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1 Introduction.

FEuclidean lattice field thecries are candidates for approximate models of
particle physics, The particle aspects of these models, however, are usually
analysed in & rather indirect way. One first considers the lattice model
as an approximation to a continuum theory; by the Osterwalder-Schrader
Theorem [9,10], the continuum theory can be analytically extended to a
Minkowski space quantum feld theory. Then, provided there are single
particle states, one finds by the methods of the general theory of quantized
fields the corresponding incoming and outgoing multiparticle states (Haag-
Ruelle theory [1,2,3]). According to Hepp {4,5], the scattering amplitudes
can be written in terms of the time-ordered functions by the LSZ reduction
formulae [8}. In a last step the time ordered functions are approximated by
lattice quantities.

This indirect description of the particle content of Euclidean lattice field
theories has severe conceptual and practical problems which originate es-
sentially in the nonuniqueness of the lattice approximation of continuum
quantities. This becomes especially clear in theories with a trivial contin-
uum limit which one would like to use as effective theories up to some high
energy cutoff. The indirect particle interpretation described above does not
lead in a natural way to non-zero sca.ttermg amplitudes.

Fortunately, as well known, there is a quantum spin system wh:ch
is associated directly to the Euclidean lattice model by the transfer ma-
trix method, Moreover, in many cases these quantum spin systems have
particle-like excitations (see [11,15] and references therein). One may there-
fore hope that these models can be interpreted as models of interacting
quasiparticles. Actually Liischer has shown that, provided free outgoig and
incoming fields exist corresponding to these particles, and provided these
fields satisfy an LSZ-asymptotic condition with respect to some interacting
field, scattering amplitudes can be expressed in terms of Euclidean corre-
lation functions [13,14].

In this paper we prove that under very general conditions there are
states in the quantum spin model associated to an Euclidean lattice model
which can be interpreted as incoming, respectively outgoing multiparticle
states. An LSZ-type asymptotic condition could not be found but LSZ
reduction formulae were directly derived in [15],

The main difficulty which has to be overcome is the insufficient control
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on the locality properties of the real-time evolution of the quantum spin
system.
Typically, the transfer matrix is of the form

T = A2 B A3, (1)

whete A as well as B are sums of local operators. The Hamiltonian
H=-InT (2)

however, has in addition to the local term A 4 B contributions of multi-
ple commutators of arbitrary high degree which are in general localized in
large regions and therefore induce long range interactions. We show that
this difficulty is essentially restricted to the high energy range. The high
energy behavior of a lattice theory does not influence the formation of scat-
tering states; it is not to be considered to be relevant for an approximated
continuum theory.

The paper is organized as follows. In section 2 we formulate our assump-
tions (reflection positivity, exponential clustering of Euclidean correlations,
existence of single particle states) on the Euclidean lattice model and define
the associated quantum spin system. In section 3 we relate the real-time
correlation functions to the Eu-lidean correlation functions. As an inter-
mediate step we introduce a new type of correlation functions which we
call Chebishev transformed correlation functions. These functions are fi-
nite linear combinations of Euclidean correlation functions and permit a

rather direct representation of real-time correlation functions. In section

4 clustering properties of the quantum spin system are derived which for
observables with finite energy transfer are only slightly weaker than the
corresponding clustering properties in a continuum quantum field theory.
These results are then used to construct the scattering states by the meth-
ods of the Haag-Ruelle theory in section 5. The paper is largely based on
one of the authors thesis [15] where more details may be found, in particular
LSZ reduction formulae.

2 Euclidean Lattice Field Theory and the
Associated Quantum Spin System.

We consider a classical statistical system on the hypercubic lattice’ Z4+1,
d > 1. The variables of the model are attached to finite subsets of z
(i.e. sites, bonds, plaquettes, etc.), and the observables are complex valued
continuous bounded functions of finitely many of these variables. £(A)
for A C Z9+! denotes the set of observables depending only on variables
located in A; it is an abelian normed *-algebra with respect to pointwise
multiplication, complex conjugation and the supremum-norm {.||. Lattice
translations x shift the variables of the theory and induce automorphisms

7. of & = E{Z) such that
T (E(AY) = E(A+ ), (3)

and
Tz Yoz = Yoitaa: (4)

Lattice reflections with respect to some coordinate hyperplane
Bpai T o @] (Y =2 v g (@ = 20—zt )

for p = 0,...,d and a € }Z induce antilinear automorphisms 8, of £
such that 82 == id and

HH.G'YI = 7"H.¢{£]9H|ﬂ = _!:9“'“_':“_ (6)

The model is defined by the choice of a state {) on £, i.e. a normal-
ized, positive linear functional, typically the Gibbs state with respect to
some Hamiltonian, The state {.) is assumed to have the following three
properties: reflection positivity (A.1), this permits us to define an associ-
ated quantum spin system; exponential clustering {A.2}, so the associated
quantum system has a mass gap; and existence of one particle excitations
with an upper gap {A.3).

(A.1) Asswinption. Reflection pos:’hmiy [9,10]:

For fe E(Aye), Apa = {7 € ALENE a}'

Ooalf) ) 2 0. W




Relation (7) endowes £, := £(Aop) with & semidefinite scalar product.
By factoring over the space of null vectors one obtains a Hilbert space Hy
and a mapping f — f from £ onto a dense subspace of Hy. The translation
in O-direction induces a positive contraction in Hy, -

Tf =4,f (8)

where ¢g is the unit vector in 0-direction. T is the transfer matrix, Trans-
lations £ in the directions orthogonal to e; induce unitary operators

Ula)f = 7¢f. )
The Hamilton operator can be defined by

H=-InT (10)

provided T has no zero eigenvalue, a condition which is satisfied in typical
cases {7]. Since it refers to the high energy behavior (absence of states with
infinite energy) which will be eliminated from our considerations, we do not
need this assumption. In the general case we define the subspace of finite
energy

H=(KeT) {11)

and set
H=_WnTMH. (12)

In order to get a full quantum spin system we want to introduce local
observables. Let A™ = {z € Z, z° ¢ [0,n]}. Then each f e gar)
induces an operator 70(f) on T"H by

ARG TN (13)
It satisfies the estimate
=™ AT < Y- (14)

For n > 0 the operators 7*™(§) do not have an invariant domain of defini-
tion and therefore do not generate an algebra, ' .

Better behaved are the operators with finite energy transfer

A= [ahte, @) V@AW = SR (19)

where the Fourier transform & of h is smooth with compact support. A
maps the dense subspace

De=T"H (16)

of M into itself; moreover, A is closable, and also its adjoint maps D into
itself. : '

Let A denote the *-algebra which is generated by operators of the form
(15). We consider A as the algebra of almost local observables of the
quantum spin system. ‘The time evolution acts as an automorphism group
on A which is entire analytic, ie. t — (A} is entire analytic for each
A€ A

(A.2) Assumption. Ezponential clustering of Euclidean correlations:

There ezists m > 0 such that for all f, g€ £

{9} — (FHoM < const.e=™l=l, reZ™. am

This assumnption immediately.implies that @ =1 is the (up to a phase)
unique ground state vector of H and that

sp(HYC {0} U [m,00). . {18)

Using reflection positivity in all coordinate directions one obtains the fol-
lowing clustering properties of correlation functions: )

{ie-fid= ¥ J[{fier (19)

PeF{1,..n} [EP

where P{1,...,n} is the set of all partitions of {1,...,n} and where the
truncated functions (.;...; )r satisfy the bound [15]

s s fadrb < nm? IEI [ fill e (eiad (20)

i=1




for f; € E(A;), 4 =1,...,n, with

(A, .. ) = max {diameter(")(/\l SUALY - Ed:ameter(‘"(!\ )}

]
(21)
with
; diameter™(A) = sup{[z* ~ y*|, z, ¥, € A}. (22)

In section 4 we will show that assumption {A.2) also implies fast clus-
tering of the real-time correlation functions of the associated quantum spin
system. So the quantum spin system exibits a behavior similar to a system
with local interactions in spite of the presence of (at least in the moment) in
general uncontrollable long range interactions induced by the finite lattice
spacing in Euclidean time.

The third assumption concerns the existence of particle-like excitations.
We restrict ourselves to the case of uncharged particles, i.e. particle states
in-the Hilbert space  (the "vacuum Hilbert space”). Charged particles,
e.g., the charged particles in a ZZ({2) gauge Higgs model as constructed in
[11] will be treated in a forthcoming paper {19}

{A.3) Assumption. Ezislence of one particle ezcitations.

There is an f € £, F # 0, such that for ell g€ £ the Founer transform
of the truncated 2-point function

{g, 1:{Nr (23)

can be analytically ezlended for eack p € (—7, 7] to & meromorphic func-
« tion of py in the region Impy < O(p) with en iselaied simple pole i
po = tw(p). w(p) (the energy-momentum relation of the particle) is assumed
to be amooth and &(p) is supposed to be continuous, O(p) > w(p) 2 m. w
and & are independent of g. The velocitly I)(E) gradw(p) ts nowhere
constant, :

Assumption (A.3) implies that there is a closed subspace H*} of M {the
single particle subspace) on which the relation

(7 - @) I‘ﬁm =0 (24)

holds. Here £ is the momentwm operator, i.e. the infinitesimal generator
of spatial translations,

dBe U(z), 3p(£)'c (—n,!r]d (25)

and H{ is the closure of the linear space

Pl —

_{AQ A= f(h), supphnsp{H P)c {w(z), pE (—1r, ], }, ke D(R‘“’I)} .

(26)

3 From Lattice Schwinger Functions to Wight-
man Functions; the Chebishev Transform.

The Wightman functions, i.e. the real-time correlation functions of the
quantum spin system constructed in the preceding section, can in principle
be determined from the knowledge of the correlation functions of the Eu-
clidean lattice field theory. It is the aim of this section to find an efficient.
formula for this connection.

The basic idea is.to use the fact that continuous functions of the Hamil-
ton operator H with compact support can be uniformly approximated by
polynomials in e~ = T whose matrix elements are given in terms of Eu-
clidean correlation functions. Chebishev polynomials turn out to be espe-
cially convenient for this purpose. On the interval [—1,1]} they zre defined
by ‘ . .
T.(z) = cos(narccos )~ : 27 -
and provide an orthogonal basis on L? ([—1,1], (1- x’)“"’d:), (see for
instance ref. [17]). After using the relation T,(2y — 1) = T2, (y'/*), 0 <
¥ < 1, which follows from the identities Tn{Ty (7)) = Tnal(z) and Tofx) =
222 — 1, one gets ,

el
FHY =3 ba(f)Toale™™7y ST (28) -~
n=0 L.

with the expansion coefficient ‘

b.(f) = %{2 — &0} '/:!3 dof(—2lncos a)cos{2na). (29}

For smooth functions f with compact support b,(f) is strongly decréas--
ing in n. Since |To(z)| € 1 for z € [-1, 1] this implies norm convergence of
(28).




where the "Chebishev transformed functions” Cy, ;. are defined by

Now let f; € E(A™)), i =1,...,n. The "Wightman function”, formally
given by

Wh---h(tl! vy t“) = (Q, ﬂ(“l)(fl )el'(h—h)ﬂ' . ci(!n—ln—:)l‘i’w(nn)(f")ﬂ) (30) .

is a distribution on test functions k(ty,...,t,) with he D(R"), such that
for b e D{R),i=1,...,n

f dty - dtaWrogo(by ot )la(t) - Ra(ta) = (0, filha)-- - fa(ha)2)

(31)
with ] ]
filhi) = [ dthfe)e it £y, (32)
We use the fact that 7} f;)e="# is a bounded operator, and expand
ot
elrtind 3Bt — in)Tole” ). {33)
k=0

The expansion coefficients by(f — in) are distributions.in t on D{H),
: : /2 . : '
bt —in) = %(2 — 6;,,0}] dofcos @) 2" e MY oos (Dher) (34)
o

and the series converges in the sense of distributions. Inserting these ex-
pansions into the Wightman function yields terms which are finite linear
combinations. of Euclidean correlation functions

Wh---!n(th v \tn) =

Z bk: (t? -t - ifh) s bkn-l{tﬂ e tlﬂ“—l)c'.ﬁ ----- J’n(kh Ty kn—l)
ktyecakn—1
(35)

..... J’,,{kh vy kn—l) =
(. =™ (f)e ™ H T, (e7H72) . reT e ATy (T (£0)0) =

S aft - ai s aivem (F2) Vit tioy b botmas ()} (36)
- _

Cy,

with the o} denoting the coefficients of the polynomials
k ) .
Tl = 3 atad, : (37}
=0

The convergence of the expansion (35) may be seen as follows: since
[[Taue=FA)) € 1 and |7 f)e=#| < |ifil|, the Chebishev functions are
uniformly bounded in ky, ..., koo,

ICh.talBrse s kL S WA -1 £l (38)

Nowlet & € f’(R"). Then after smearing each term on the right hand side
of (35) with k we get coefficients

bh eennkn—1 (h; LT r"n—l) =

/df)_ s dtnbkl(tg - tl + inl} e b*"_'l (f" —dpy + iﬂn_l}h(fl, e atn)_ =

(2#)(;'")/2 'ﬁ {;21_.(2 _ Ek‘-,o)] X

=1
fdal - doeg_1 b .(21ncosa|,2!n (m) yeey2ln (%) v —2lncos an_l)
COs COS &2

X (cosa) ™™™ - (€08 )P cOB{2Kyary ) - - cOB(ZRny0noy ). (39)

Due to thie support and smoothness properties of k t.héy decrease faster
than any polynomial in k1,..., ka1, i.e. for cach N € IV there is some
¢ > 0 such that ' :

lbey,.kos (B30, )] S (14 D0 K. (40)
This yields the convergence of the right hand side of (35).

4 Clustering of Wightman Functions.

In view of the apparent nonlocality of the real time evolution it is not
obvious whether the Wightman functions introduced in the last section
exhibit any kind of clustering. Clustering is crucial for the construction of
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scattering states by the methods of Haag and Ruelle [1)-[5]. In this section
we show that the existence of a mass gap (assumption (A.2)) implies a weak
form of clustering of Wightman functions of fields with bounded energy
transfer, which turns out to be sufficient for the purposes of the scattering
theory.

Let fi € £([0,n;] x A;), A, finite subset of 27, n; > 0 and let &; € D(R),
1 < i € n. Consider the truncated Wightman function

Wis(gntiiiZmta)r = (R fig,(hun)ye o fag,(hne). ), (41)

where A, (1) = hi{t — ;) and f;p. = v5,(fi}, 1 £ i £ n, Our main result
concerns the decay properties of these truncated functions.

Theorem 1 Let Wy p(zi,t1; -2, 87 be defined es above. There is for
each ¢ € N a positive constant C,, depending on h and f, so that

(A2 ;
[ Waslznti-igmtadr IS C , 42
NACATRIE } | T (1+”I|I))(q-” ( )
where "tl[ = MAXICign-1 | tigr —t; I and "Il! = T'(Al + &3y An + In) i

defined in (21).

" Proof: The first step of the proof consists in expressing the truncated
Wightman functions (41} in terms of truncated Euclidean functions. We
use the fact that by Cartier’s formula [16]) truncated functions can be
written as expectations in a tensored theory, a fact which is familiar for the
two point function. Hence the arguments leading to relations (35) and (36)
between Wightman functions and Euclidean functions hold equally well for
the truncated functions,

Wiglzy by izmta)r = 3 W(haw)CL(R) — (43)
kez&"_” N

where ht,... ') = bty —t1}- - B (tn — ta), p=(n3,...,n_;) and
Je ={fig,s-r1Jaz, ). CT denotes the Chebishev transform (36) applied to
the truncated Euclidean function. ~We find the following estimates: (|k]

T+ ey S _
1be(he, u)} < Cr (1 ) M20, Cy20 (44)

11

|C:;';(k)| < congt. (45)
|CT.(K)| < const.eAmIH=mll, - f(m) = 2argsinh(e™™%)  (46)

Inequality {44) follows directly from the definition of b in {39), and (45)
follows as in (38). For the derivation of inequality (46) we use the exponen-
tial decay of the truncated Euclidean functions (20). Inserting inequality
(20) into (36) we get

ACESDMNTAR ]a"'-—:[ {1+l )
je2

with |[z]] = r(A; + 24,. .- ,A,, Yz, and |jl = j1 4+ --- + Jaor- Using the .
alternating nature of the coefficients of the polynormials Tpx(2'/?} we find

E
T labl(—emy
i=0
= (—1)* T (ie™™/?) = cosh(kA(m)) € *4l™) (48)
with A{m) = 2argsinh(e~™/?), thus establishing (46).

We now split the sum in equation (43} into two terms, one corresponding
to [k] < N and the other to |k > N for some N € IN. For the first term
we use inequality (44) with M = 0 and inequality (46), for the second term
we choose M = g{n — 1) in (44) where g is the natural number appesring
in the formulation of the theorem and apply the uniform bound (45). We -
obtain for the:first-term ' '

. I .
' lA(m) -zl WAR—=1)"" smv-miizll (4q).
const. 3 € s const, 1) e (49)

kEET, JkI<N

and for the second term

n ||:u)“"‘“ : ( (L4 ey ) '
const. 3 (-————-— < const, | ——mm - (50)
reZD T 2N 1+ ik (1+ Nyt

Finally we choose N = e|z|| with ¢ < m/A{m) for (1+|t])) < (L+||=||)*=.
For 1 + {|¢]] = (1 + [iz{])!~/7 the bound in the Theorem follows from the .
uniform boundedness of the truncated Wightman functions ¥

Remark: Theorem 1 admits the following generalization to expectation
values of arbitrary elements of the algebra A (section 2}
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Theorem 2 Let Ay,...,An € A, n 2 2, and define the space-iime trans-
lated operators Az ti) = Ulgy )e' " Aie 4T (—z;). Then for the Wight-
man functions

w(“}(z-htl; erryiling tﬂ) = (Qr Al(r‘l:tl) T '_An(z-m t“)ﬂ) (51)

the following clustering property holds: for each e, 0 < ¢ < 1 and for each
g € N, there is a positive constant C, ., depending on the A;’s, so that

(L+ el 52

(n) N Py
| WT (Ihth RN |£mtﬂ) iS Cq.e (1 s ﬂI")(q_”_es

where
Il := | mmax [ tis — | ' (53)
and .
lzf := X Nmo gl (54)

W,f.-") are the truncated Wiéhtman functions.

The proof of this theorem follows the same ideas of that of Theorem 1 and
we omit the details here (see [15]).

5 Existence of Scattering States.

One of the most remarkable properties of quantum field theory is the fact
that, once single particle states are present, automatically also the corre-
sponding incoming and outgoing multiparticle scattering states exist. The
crucial ingredient for the proof of this fact are cluster properties of vacuum
expectation values [1,2] which, due to Ruelle can be derived from spectrum
condition and locality {3]. In-the case of Euclidean lattice feld theory we
derived a somewhat weaker cluster property in the preceeding section. In
the present section we will show that the result still suffices for the con-
structjon of scattering states. Since the argument is almost identical to that
of the continuum we will be rather brief (see [16,18] for modern treatments
in a form which is applicable in our case),

According to Assumption (A.3) there is & closed subspace H) ¢ H on
which a single particle dispersion relation holds, and a dense subspace D1}

13

of HM which is created from the vacutm by almost local operators A € A.
Actually it suffices to take operators of the form
A=f(r), f€&, heD(m~ecx)), >0, (55

as defined in (15). In particular we may require A°(2 = 0
Let ¢ € DM and A € A such that AQ = ¢ and A" = 0. Consider the
solution of the wave equation corresponding to the dispersion relation w in

(A.3),
fta)=@m= [ dip e @in(y) (56)

with Ih(g) = 1 for p € spy¢ (the momentum spectrum of ¢} and k €
C=([—m,m)). We set

At) =3 f(t 2o g(A). _ (57)

" Then A($)? = AR = ¢. The localization properties of A(t) follow from

those of f.
Notation L Let A be o closed set in [—x,x)8. Then the velocity content
V(A) of the set of momenta A is
- ViA)= {gradw(g)l PE A}. ‘ (58).

The behavior of the solutions of the wave equation (56) may be summarized
as follows: .

Proposition 1 (See [16]), ' _ .
() Tolfth2)l S (1 + 1) (59)
(i) Mtz S on(t +dist (2, tV(A)™Y, NeN, (60)
where A is a ne:’_ghborhoo:i of supph (h as in (56)).

Now let ¢y,..., 8, € DM such that V(spy¢;) N V{spyé;) =@ for 1 # 5.
Choose 4; € A with 4,02 = ¢, A =0 and h; € C=((~mr, Tr]d) with
V(supp i) N V{supph;) = @ for i # j, hi{p) =1 for p € spugi. Let f; be
the solution of the wave equation (56) with k replaced by k; and 4;(f) be
definet as in equation {57). The Haag-Ruelle aproximant on the scattering
state of particles with single particle states ¢,,..., ¢, is now defined by

(£} = Ai(t) - - Ao (£). (61)
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Theorem 3 (t'j The Heag-Ruelle-Aprozimants $(t} in (61) converge for
t— koo, The limits (g X -+ X $n),,, i, depend only on the single pariicle
states p; € DV, and for sl N E N

B0 — (61 X -+ X Bu) i [IE¥ = 0, £ = oo, (62)
(i5) Let ¥y,... e € Dy with V(spuhi) A V{sputp;) = 8, i £ 5. Then
(('1’1 XX V!’E)w:‘,‘.. * (¢1 XX ¢ﬂ)oug| iu) = Jn.k ZH (#’h ¢u(i)) (63)

where the sum is over elements o of the permuiation group of {1,...,n}.

Proof: (i} As usual, (i) is derived from the fast decrease of the derivative
%é(t). We have

”%é(t) = k":“, (2 Aty -+ Aty - MY (D) - Ait) - An())

| ' (64)
where

Aty = %Ak(t) =y { (%f&(i. E)awa(4e) + filt, 2) [iH, apa(40)] ) } -

(65)

We represent the right hand side of {64) as a sum of products of trun-
cated functions. As A (13! = 0 and A,"(} = 0 terms with only 2- and
l-point functions vanish. For a truncated k-point function with k& > 2 we
now use Theorem 2 together with Proposition 1. The expression to be
estimated is of the form

3 ailtn, ) - gilte, z)WE Ny, 6. £) (686)
F I

where Wl(r-k’ is the truncated vacuum expectatién value for operators
Biyeo Bi € {Arye  An Ao, AL [H, Aty A C A, (67)
and gy, ..., g are solutions of the wave equations from the set

{f- ST Fenihrse. BT} (68)
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We split the sum in (66) in two pieces. In the first one we sum over all
Z; € tV(A;), i = 1,...,k, where A, is a closed neighborhood of the set of
velocities contained in g;, § = 1,...,k such that either A; = A; (if ¢; and
g; are obtained from the same sclution f; by complex conjugation and/or
time derivative} or A; N A; = 0 for i #°j. For k > 3 at least two different
sets A; occur. Hence Theorem 2 yields a strong decrease of W,(-k’ int
which is uniform in z; € tV(A;), i = 1,...,n; as the sum over |g;| is only
polynomially increasing according to (59), we find that the first contribution
is strongly decreasing in £. For the second contribution we use the strong
decrease of the wave functions g; outside of the kinematically allowed range
(60) together ‘with the uniform boundedness of the truncated Wightman
fnctions. We conclude that the expression (66) is strongly decreasing in .
As all other factors increase at most polynomially we conclude that £4(2)
in (64) is fast decreasing, thus proving (i). o
(ii) The proof of (ii) is similar. Let

M =BM)--BHR (69
denote the Haag-Ruelle-approximant. for (%1 X -~ X ¥}y, i Then
(B(t), (1) = (R, Bault) -~ Bi(e) Au(t) - A()) - (70)

may again be expanded into a sum of products of truncated functions.
Terms. with. trincated l-point functions. vanish for {-2> -3 in the limits
t — Zoo by analogous arguments. as above, and l-point functions van-
ish identically. Hence the only contributions to the limit come from 2-point
functions
(R, Bi{t) A)Q) = (¢, i) - : (71)

This implies (63) & . _ R

Note that relation {(63) characterizes the statistics of particles as being -
bosonie, 1.e. the vector states (¢, x - --45,.)08"‘-“ are symmetric under per-
mutations of the single particle state vectors. The translations act on the -
scattering state as expected )
U(I}ﬁim (prx---x é“)vul, in = ((U(I)eim‘#') X e X (U(I)emti#“))w:. in
' (72)

The full scattering spaces (including products of particle states with
overlapping velocities} are obtained as closures of the linear span Doy, in

i6




of the scattering state vectors with non-overlaping velocities. Let JF{H("))
denote the bosonic Fock space over W'}, and let Fy denote the linear sub-
space of F{H") spanned by tensor products of single particle vectors from
DY with non-overlapping velocities. Let

Uss,in: Fo—o H (73)
be linear operators defined by
Un!,in(él@"'®¢n)=(¢l Xores x¢n)wg‘.‘n' {74)

Because of (63) the operators U, i, are isometries and extend therefore to

the closure of Fy. Provided the group velocity gradw( p) is nowhere constant

as & function of p (which we assume in (A.3)) the subspace F; is dense in
the full Fock space, and we obtain two isometric images Hour, in = Doy, in
of the Fock space in the physical Hilbert space M.

The physical interpretation of T°** ™ as spaces of scattering states can
be tested by looking at expectation values of operators representing coun-
ters in the sense of Haag and Araki [6]. By methods similar to those in
the proof of Theorem 3 one obtains the expected results {15]. Whether the
same results can be derived for Hous, in, 85 was done by Buchholz [12] for rel-
ativistic theories by using locality is unknown up to now. A solution of this
problem may provide a step towards a proof of asymptotic completeness in
lattice field theory.

Finally one may discuss whether the scattering amplitudes can be ex-
pressed in terms of time ordered correlation fuctions by LSZ relaticns. For-
mulee of this type have actually been found in [15]. It is an interesting
problem whether these formulae can be used for perturbation theoretical
and numerical calculations of scattering amplitudes. We hape to discuss
this problem elsewhere, ' ’
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