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- CORRELATION DIMENSION OF DENSITY FLUCTUATIONS IN TBR-1

" C.P.C. Prado and N, Fiedler-Ferrari

Instituto de Fisica, Universidade de Sac Paulo
Caixa Postal 20516 - 01498 Sio Paulo - SP - BRAZIL.

ABSTRACI‘ - We report results for the correlation dimension associated with density
fluctuations measured by Langmuir probes placed in the scrape-off layer of Tokamak
TBR-L. From a judicious use of the Grassberger-Procaccia algorithm we show that there is
a low dimension behavior in most of the analyzed sipnals. We also review the literature and

compare our findings with previous results.

1. INTRODUCTION

The theory of dynamical systems has provided new tools to analyze chaotic time
signals including the generalized dimensions, -the f{a) singularity spectrum, the spectrum of
Lyapunov exponents and the Kolmogorov entropy. According to these analyses, the long-
time behavior of chaotic nonlinear dissipative dynamical systems can often be associated
with an attractor characterized by its fractal or multifractal measures. Given an
experimental time series, and assuming the existence of an associated strange attractor, the
corzelation dimension ¥ provides an estimate of the complexity of the turbulence. In other
words, gives an idea of the minimum number of degrees of freedom necessary to describe
the dynamics of the system.

The correlation dimension ¥ can be computed from ar experimental time series

using an ajgorithm develobed by Grassberger and Procaccia (1983). In this paper we use

the Grassberger-Procaccia algorithm (GPA), with a single time-series reconstruction based
on the Takens theorem (Tﬁkens. 1980), to analyze density fluctuations measured by
Langmuir probes placed in the scrape-off layer of the small size Tokamak TBR-L

There are several applications of the GF_'A' to _Tokamak fluctuating - signals.
However these sig)ﬂs have been obtained in different machines using different .
diagnostics. Several physicat variabies, e.g., magnetic ﬁeld fluctuations (Arter and Edwards,
1985; Coté et ak., 1985; Battiston and Asdex-Team, 1986; Sawley et al,, 1986), sawtooth
activity (Coté et al, 1985), and density fluctuations (Coté et al., 1985; Sawley et al,, 1986;
Zweben et al., 1987; Barkley et ai., 1988), have been analysed by the GPA. In general, it has
not been possible to draw a definitive or unique picture from these results.In particular,
recent GPA calculations by Barkley et ab. {(1988), using TFR data , and a similar analysis by
Stréhlein and Piel (1989), in 2 magnetized plasma column, have shown the importance of
an appropriate choice of the sampling frequency to reveal structure. within turbulence. In
another paper, Zweben et al. (1987), considering TFTR data, employed .;1 local slope
analysis to show the non existence of a region of linear scaling. As a éonsequence,_ this
analysis does not support the possibility of a low dimensio_nal behavior.

In this paper we concenitrate on some 'éspems evoked by the prewiéus publications..
From a careful analysis in tenﬁs of local slopes, as done be Zweben et al. {1987), we were- .
able to find low dimensional behavior in the TBR-1 data. We have used a small sampling
frequency with respect to the coherence time of the signal, but considerably bigger than the
frequency used by Barkley et. al. (1988).

This paper is organ_nized as follows. The GPA is shortly summarized in Section 2. In

Section 3 we review previous works on the subject. A short description of the experimental

conditions and the experimental data from the TBR-1 are given in Section 4. In-Section 5

we present our results. Finally , in Section 6 we compare our finds with previous results

from the literature.




2, DESCRIPTION OF THE ALGORITHM

The GPA is shortly summarized in the following. Details can be found in the

original paper by Grassberger and Procaceia { 1983). Given the single time series
xo=xt) , i=14,2.,N, (1)

where the x; are N regularly spaced measurements in time, we reconstruct (Takens, 1980) a

set.of m-dimensional vectors

_(i{ = (x(t,), x(ti+pj, e X (m-l)p)) , 2)

where m is the embeddi:ig dimension. and p is a fixed time lag which is usually of the order

of magnitude of the auto-correlation time, 7 o associated with the time series. For each

value of m we calculate the correlation iritegral

N
CL) = lim N 3 4(L-|q-gh) . ©)
N i#i=1 ’ :

where 8 is the Heaviside step function, dij. = |g;- ci; | is the Euclidean norm of the vector
Ei - E;: , and N is the total number of 'experirﬁental points (N has to be taken sufficiently
large to give good statistics). . . |

”fhe corrélﬁtidn in:tegral (3) evaluates the fraction of distances smaller than L. In. a
plot of log C(L) x log 1, fér. a given value of the embedding dimension m, the data should
be on a straight line. The slopes of such lines, for increasing values of m, converge to the
correlation dimension v. .

The use of the GPA demands some cautions {Atten and Malraison, 1989). For

experimental data, N is obviously finite. As a consequence, for high values of m, when a

large number of po_inté-is needed to carrectly represent the structure of the.attré‘u':.tot, Ol}.l_ :_ :
may lose the ij.n.ea:. scaling of log C{L} x log L..Many previous results' show: that -e_;léhldat-:a_,j‘g_
set has a different behavior. A judicious analysis of the log C(L) x iog L plots _hés.io be
made to evaluate if there is indeed a linear scaling region (that is; if the statistics given by .’
the experimental data is good erough), and, if sv; up to which embedding dirension such
an analysis n_lakes sense. In fact, it is known that we need m> ¥ or, more strongly,
m2 2r+1 (Takens, 1980; Mane, 1981; Eckmann and .Ruel.le, 1985), to guarantee
saturation. Thus, if m; is the final embedding dimension for which no saturation on 1Ih'e..
slopes of log C(L) x log L. is observed, the associated correlation dimension v, if it 'eiist_s, is
higher than or equal to m, Another caution is related with the chioice of an appropriate
sampling frequency to measure the experimental data. High sampling frequenciés may lsad
to erroneouys conclusions, producing spurious correlation dimensions, ¥ = 1, or‘
introducing ;m inflexion point in the log C(L) x log L curves. These effects are auributed
to the dominance of correlations along the trajectory (Theiler, 1986; Sawley &t al, _198_7.;‘

Strhlein and Piel, 1989).

3. PREVIOUS RESULTS

As we consider density fluctuations, our emphasis will be on thé‘preﬁiéus; results for
this variable. However, we have collected in the Appendix all the avai.lable-' results, to our .
knowledge, refated to applications of the GPA to' fluctuations in Tokamaks, ina reversed
field pinch '(Gee and Taylor, 1985), and to non-linear coupling of ion-sound waves and dﬁfi
waves in 2 magnetized plasma column (Stfé}hiein and Piel, 1989). -

Density fluctuations on the TOSCA device (Coté et al. 1985) were measured using
CO, scattering and double Langmuir prob.es. The data from CQ, scattering hHave not ..
shown any .saturation in the slope up to m=7, which seems to indicate a high value for the _

dimensicnality or a noisy behavior. The data from Langmuir probes have shown weak signs




of saturation for the dimensionality, indicating ¥ = 5 for m=8. No detai._!s were given
concerning the frequency used to sample the experimental signals.

Density fluctuations were also analyzed on the TCA (Sawley et al, 1986).
Fluctuations in the ion saturation current, and floating poten.tial in triple Langmuir probes,
as well as TCA line-integrated density fluctuations (obtained using an imaging diagnostic
based on the phase contrast method) have been studied. The sipnals were sampled at a
frequency of 2 MHz with a total number of points N=8192. The characteristic time of
these fluctuations was found to be about 2-5 us. A shortest sampling time (sampling
frequency of 32 MHz) was also used; in this case the number of available data points was
too restrict to yield any finite region of I, for which the slope of log C(L) x log L. becomes
constant. These-authors' have not ‘found any evidence of saturation in the slope up to
m=1G.

Floating potential fluctuations in Langmuir probes were analyzed in TFTR
(Zweben et al, 1987). Data have been obtained using discharges with neutral beam
injection, resulting in broadband turbulent fluctuations in the range 10 — 2006 kHz. Except
‘for small regions of linear scaling around one, ¥ = 1, which were interpreted by Zweben et
al. (1987} as simpie periodic modes preseat in the turbulence, no consistent scaling was
found at intermediate dimensions. The authors suggested that previous data which show a
fow dimensionatity should be revisited using a more careful analysis in terms of local slopes
as they did. No details were given concerning sampling frequencies.

Finally, in TFR {Barkley et al., 1988} there are results for the chord average plasma
density fluctuations, obtainéd using CO, laser scattering signals measured at wavenumbers

k, =6 em*tand k , =18 em L. Two different sampling frequencies (£,) were employed and

three signals analyzed. For f = 100 MHz they found, in two of the signals, a low .

correlation exponent whose value, as the authors claim, seems to depend on the
wavenumber of the sampled turbulence (¥ = 2.6 + 02 at 6 cm™ and ¥V = 32+ 02 at

18 cmt). The third signal was recorded with a sampling frequency f. = 5 MHz and no

saturation was observed. In view of these results, and comparing them with those obtained

by Coté et al. (1985) and -Sawley et al. (1986), they conclude that, to reveal the structure
within turbulence, 'fhe s;ampling time should be sufficiently small with respect to the
coherence time of the signat.

If we define the ratio TR = TC/TS we can see that in TFR 7_ = 1.5 gs and low
dimensionality was obtained with T, = 0.01 s, that is, with a time ratio Tp = 150; when a
sampling time 7, = 0.2 ps was used, with a corresponding Tz = 7.5, no saturation in the
slope was observed. In TCA (Sawley et al, 1986) 7, = 2~ 5 gisand 7, = 0.5 s, giving
Tg = 4-10; for this time ratio, also no evidence of low dimensionality was found. In the

same device, for 7 = Q.(}S pis, that is T = 67 — 167, no region of linear scaling was found.

4. EXPERIMENTAL DATA

TBR-1 is a small circular cross-séction Tokamak with a minor radius a = 0.11 m

_and a major radius R = 0.30 m, operating with ohmically heated plasmas with the following

typical parameters: toroidal magnetic field B = (4 — 4.5) kG; plasma current {4 — 10) kA,
electron density (2 — 10)E+12 em™ and electron temperature on axis Te(0) = 100 eV.

The data analyzed in this paper (de 84 et al, 1987) consist of local fluctuating
signals of the ion saturation-cﬁrrent in triple Langmuir probes placed in the sr-:rape-off
layer of TBR-1. The {.neasured signals are proportional to the density broadband
fluctuations in the edge of the plasma. The ass_ociated frequency spectra are wide, covering
the range 10 kHz — 500 kHz. For frequencies f < 100 kHz they are flat in average. Beyond
100 kKHz the amplitudes are decaying functions of the frequency with a power law behavior -
£°% with & = 2.0 - 3.5.

The set of four signals we analyze (Fig. 1) represent typical daia chesen among the
available experimental results. The total number of data po;’nts ranges from 11,600 to
15,000. We have a total sampling time varying from 2.90¢ ms to 3.75 ms while the plasma

current is nearly constant. The auto-correlation times associated with the signals range




from 05 jts to'6.4 gs. In Table I we specify, for each signal, the values of the relevant

parameters.

Fig. I around here

Table I around here

_ The signals have all been sampled at frequency f, = 4 MHz, with a sampling time

= 0.25 s and 2 time ratio T, varying between 2 and 26. These values correspond to
twice the sampling time employed in TCA by Sawley et al. (1986) and not very different in
comparisonr with one of the sampling times used by Barkley et al. (1988) which did not

show low dimensionality.

S.RESULTS OF THE ANALYSIS

As already mentioned, we have applied the GPA to four representative time series.
The m-dimensional vectors (Eq. 2) were reconstructed with a time lag comparable to the
auto-correlation time, 7, which n..leans a time step of 20 sampling intervals in signals
JA1001, DZ1045 and JA1052, aad of 2 sampling intervals in signal DZ1049 which has a
muc.h shorter 7, (see Table I). The sensitivity of the final resuits to the choice of the time
step was z_al:ﬁost none. Wé obtained essentially the same results for time steps varying from
5to 50 (JA1001, DZ1045 and JA1052 } and from 2 to 20 {DZ1049). Table II illustrates this
fact. We present results for two different choices of the time step for signal DZ1049. The
differehces are all within the computed error and, what is most important , the qualitative

behavior (no convergence up to m=10 in this case) is the same. Similar results were

* obtained for all other analyzed s1gnais A step chonce far from " 7. seemed only to reduce the

linear scalmg regmn in the log C(L) X log L curves.

Table IT around here

The corﬁputer program, which had already been tested (Prado and Fiedter-Ferrari,
1989) takes advantage of the floating-point repreéentation of numbers used in some
computers. The drastic reduction in CPU time -has allowed the classification of all
M(M-1)/2 distances between the M reconstructed vectors for each embedding dimension
m. We héve preferred to adopt this ast procedure as there seems to be some do.ubts about
the efficiency of the simplified procedru.re (Malraison et al.,, 1983 and Atten et al, 1986)

used in many previous works. This simplified procedure consists in the computation of the

- distances between the M reconstructed vectors and a randomly chosen set.of a few

reference vectors. This procedure also decreases processing time. but:seems to reduce the

useful range where we find 2 linear scaling in the log C(L) x log L. curves. (Parker and-

-Chua, 1987).

The program was run in a VAX-ll/?QD and the resulting curves of logy C(L)x
log, L/L,, (L, being an arbitrary constant) are plotted in Fig..2. Lack of statistics affected
curves for dimensions higher than eight, except for signal DZ1049 for which we v.vere able
to compute the correlation integrai up to embedding dimension 10, and signai. JA1052 for
which this. effect was observed oqu for m higher than 9. This lack of statistics produces a

blurring or drastically reduces the region of linear scaling.

Fig. 2 around here

The linear scaling region was localized by a local slope analysis "The slope of a
straight line of every three points of logy; C(L) x log, L/L, curves was calculateci and
plotted as a function of the middle pomt (see Fig3). From the pJ.CILll'eS it is clear the

existence of three different regions. Regmn I, corresponding to the smallest vaiues of L,



and located to the left of the first vertical dashed line in Figs. 2 and 3, is contaminated by
lack of statistics. Region [II, corresponding to the largest values of L and Iocated to: the
right of the second dashed line, shows a constant decrease in the value of the slope, due to
the fact that the hyper spheres associated with these large values of L cover almost all the
‘ attractor. In region IT, between the-vertical dashed lines, we can see that the slope osciliates
about an average constant value. These ascillations may be either intrinsic (Smith, 1988;
Ramsey and Yuan; 1989), caused by the lacunarity of the attractor, or caused by the limited
amount of data. We consider region I and fit a straight line taking into account all the
points in this region for each embedding dimension m. For sure there is some arbitrariness
in the choice of the data points belonging to region IL If we consider one extra point, or
remove one point, in one of the extremitie-s of the chosen region the value of the slope will
"change a bit, usually more than the error given by the linear regression methods. We used
this information to evaluate what we have considered a realistic error bar to our results, as

described in the next paragraph.

Fig: 3 around here

In order to evaluate the error we calculate the slope of points in region II, as weil
as the sldpe of points in four or {ive other slightly di.fferent regions obtained by the
inclusion or the exclusion of one or two points in the extremities. The final result was the
average value between the smallest and the biggest slope. Half of the difference between
these values has been adopted as the error. A typical result of this procedure is presented
in Table III. As can be seen, the variations in slope due to a particular choice of the linear
regression region are almost within the linear regression standard errors. Hence,the final
results are not significantly affected by this choice. However, the final errors are about
twice -the ‘errors obtained previously and are more realistic once they include the

uncertainness in finding exactly which data-points do belong to the linear scaling range.

Table I around here

10

Final values for ¥ were obtained as an average of slope values of embedding -

dimensions ranging from 5 to 8 for signal JA1001, 5 to 7 for signal DZ1045, and 6:to'9 for:
signal JA1052. Final results are plotted in Fig. 4 and show an obviously different behavior
between signals JA1001, DZ1045, ‘and FA1052, for which the slopes co.nverged. to
v=331:01v - 33101, and ¥ = 4.4 £ 0.2, respectively, and signal DZ1049, for which
there was no convergence up to embedding dimension 10 (which means v > 10). These
results are also presented in Table [V. This Table includes results obtained for err.lbedding
dimensions 9 and 10 (convergent signals) and 11, 12 and 15 {(non convergent signals),
although they were not considered fo estimate the final value of v, except for m=9 in signal

JA1052.

Fig. 4 around here

Table IV around here

For all signals in the convergent group the error increases and the slope decreases

for m=% and 10. However, from a careful analysis of the curves of the local slope versus .

log, L/L,, for these embedding dimensions, it is clear there is no linear scaling, Linear
scaling was already not good for m=8 in signal DZ1045 and was good up to m=9 in
JAL052,

For signal DZ1049 we have obtained good linear scaling up to m=10. For higher

embedding dimensions the linear scaling region did not disappear, as in the previous case,
but has been strongly reduced. The values presented in Table IV for m = 11, 12 and 13

refereed to the slopes of these narrower intervals and suggest 2 non convergent béhavior

up to embedding dimension 15. For those higher embedding dimensions, if we consider the




whole range of L we see that the slopes stop growing and simulate a false convergence,
This emphasizes the importance of a judicious choice of the linear scaling range in the

[og C(L) x log L curves,

6. DISCUSSION AND CONCLUSIONS

The Grassberger-Procaccia algorithm was applied to density broadband fluctuation
signals measured by Langmuir probes placed in the scrape-off layer of the Tokamak
TBR-1. ' '

Experimental signals were recorded. using a 4 MHz acquisition system. Four
representative signals have been aﬁalyaed. Three signals showed a low diménsional
behavior. Two of them with the same correlation dimension, ¥ = 3.3 £ 0.1, and another
with 2 somewhat higher dimensionality v = 4.4 + 0.2. For 2 fourth signal, which has the
shortest auto-correlation time, the slopes did not converge up to embeddirig dimension
m=10, indicating either a higher dimensionality, ¥ » 10, or a noisy behavior.

A careful analysis in-terms of local slopes has allowed the identification of domains

.of the parameter L where the log, C(L) x log, L/L, curves display a linear scaling. We
are:thus able to unambiguously calculate the slopes, unlike in the case of the TFTR results
{Zweben et al, 1987) where this linear scaling was not found.

Although our results are not inconsistent with those obtained in TFR, (Barkley et
al, 1988), especially with respect to the influence of the sampling frequencies used to
record the experimentat data, some remarks should be made. Let us compare the values of
the time ratio berween the auto-correlation time and the sampling time, Ty in the cases of
‘TFR: and TBR-1. In TFR no saturation was observed for Tg = 7.5 {which is consistent with
Tp=4- 10 in TCA for which no saturation was obséwed) and low dimensionality was
found for 1 = 150 (élthough no linear scaling has been found in TCA for 1y = 67— 167).

Our results show low dimensionality for 7, = 20 ~ 26 and no saturation for Tp =2

12

Our results generally agree with those obtained in TFR. In fact, the sampling time
éhould be sufficiently small with respect to the coherence time of th_le. signal (T, >>1).
We did not observe saturation of the derivative in signal DZ1049; which has a small time
ratio, Ty = 2. However, our results, which show low dimensionality; indicate that saturation
can be observed with time ratios considerably smaller than those used in TFR (7 = 150 in
TFR, Ty = 20--26 in TBR-1}. As a final remark, it should be stressed. that this sort of
reasoning invoiving sampling frequencies does not exclude the possibility that a particular
signal has a noisy behavior even if recorded with a high frequency acquisition system,

Results for the correlation dimension of density fluctuations in TBR-1 Tokamak
presented in this paper, together with. those obtained in TOSCA.and TFR devices,
reinforce the idea that low dimensionality can be found in these signals indicating the
possibility of a small number of fundamental processes governing the turbulehc_e. On the
other hand, some signals continue to show a higher dimensionality. Additional efforts
should be done in order to answer some questions: (a) Are these higher difmensionalities
intrinsic to the signals, indicating 2 noisy behavior?; (b) Are they consequences of external
factors as sampling frequencies, electrenic noise added to the experimental data or filtering
process?; (c) If external factors are unimportant and high dimensionalities are intrinsic,
why some signals are "simpler” than others? Conéeming this last qﬁestion we beﬁev_e that
this picture, with a changing behavior depending on the signal, is consistent with the fact
that different signéls, assocjated with the same physical variable, .may actua].iy have
different histories invelving more or less complex processes. These resuits either in low
dimensionality with a picture of turbulence related to a small number q'f degrees of
freedom, or in high dimensionality manifested in the non-saturation at low emi:)edding

dimensions.
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- Slopes of log C(L} x log L. for two different choices of the time step for signal DZ1049. The auto-correlation time

Table I

corresponds to step 2.

2.87%0.

Range .
I 2 3 4 "5 Final Result|.
m -
7 2 1.71+0.0631.70+0.05}1.63+0.04]1.69+0.05{1.75+0.06 -I.IQ:O_II'
3 2.36+0.05|2.34:0.052.28+0.03 2.3310.05 2.40£0:06) 2.3640.11
4 2.86+0.04(2.860.03(2.8120.04|2.83:0.04{2.89+0.04 2;8510;08
5 3.27:0.03 3.27:£0.03 3.,25:0.04 3.25:£0.03(3.2910.04( 3.2710.06
] §3.43+0.03|3.41£0.03(3.43£0.04(3.44£0.03(3.42+0.03| 3.4310.05
7 3.4010.04(3.37£0.043.40£0.05 3.4410;04 3.3740.04] 3.4110.08
8 3.24+0.06(3.2120.05[3.25+0.06{3.30+0-.06|3.19t0.05} 3.2510.11
9 3.02+0.06|3.01+0.06{3.03+0.083.10£0.07}2.9610.06} 3.04:0.14
10 2.860.06 05{2.830.07|2.930.07}2:51+0.06 '2.88:0.13 .

Table IIT - Typical oscillations in the values of the slopg due to the'pzirﬁcular chbic;_es of the

linear regression region. - Different ranges correspond to a basic region in L.

Shightly different regions are obtained by inclusion or exclusion of one or two

points in the extremities. The final slope is the average value between the smallest

and the biggest slopes. Results are for signal: JA1001.




Embedding Stope

Dimension JAL00% DZ1045 JAL052 DZ1049
2 1.70+0.1% 1.84:0.08 1.59+0.09 1.89£0.20
3 2.3610.11 2.5810.08 2.4010.14 2.73:0.18
4 2.8510.08 3.0740.05 3.17:0.14 3.560.13
5 3.2710.06 *| 3.3410.03 *| 3.8310.I3 4.4010.17
6 3.4310.0% *| 3.36+0.10 *| 4.3420.08 *| 5.2810.21
7 3.41:0.08 *| 3.20£0.13 *| 4.52+0.05 *| 6.1740.24
B 3.25:0.11 *| 3.052£0.10 | 4.49:0.17 *| 7.00:0.23
9 3.04£0.14 2.93+0.08 4.25+0.25 *| 7.85:0.32
10 2.8820.13 2.82:0.11 3.9410.26 8.61x0.27
11 - - - 9.19+0.37
12 = - - 9.67+0.23
15 - - - 10.6210.41

'i'able IV - Final siope values for each analyzed signal. Values marked with an asterisk

were used to compute the correlation dimension. Results for sipnal DZ.1049
for embedding dimensions m = 11, 12 and 15 were obtained in narrower

regions of linear scaling.
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