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Electromagnetic flux and mass are the only observable differences between the
electron and the electron—neutrino. Those particles in fact carry the same conserved lepton
number, and, supposing that the dilference in their masses is of electremagnetic origir, one
may inquire on the possibility of describing them both with the same Fermi field.

In a previgus paperl, concerned with the explicit quantization of the electric and
magnetic fields of the electron, I made a first attempt toward an unified treatment of the
electron and its neutrino. My purpose here is to discuss a second unification approach,
which has the virtue of being more conclusive, and closer to traditional schemes of particle
physics, than the former one.

The quantization of the Coulomb field of the electron undertaken in Reference (1)
is, in every regard, consistent with Dirac’s methodz. Dirac defines the physical electron
field, multiplying a bare fermion field by a unitary operator eieV* , which accounts for the
Coulomb field mode. Then, after differentiation of this opérator in the Kkinetic
Hamiltonian, he establishes a link between the form of the local interaction in Quantum
Electrodynamics, and the electric flux of the electror.

. A canonical method of flux quantization1’3 allows me to reobtain Dirac's results.

I also bropose a manner of introducing the magnetic field of the electron, by means
of another flux operator factor, which I call the Ampére model.

The explicit differentiation of the Ampére mode in the kinetic Hamiltonian,
generates a second type of interaction, showing the mathematical structure of the weak
interactions. And, I explore this result to build up a theory of the weak interaction
vertices.

The proposed theory is then compared with the theory of Weinberg_—Salam455.

Let ¢]:(i) be a neutral Fermi field, that commutes with the electromagnetic field.
The electron field is then constructed by dressing the field ¢, with the Coulomb and the

Ampére modes

v = deyatw o )




The opera.tor.factors [f and AT accounts respectively for the electric and'mégnetic fields
produced by the electron.
Being A the vector potential, the Coulomb mode is the following unitary operator,
-4
with  fp(%) = J. A-qt | (2

f@) = expic a,(8)
' iy

wheré T' is an open line ending at the point % .

And if, 28 shownin figure 1, S is a closed surface, and gﬁE 3. is the electric flux

flowing through it, then the Coulomb mode shall be an eigenstate of bg g with.

eigenvalue e, whenever ¥ isinside S, or eigenvalue zero, if % is outside.

Figure 1 Closed surface S, andopenline T'. Appropriate topology for quantization of
the Coulomb flux. S .

"To define-the Ampére mode, one has to deal with the auxiliary field T, which is

P

such that- ‘E='-F" «T and T =

The T field is not independent from the A field. Rather, they correspond to two
different representa,tions. of the electromagretic field. I take both auxiliary fields to be
cornplete, and assume the simuitaneous validity of the local commutators beiow1

[E@A®] = 16;889)  and [BEOTO)| = -1580 . ©
Let T, and T, be two closed lines, encircling the open surfaces S, and §,, with

the orientation and topology shown in figure 2. If 'q&B is the magnetic flux accross Sy,

and ¢, the electric flux through S,, then, the flux commutation law [Ppodpi =1,

must holdg. And this flux commutator is simultaneously consistent with the two local -

commutators of Eq. (3). Then, the T field is a complete field, which can be explicitly

introduced in Quantum Electrodynamics, whenever it is needed.

Figure 2: Closed lines T’} and '1"2 . Appropriate topology for quantization of the magnetic
flux.

Now take 30 to be a neutral current, formed with every neutral field which may
receive flux. 30 includes alsc the current :gbg % 1y , associated with the conserved
lepton number of the electron/electron—-neutrino system. And define D asthe integral of

J, over the system's volume: fdsﬁ Jq -



[}

The Ampére mode is then introduced by means of the following functional of the T

ﬁeldl:
o %
'Af(i)-: exp ie nF(JI) T with nr(i) = f (DxT)-de
: . P .

One notices that
At s aw = vw ey

where: the. a;  are the Dirac matrices, and a.T(i,ﬁ) is the operator

%
,.J(gﬁ),_: expie fp(%,¥). ;  with. ip(d) = f @ = T)-a?
o _ T

" Given & positive energy test function f(%) , the one—electron state,-

e = [edmuwie - [edododoumes

[OF

{5)

{6)

(7)

S L . 1
tias‘the register of the electric and magnetic. fields of the electron: One can also formally

verify. the Biot—Savart formula

j9-2]°

kB k> = f B T R 3, = f}:'afk L

and theCoulomb ia.yv, o

@)l = f o) & ﬁ—)_iyj? it g = g

(8a}

At first sight, it seems that the two formulae above are contradictory with the

principle of local causality, since they refer to the instantaneous fields produced by the

" particle. The contradiction is however only apparent, because each formula refers to a

single mode of the clectromagnetic field, whereas the question of caﬁsality can cnly be
posed after éonsidering the complete field. . - _

We will verify that in factg, differentiation of the flux operator factors of the
electron ﬁeld, in the Hamiltoﬁian kinetic term, generates local Euteractiop, involving the
complete electromagnetic field. . ‘

The field ¢ = CApl shall be taken to be the neutrino field. And, in order to
couple the electron and the neﬁtrino,. one has to construet a cha;rged boson field W*
deéigned to absorb the electron flux in the interaction vertices.

Then, I first define the complex field ?, as a complex combination of the real - -
fields A and T,

A-il) ; and ¥* = (A+i1) , (9)

1
V2
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observing that, the Hamiltonian of the transverse compoenents of the electzomagnetic field,
%(f-?z%-ﬁ?), can be rewritten with the transverse parts of the Y and Y* fields, in the

form -

T=73 {fi;f+(§x?~)(€rxi‘()] . - (10)

The ¥ field, although complex, is still a neutral field, since it has.no-flux factors.

So; dressing the ¥ field with the flux factors, I define the vector field W* as

-+

W= A, ad Wt = Al (11)




-+

By iﬁverting these relations, and replacing A+[fﬁ/‘_ for Y in the Hamiltonian of

Eqg. (10), or in the correspondiag Lagrangia.h, one gets the w*

dynamics. And thag
dynamics has some properties of the gauge fields dynamics, as for example in the fact that
the W* Hamiltonian will also acquire quartic terms, coming from the derivation of the
flux operators.

One can verify the following: rglations between vacuum expectation values of
products of fields at different times:

%Ti(xt) Tj(xg)> . - <Ayx) Aj(x2)> , and _ (12a}

_<Ti(x1) Aj(xg)>

The inversion of sign in the last expression is due to the relation <B i(xt) A{xy)>=
= <Ey(xy) T;(xg)>, which is just what cne gets by deriving Eq. (12b} with respect to ¢, .

In order that a bosor field be capable of receiving flux factors, it must be possible to
construct conserved currents with its components. So, that boson field must be complex.

Now- I discuss a. theory of the weak . interaction vertices, based upon flux
quaﬁtization.

The problem is addressed. from the view point of the Hamiltonian, and I consider
that it should always be possible to write an associated Lagrangian, explicitly showing
every symmetry of the problem, in particular the Loreﬁtz invariance.

Differently from the analysis of Reference (1), my criterion here is that the
interaction should be generated by the differentiation of the flux modes attached to the
fermion field, in the Hamiltonian kinetic term. This criterion is consistent with Dirac's

workz.

— <Al Tilxp)> ' ()

To illustrate Dirac's procedure we consider first the simpler case, when the electron
has the Coulomb mode, but not ¢he Ampére mode: 9, = . We notice that, the
differentiation of the Coulomb mode in the gradient term of the Hamiltonian, generates the

local interaction of Quantum Electrodynamics, in the gauge Ay=0
j d(—i) ol 2y, = f 3t [—i I AR o { %] . (13)

In scattering theory, the motion of the electron is given by the i, field dynanﬁcs, and not
by the ¢, field 0ne2.

If one begins with- 4, in the gradient term of the Hamiltonian in Eq. (13), then it
shows up no interaction term, since ¥, commutes with the electromagnetic field. This
means that the particle associated with ‘% , which is an electron w:thout ﬂux, does not
interact with the A field”. '

The next step is to include the Ampére mode. So, I define the field 1}0 divided into

two sets of modes, taking f{;o = ¢E+ tlfN , where

A .
’/’E = 2 akEka , cand- ¢N- = 21 akﬁka‘ C e (14)
\E . kN'- ) - o .

The set {Ek }e{f } isa complete set of modes, and kg # ky o 5o that meither ¢, or
E N ‘ ‘ ne

thy» are complete fields.

The specification of the set, {fk } or {fk }, which a given mode £ belongs to,

will depend on the specific process one is studying. Those modes forming ;bE Wlll descrlbe
the motion of the electrons, whereas the ones making up ng will account for the motion of

the neutnnos




With the purpose of treating together the interactions -electron—electron,

neutrino—neutrino and electron—neutrino, I first define a second auxiliary feld #:

. sy ¢ BT ¢ Y IS L (15)
adding that:.- S . . '

7 (i) The flux dilference between a state annihilated by 4, € al? . and another one
‘annihilsted by wN aA™Y 2.', isjust the same flux difference between the electron and the
neutring, that is calt.

(ij).Th‘a.nks to the flux factt.)rs;' the completeness of the ¢ field is-only approximate,
{ro'o)} = axn+o@ - (16)

Thig however ‘means no -difficulty, since here I am concerned with the construction of a
Hamiltonian up: to order O{e}, which is already sufficient for calculation of the main
processes:in: the tree_a.bproxima.tion. _

(iii) The construction of the 4 field, in Eq. (15), is a particularization, which leads
£0- a._val.ue:.of 30° for _thg angle Bw. If GW differs from that value, one can always
redefine the ‘¢ -field in & suitable manner, and keeping the same difference in ﬂux between
the election and the neutrino. ' '

Then, I suppose that the dynamics of the electron—neutrino system is determined by

the "free" Hamiltonian of the ¢ field:
H = fdsfc [:,off(wm-\?) ¢+mw} . (17)

And. again, I get the poiﬁt interaction among the particles, by explicitly

differentiating the flux modes attached to %, in the gradient term of H.

10

The fiux operator factors in the definition.of ¥, are given by

A2 = ap?}@f (#xT)-dt , and o (18)

el = e;p{—iefﬁ-d?—;—f’fﬁ(axi‘}-dﬁ} . | (19)

After differentiation, it follows

~ia V(@AY = ATV i P a-iﬂ;a ahi+o@ , T 0

—12a-V(CAYY = (A —end—eipat-iad)+0Ed . (1)
These equations have been obtained with the help of the relation & x & = 2iv%% .

Finally, combining Egs. (17), (20} and {21), and from the definition of the w*

field, in Eq. (11), one gets the local coupling between the particles

H = wewéa-?\wE—iewEf&TwE , (22)
&, =ie w;[l # T $y » and ‘ {23)
H = _Sé w;(l—'ys) W g the . Y

To obtain the Hamiltonian density of Eq.(24), one must supﬁose. thé.i; only
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teft~handed components of the original field % should take part in the composition of
%y thatis (_1+75)¢N =0.
In’ ‘gvé one tecognizes the electron—neutring charged current coupling of the weak

interactions, with the angle Uw =30°.

K is; in’ turn, a pseudo—vector coupling, not symmetrical under charge

v
conjugation; and the same is true for the second term of a?e o The pseudo—vector nature

of these interactions, is consistent with the fact that the T field is formally a

pseudo-vector, since T =15 .
The breaking of charge conjugation is related to the existence of two different
representations for the fermion field. The auxiliary field ¢ has been defined as a mixture

of representations.. Recall in this regard that each one of the sets of modes, {f } or
{fk } .. i separately incomplete. And the interaction may transfer a particle from a

subspace-to the other, or from & representation to the other. That gives rise to a geﬁtle
kind of instability, which explains the formal non—hermiticity of the Hamiltonian.

The relation giver in Eq. (12b) means that, in scattering process, such as for
instance ew-ew, there is no contribution from the mixed propagator <A;(x,) T;(x,)> .

Considering the structure of the one-¢lectron state,
fdaxwl Bl = fd‘”’it pleal o> | (25)

'one observes that, in scatiering theory, and only there, what matters is the motion of the
-anxiliary. fisld ajﬁ (or wz) which describes the particle nucleous where the Couiomb mode
condensates around,

: - However, -as far as the motion of the 1}% field is concerned, the important states are

those with the form

f eyl Tl . ()

Thus, the flux factors belonging to the electron field WZ , must be absorbed by the

very wave function fp » leading to the formation of the wave function f,:
T2 r 1/2
C'(a') fp—fp. »oor fy = Cal"f, . (27)

That is why, the awdliary field ¢ is defined with a term 9, CAY?. . The
interpretation is that the flux factor cal’? i dressing with flux the wave functions £,
contained_ in a'E.

In Weinberg—Salam theory4’5, and in the standard model, the electron and the
neutrine are coupled to the neutra_.l boson Z%, with a pseudo—vector coupling. Then, one
should identify the neutral pseudo—vector fietd T , a8 being the Z, particle field.

A fair agreement between the present theory and Weinberg—Salam theory, could be
attained, in the predictions of elastic cross—sections, by taking Bw =27°,  and by
introducing the electron and the neutrino fields as z/)ECAI/ % and wNA"I/ - , with
ex0.05. This modification must be followed by an appropriate alteration in the
definition of the Y—field, where the mixing a,ngiel between A and T, should. be slightly

lowered.

|
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