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The paper is concerned with the explicit quantization of the Coulomb field of the
electron. This problem had been considered by Dira,cl, who introduced the physical field of
the electron, ¥*, multiplying the original Fermi field by a unitary operator exp ie V)‘t ,

that accounts for the Coulomb field mode. V, is a functional of the vector potential

longltudmal compaonents.
Here I treat the problem, begmmng with the quanmz&tnon of fluxes®. T also propose
4 manner of introducing the magnetic field produced by the electron, and consider a
mechanisto of local transference of flux. '
. -The .description of the electromagnetic waves can be dome with different
represem;atlons for the ﬁeids An alternative for the conventional representatmn in terms

of the field. A()‘t), is given by the T—field, such that £=¥xT and B="7T. As far as the
description of the electromagnetic waves is concerned, both methods are equally good.

o ' _’I_"he' corresponding local commutation relations in each one of these representations
are

[P, A0 = 16 889) 5 and [B, 1)) = ~ig; 009 - @)

I take the electromagunetic field to be complete in the sense that this couple of
commutators should hold simultaneously. -

Let us consider a closed line Ty, and an open surface S; with an intersection, as it
is:shown in Figure1." §, is a surface encircled by Ty, and Tz is the perimetral line of Ss.

Let also q}E be the electric flux through surface So, and &B the magnetic flux
through surface §; . o ' '

The flux commutation law

[&E,&B];i_,_ or § 'f‘-d?,§ A-di| =1, (2)
1Ty r,

belongs to both representations.

Figure 2 shows a closed surface 5, and a line T', with an end at the point % .
One defines the electric flux through S, and a magnetic—like flux aglong T,

¢E,s = _‘f

S

%
B-d8 5 and 6p(%) =f A.db (3)
T

and again, by using the focal commutators (2), one can verify that

(65 600 = =i )

if % isinside S. But the commutator vanishes if % is outside the surface.

Figure 1 Figure 2

The Coulomb field is a single mode of the electric field, which can be created
centred in a particle. Taking the commutator (4), one can verify that, for every closed
surface § that containg the point # inside, the field functional

i‘
clit) = exp ief A-d? (5)
T

is an eigenstate of the electric flux operator QI)ES , with eigenvalue ¢. However, if % is

outside 5, then the electric flux eigenvalue vanishes.




Now, I take a formal step that shows another aspect of the Coglomb mode Cf(i)
The exponent ie f ()‘t) can be written as

%
ie 0.(%) = 1 f a3 e 5(2-3) f A.d
T

)

(6)

I 2(¥}) is the clagsical electric field at the point ¥, produced by a particle
localized at the point %, one can reptace the delta function in Eq. (6) by éﬁg’-éc(y,i) .

And after integration by parts one gets
fe (1) = —i J' dp2 0-A3) . (7)

C-"—(i)' i3 therefore an efgenstate of the very electric field operator, like that unitary
* operator in Dirac's ana.lysisl.
. + ﬁ =+ L +
In some of the paper's equations it is implicit that V f F.df =F(%). This
r
assumption is made regardless of the nature of the F field.

The analysis of the Coulomb field may be supplemented with the consideration of a
magnetic mode. Let ¥ initially be a classical speed. With the help of the 1 field, I
define the Ampére mode

b4

al(29) = expie J’ (@« T)-db . (8)
r

In order to provide an immediate indication about the mode's nature, I resort again
to a formal procedure, expressing the exponent in Eq. (8} in the form

3
ifﬂ%wmq(hﬂﬁzﬁﬁﬁmmﬁm (9
T

where fic =¥ =2, , is the magnetic field at the point ¥, produced by a particle moving

with speed ¥ at the point #. -
To construct an electron field with the flux modes manifest, one first takes a neutral
Fermi field (%), which commutes with the electromagnetic field. _

Then the magnetic mode must be extended to become suitable for the coupling t0 a
relativistic particle. Iintroduce the generalized Ampére operator

% . '
af@) = expie f D xT).af ., with D= fdax R ¢ 1)

. r .
where J, s a current formed with every neutral field capable of 'réc'e'_'ix}ri.rié:ﬁﬁx;'-' In
particular it includes the neutral fermion current :wi % g, . The ‘operato'r & is formed

with the Dirac matrices oy : . .

" Observing that AT(K) SR AR = () T(fc #)', I define the-electron field as
wf CT A-r ql)T so that the one~electron state f a3t z[)T fk|Q> has the- regxster of the

electric and magnetic fields of the electron,

In elementary particie reactlons, the electrom a.mi its neutrmo sha.re a conserved
lepton number, and at the same time they differ in tha,t the neutrino does not carry flux.
Then it is natural to explore the possibility of using the neutral fermion #,(X} to describe

the electron—neutring.

In order to couple the fields zb% and 4, one-needs to constr'uct é.- c_ha.rged boson

field, which will receive the electron flux. One needs also a michanism of local transference
of flux. . :
Given a Imxmg angle "¢, one can: form: a: complex finear combination of the:real
fields A and T: ¥ = seng A—i cos¢ t.

Y{i) ts still a neutral field, because it has no flux factor operators. The dynamics
of its transverse components is given by the Hamiltorian

x=%f¥ﬂ?wﬁﬁanh?)-' : (11)

Now, I take the interaction Hamiltonian, coupling the photon to the electron in
Quantum Electrodynamics, —~e 7.4 , and rewrite it with the Y Geld:




~m a0 b Y ene] el adpy, "

The next procedure is to define a charged vector field W =ACY , designed to
absorb the flux of the electron field ¥, , transforming it in 2 neutrine field ¢ .

Products of fields in the Hamiitonian of Eg. {12} can be rewritten with the
prescription: 1, Y= Py AC V= g W , and the first two vertex acquire the form

_?ﬁmﬁ ‘»5'1- &1~ g W +he . . (13)

. This structure is similar to the charged current coupling of Weinberg—Salam
Theory3’4; AIthough' the charged vector bosons W and W7 in that theory are
independent variables, whereas in the present construction they are not.

The pseudo—vector coupling between the electron and the A-field in Eq. (12), is
also’ in correspondence with a vertex of the Standard Model: a coupling of the electron to
the 7 field.. :

In. the scheme: analyzed. here, a vertex w’g_a-i“ ¥, cannot be transformed into a

- simple:neutrine vertex like 1[):{ &F ¥, . by dislocations of the flux operators, because the

operatoi_ aT(:‘t,&} does not commute with the-e—matrices.

Replacing the ¥ field by at ¢t W™, in the Hamiltonian of Eq. (11), one gets an

effective. Hamiltonian. (W} for the charged vector boson, which has certain similitudes
with the gauge field dynamics. Specially in the fact that & (ﬁ’) has quartic terms. This
is an-indication that. the W—field defined above, could be related to the Yang—Mills5 fields.
Concerning to the mass of the W—ﬁeid, I speculate that in the weak interaction
regime;. that involves short distance effects, some components of the electromagnetic field
could eventually develop a vacuum expectation value; and, through the quartic terms, they
might: lend. am effective mass to the W—ﬁeld, in a manner analogous to the Higgs
mechanism6. S
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