very similar, the

difference. being that in (13) the Béssel function replaces the Gaussian in (8). It is also

important- to remark that the K, has a singularity at the origin; which.is not the case of
the:Gaussian. ' '
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Wherever the coordinates x;, and y; are not involved the integrals are just
Gaussians and can be performed easily. As we shall be working in the same limi¢

considered in ref. 3 (r? € o2, ag), from now on we neglect the first {no—correlation) term

inside the brackets. The integral over z, and z, is

—i(ky ~ ) — kg 2y 2i+23 (21222, +23)
dz, dz2 expi— expy{—
2a e

e

1'?: a"%‘ wi?
=7r opexpi—r ki, expi— [klz+k22—;}

The integrals in x, and y, are easily performed and we get

2%, - r2 2x,
jdx.zexp — iky, Xy — +—x2 VT e expd - ikgx——{
r

C [od
d ik ST PO "¢ k )’
y, expi—1i 2yy2—[ﬁ+r_2} ¥i rTyz = nﬁrcexp- T |iky—— .

1
2
rc

+

[
£

2
T c c Te

and the amplitude {13) becomes

22Z,eN [ r2
p c
3, = _T I, 712 exp[—:i— k2y+k ]J'dxlfdyl exp ——(xl+y1)
— (kg +ko,) %, — i(ky,+kyy) yl} K.O [ %Jx§+(yl—-b)2 ] . (14}
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Changing variables into polar coordinates the double integral in (14) becomes

"2 o

| ;__"g(b)fg o f

dr r.exp[——l-; (12 +2br senﬁ)}
o L A i
y exp{— i [(k1x+k2-x) 0088 + (ky,+ky, ) sen a] r] KU[ o ] (15)

where
g(b) = exp[—- iy hgy) b+ bz]
: 2

If we confine: ourselves to nucleon emisson along the incident beam axis (as done in

ref. 3) the angular integral can be carried out further analytically and one gets

o]
I = 21rg(b)f drr exp[——l? er I, 2-25 KO[%] . (16)
0 ot r

 We now study in detail what happens to this expression in the limit r-¢.

Recélling that r= yx}+(y,—b)® this limit corresponds to a situation in which the wave
function of nucleon 1 penetrates into the projectile and interacts with its total charge which
is concentrated. there {(at this point the potential has a singularity). This is certainly the
most impo_rta.nt. contribution to the amplitude. Numerical studies strongly suggest the use

of asymptotic expressions for I and K,

Ko(x) ¥ —In(x/2)

2
Lix) ¥ 1+

Integrating (16) we get

I= { (ad+ b?) ln[z_’rl} -t-g [a,ic + bz(c—i)]] exp{_%}

G
T O'T

The amplitude can finally be written as

27,eN )
8y = —— il 1
Cl if],v ¢z
We write now 8, by interchanging everywhere index 1 with index 2 and. then
write ‘a, = a'°1+a“z

a, = i A M M, I(b)

where

=
It
o
%
o
Hﬁ-‘l
R

=
il

2 2
c C
c exp{— T k%z} + exp[—- T kgz]

a% w12
M, = exp “:r[kxz‘*‘kzz_“{;]

‘ The total (strong + Coulomb) amplitude is the given by eq. (7)
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z A Z A .
a = La——La, = iMcMz[—T’AI(b)——TBPIS(b)}
V2 vz V2 V2
_ where: ' :
- o} o7
P = exp{— :
4y

L(b) = e [-————-—bz }
T 4a(R_+Ry)

. The-cross section-can be written as

21rf db bja(o) |’
R +Rp '

-9
i

2 2

Z. AL A
2.2 T »2 T T . T 2 p2
2chMz{2—-A looy ~—3——ABPI +5 B2P2]

(17)

strong

The first term corresponds to the pure Coulomb term. The second and third terms

correspond to the interference and strong interaction terms respectively. They are given by

ong = 3R FRD) exp{—éa-(apm,r)}

Ic:o; = Fo [i’“%[c+?1ﬂ[$]}2+ [ +2!n[{2—1%})]]2

{§+;ri ] +£§~P—+—3T—)4 +[C+21n[%]][(c—1)+2m[%”

En
+
(8

e —

14

- T e_v(p{— {‘(RP+RT)2] [[c +2 ln{%:l%]} N '[(C~1) + 2]n{%]]

mix ap

. [Il,+ (Rp+RT)2]]

where
RT+R
Pr=—— P and C = 0.577 {Euler's constant)
4a(R+R IRy -

The cross section for emission of a correlated nucleon pair can be obtained by
multiplication of eq. (17) by the density of final plane wave states d%,d%,/(2z)8. In
terms of the kinetic energies ¢, , £, and the directions (8,,¢,), (65,19,) of the two nucleons,

this cross section is:

do . 2m
= WSM(€,€)M(€,B,E,H)[Z Al (5,5)
dede,d,d,  (2r)ent o o U7 PR Cou'F1E2

= Zr AL AB Plepsy) Ly, (epe) + A B p {E,,EQ) I (18)

strong]

In the next section we show examples of application of the above formula and

compare our results with those previously obtained in ref. 3.

3. NUMERICAIL RESULTS

We now consider the application of formula (18} to high energy heavy ion reactions.

Nucleon emission will be studied in the **Ca+*¥Ca system at 14.5 GeV/u and in the




"~ 15

10849235 syéteni at’ 1CeV/u. In order to show the competition between the two
kinds of interactions involved we shall first consider them separately and then study
interference effects. The values of the parameters appearing in eq. (18) are r,= 0.7 fm,
2 = 0.65fm, m =938 MeV, r,=1fm, V, =50 MeV. As already mentioned before only
forward—backward emission (§; = 0, 6, = 180°) is considered.

In ﬁgé: {2-5) the nucleon pair emission cross section is shown. The curves of equal
differential cross sections. plotted as a function of the final kinetic energies of the Lwo
nucleons were:caleulated using eq. (18).-

Figurés-— z:: and 3 illustrate the hehaviour of the emission cross section in the
49Ca+4%Ca * system at two different incident energies having 72145 and 4= 100
respectively.  Both figures show separately the strong (a), Coulomb (b) and
strong+Coulomb (c} cross sections. We see that when going from lower (fig. 2) to higher
(fig. 3) energies the Coulomb component of total cross section becomes more and more
important. Both.types of interactions generate cirves with the same "sausage like"
appearance, the important difference being the position of the peaks (or ridges) which occur
at lower nucleon energies in the case of the Coulomb interaction. These interesting
features came-from the log term (In(29yv/ o w)) appearing .in Togy » Which favours higher
incoming energies (actually diverges with the energy) and lower nucleon energies.

Figures 4 and 5 show the same as 2 and 3 for the 1084 g 23575 systew.  The
bombarding energies are E,, ¥ 1 GeV/u (fig. 4) and E,, = 100 GeV/u (fig. 5). Here
it is easier to-see how an equilibrated mixture (in fig. 4¢) goes to a strongly Coulomb

dominated mixture (fig. 5¢).
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4. CONCLUSIONS

In the present paper we discussed in detail the role played by the Coulomb
interaction and its relative importance to the strong interaction in what concerns two
nucleon emission. The striking differen.ces are essentially two. Regarding the bombarding
energy dependence: while the strong interaction exhibits a weak dependence, the Coulomb
interaction has a logarithmic dependence (as characteristic of this type of process in
generalT). Furthermore in what concerns the energy of the emitted nucleon, we can also
notice that the strong interaction favours higher nucleon kinetic energies than the Coulorab
one. This pattern is of course altered if the bombarding energy is increased sufficiently.

Qur results suggest that both effects could be éeen ex;jerimenta_lly and i)redict the
energy range of the nucieon emission which aré most Tavourable for each interaction. It
should be very simple to obtain similar results for other combmatlon of target and
projectile. The results are almost analytical, '

A comparison with experimental data should be very useful ﬂot only in verifying our
predictions- as to the roles played by strong and Coulomb interaction, but to yield
information about the correlation length r, .

The study of long range correlations is also a very interesting research topic and is

presently under investigation.

ACKNOWLEDGMENTS

This work was supported in part by FAPESP. We would like to acknowledge C.A.
Bertulani, A.F. Toledo Piza and L Barz for stimulating discussions and W. Pires for

giving clever tips for the numerical calculations.




17

REFERENGES

" L.C:A: Bertulani and G. Baur, Phys. Rep. 163 (1988) 299,
2. _H.:s;ﬁqﬁﬁbaqh;_and;M; Zabek, Ann. Phys, 107 (1977) 110. -
3.CiA Bé;nmani_,et;ai., Mod. Phys. Lett. 14 (1989) 1315.
Y 4L Barza.nd AF Toledo Piza, in preparation.
5.P.J. Karol, Phys. Rev. €33 (1975) 1208,
6. LG Fe._r'réira. Filho, T. Kodama, and M.C. Nemes, Nucl. Phys. A499 ( 1989} 837,

7. J.D. Jackson, Classical Electrodynamics, 20d Edition, John Wiley and Sons, 1975.

18
FIGURE CAPTIONS
Fig.1— Relativistic collision between a Lorentz contracted nucleus and a nﬁcleon pair
in the laboratory frame.
Fig. 2—  Differential cross section eq. (18) as a function of the nucleon kinetic energies

epsy for the *Ca+'°Ca system at By, = 14.5 GeV/u. We present the
result obtained in ref. 3 (fig. 2a), the purely Coulomb cross section (fig. 2b)
and the sum of both interactions (fig: 2¢).

Fig. 3~  Thesame as fig. 2at Ej,;, = 100 GeV/u.

Fig.4—  Thesame as fig. 2 for the ‘*®Ag+?%U system,

Fig. 5—  Thesame as fig. 4 at E,,, = 160 GeV/u .
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