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Abstract: Scattering states of charged particles in a massive Euclidean
lattice gauge model are constructed.

1 Imntroduction.

The particle spectrum of Buclidean Quantum Field Theories on the lat-
tice has been object of extensive studies in various models {see [2,9] for
references). Recently, under general assumptions (essentially existence of a
transfer matrix and mass gap), a full construction of the scattering states
for particles of the vacuum sector of that theories has been performed [3]
following the ideas of Haag and Ruelle [6,7]. This work extends the main
result of (3], namely the construction of multiparticle states, to the charged
particles of the Z, Higgs model whose existence has been shown in [2].
The construction presented here depends in some details on particuiarities
of this model but they might certainly be adapted in its essential tools to
other massive models involving charged particles. In the general frame-
work of relativistic quantum fields the construction of the scattering states
of charges particles in massive theories was performed in [8].

As in [3], the main problem to be overcome is the lack of locality (Ein-
stein causality) of the real-time evolution. Following [3] we by-pass this
problem by making use of the exponential decay of certain Euclidean cor-
relations, a fact related to the existence of a mass gap in the spectrum.of
the Hamilton operator.

Partially supported by CNPq.

1.1 'The Model and Previous Results.

The Z, gauge-Higgs lattice model is particularty interesting for testing
structural properties of gauge theories. Detailed results on the superselec-
tion sectors’ structure of its associated quantum spin system in the “free
charges” region of its phase diagram have been obtained in [1} (see also [5]).
‘That work established for that region of the phase diagram the existence
of two inequivalent sectors, the vacuum sector and s charged one (with
associated Hilbert spaces here denoted by H, and ., respectively). These
sectors are believed to be the only existing ones in this model {ind+1=3
there is also a magnetically charged sector). In [1] charged states with finite
energy have been explicitly ccnstructed and in {2] it has been shown that
corresponding charged particle states exist in H,. The present work com-
pletes the next step of showing the existence of multiparticle states with
even (in Hy) and odd (in H.) charged particles. Our notation follows 1]
and (2] closely.
The Z; gauge-Higgs madel has the action

§=23 8:57(p) + 3 Bur(B)60(h), (1)
P b

where o and r are Ising fields living on sites and bonds respectively of ZZ¢+!
(d 2 2), representing Higgs fields and gauge fields respectively, and where
8, and B are positive coupling constants. Above § denotes the lattice
exterior derivative :

JT(P) = H T(b}! 50'(1)) = H U(:’,‘), (2)

bedp L1

where 3p is the set of bonds contained in the plaquette p and 8b is the set
of sites contained in the bound 4. .

The results of [1} and [2] have been obtained for g:=¢e% and b :=
tanh 8, sufficiently small, a restriction maintained here to provide the nec-
essary convergence of the expansions. ‘

For the quantum spin system associated to this model the time-zero
field algebra is generated by hermitean operators associated to the sites
of Z9, ¢1{z), o3(2), and hermitean operators associated to the bonds of
Z%, (b)), ra(h), satisfying the algebra of Pauli matrices and commuting.
at different points (the o-operators also commute with the r-operators).
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The operators o3 and oy are analoguss of the Higgs field and its canoni-
cally conjugated momentumn, and the 73 and 7y operators correspond to the
gauge field and electric field respectively. These operators generate local
and global algebras of fields and gauge invariant observables and in [1] a
translation invariant vacuur state and translation covariant charged states

have been constructed, to which two inequivalent representations of the -

algebras, one in space Hg and the other in H,, are associated.
In algebraic levei the euclidean dynamics is generated by an automor-

phism defined as the strong limit of local automorphisms implemented by

local transfer matrices, and is interpreted as the action of discrete euclidean
time translations. It is implemented in M and in H; by two inequivalent
global transfer matrices with densely defined inverses [1,4].

To simplify the notation we shall denote both transfer mairices by the
same symbol, T, and shall not distinguish the representatives of o; and 73,
irrespective to which they are acting in Ho or in #,, and shall denote then
again by o3(z), 7a(b), etc. The action of the space displacements by g € Z*
is implemented by unitaries denoted in both cases by U(z}.

Real-time translations are then defined in B(Me,+) by

@) =T™ . T, te R (3
The following important result {[1], theorem 6.4) ‘has to be mentioned:
For any set of distinct points {Z,,...,z.} C Z* there are eigenvectors

of the transfer mairiz ¢y, . € Ho or My {according whether n is even
or odd, respectively) inducing ground states (in the sense of 1]} with o

configuration of external charges in the points {Z1,---1Z.}. The veclors
B, ...z, OTE covariant under space transiations: Uz, = Pzy-greZa—ys
Yye Z4.

The eigenvalues of ¢ . are denoted here by 8z ... Forn=1we
call f; = 3, for any g, by translation invariance.

The importance for us of the vectors ¢z ..z, 18 the following. The
gauge invariant vectors [T, oa(zi)ds,....z, cant be interpreted as states of
n dynamical charges located at the points {g;,..., z,.}. This suggests the
use of vectors of the form [I%, &, (0a(z:))9g, ..., after adequate smear-
ings, as approximants for the multiparticle states, replacing the vectors
like (z;1) - - - (2 )8 used in the standard Haag-Ruelle construction, where
() are charged fields. Charged fields connecting Mo and H are presently
not available for this model.

The following result on the existence of one-particle charged states has
been established in [2]:

The Fourier transform of the 2-point function
G(z0,2) = (03(Q)bo: U(z)Tlo5(0)do) (4)

can be analytically extended for each p € (—m, )% to & meromorphic func-
tion of po in the region Impy < &(p) with en iselated simple pole ai
po = iw(p}), where w(p), the energy-momentum relation of the particle, is
smooth and &(p} is continuous with &(p) > w(p) = m, m being the mass
gap. The velocity v(p) = gradw(p) #s nowhere consiant.

This implies that there is a closed subspace 'H.(:) of M, (the single par-

- ticle subspace) on which the relation

(T e ENf 1P =0 _ (5)

holds. Here P is the momentum operator, i.e. the infinitesimal generator.
of spatial translations,

B — U(z), . sp(P) C (—m, ‘rr]‘i (6)

and M is the closure of the linear space

20 = {w, = 5 [ 5 e s ()

3“pr.n3P(H,£) C {(W(E)’I_’)' pe (—m, "'r]d}: f € D(Rd+l)}, (7)

H being the Hamiltonian defined as H =: —inT.

The results of [1] (and of [2]) have been obtained with the use of polymer
and cluster expansions for the “free charges” region of the phase diagram
of the model, We resume here the most important ingredients of those
expansions, since the results of section 4 make strongly use of then. For
details see [1,2]. The polymers are pairs y = {F,, N} where P, is a coclosed
set of plaquettes, N, a closed set of bonds, v being closed as a graph, where
the graphs in question are constructed in the following way: The vertices
are the co-connected compenents P; of P, and the connected components
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N; of N, and the edges are pairs {P, N;}, where N, winds an odd number
of times w(F;, N;) around P;. For general P., N; define

(B, N;) = (1P, (®)

For the definition of a polymer model one needs a definition of compatibility
between polymers. T'wo polymers 4, 7, are compatible, 4, ~ 7, if no
elementary 3-cube has plaquettes in P, and P, as faces, if no point is a
boundary point of bends in ¥, and N,,, and if no co-connected component

of P, has a odd winding number with a connected component of N, and

vice-versa. They are called incompatible 1, o 72 otherwise,
The activity of a polymer v is

ply) = hIN"IS"PTI(P'nN'Y) (%)

with (P, N.,) = [§ (P, N;), |V,| being the number of bonds in N, and
|P,| being the number of plaquettes in B,

Let xz denote the product of link variables for a set L of bonds. Then
one gets for its vacuum expectation value the expression

(xe}= 3 AmMexp {E eou (app’ ~ 1)} . (10)
MeCona(L) r

Above Conn(L) denotes the set of all sets of bonds M with M = 9K ;

M = BM T are clusters of polymers, iLe., nonnegative integer valued

functions with. finite support on the set of all polymers, uf = I1, p(y)Fn

{(multi-index notation). The coefficients ¢r are the Ursell functions, are of

purely combinatorial nature, and g 5 is defined by

_}0 " if N, is connected with M,
“L-M(")”{ (P, LAM), otherwise. (1)

I M =@ we write ag 3 = af.

The following results are often used. One is a remackable property of
the Uzsell functions: if ' = Iy + [y with M ~ 7 for all v € suppT,,
72 € suppT; then cr = 0. The other are the following estimates:

> lerl o' | € Fy(~n ful)hl, (12)
Tiy : :

5

Y el mf;s(»"i“) R(~lnfuDhl,  (3)

v, |fEllzn llzcll

for [|ul] = sup, |p(M|YM = max{h, g}; where [lzz]] is & fixed constane with

Fi(=Inflpell) < oo; where ||T|| = T(y)y| for b = |B,) + IN,|, and

-where F} is 2 monotonically decreasing function (see [1f, Appendix). The

convergence of sums like (10) follows from (12) together with H{M: Me
Conn(L), |M| < n}| £ {L|(2d + 1)", for & small.

2 The Construction of the Scattering States.

Let E) denote the spectral pro jections of T and define AT) = Joy R{A)ES,
where & € C=([0,1]), 0 < hlz) £ 1, z € [0,1], with h(e™¥) = 1 for
O<y<y,h(e¥)=0fry> vz for % > y;. For the construction of n-
particle states we shall need y; > n.sup {w(p), p € (—m, 7%}, the maximum
energy of a n-particle state. Below we shall mostly use g(x) 1= h(x).

We consider the one-particle states written in the form

¥y = 3 [ @, M Thas (05(2)) (14)
with o
f(’)(a: .t) = ﬁ_ d J'r'( )e—l'put-l'(w(a)—po}s-}-{gg
ey (2_"_)(,_.“_1)/2 P Espﬂ 4 s R. (15) )

For f e D(R**'Y we define the velocity content of supp f as the set of
values of the group velocity associated to it: -

V(f) = {gradw(p), (w(p), p) € supp F sp(H, P)}. (16)
The functions £ have the following decay properties (see [11}):

Proposition 1 For f) gy in (15} with f € DIR™") we have:
u) For all N € N there are constents Cx > 0 so that

e, 1 < O3+ o) 42(1 + o)~ an

uniformly in z.




b) There erists a positive constant C so that for every s,

3 [ at |f) (e, t}\<C(1+ls|)d/2 (18)

zeZ?

¢) For all L, M, N € IN there is o posilive consiant CLI,M,N so that, if
for all s with |s| > 1

dist (l i V(f)) >4 (19).
for some constant § > 0, then :
2,0} < Craan(L+1s = tD7HE+ D™+ 2™, (20)

To follow the Haag-Ruelle construction we propose to use the vectors

el i= T [t -t TT A0 8 ey )

iw=1

x (T ) (05(z)) H (T ey (03(2:)) e, 0, -2y

as appronma.nts for the scatr.ermg states for 5 — :}:oo We have

)f: ) E fdt1 dtodt!y - dt'n

d
) E‘I‘n.,...f,.(s)

kk'=1 Z1 4 L..,‘z' .....
T a0 T TR )P 28 (22)
. f== =1
wherg = .
= { L 124 ¢
il

Fla, 2, ) i= (Ba, 2, )" By za) X

(az;(aa@'l)) {fI g(T)a:;(as(:jn} bttt {_1_1 g(:f')a..-(oa{zl-»} b, H,)

j=2

: {24)
The main result is the following Theorem:
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Theorem 1 Let {17, C D(RH) with {¥, }:‘_1 c D, U, #0, and
with non-overlapping velocities: V()1 V(F), i # . Then:
i) For each n € N there is o positive constant C, s0 that for all s € R

d .
”;‘I’ﬁ ..... £(3)

SC(1+[s)" (25)

1) The strong limiis

. 8— lim "I'h ,_fn(s) . o (26)

3 —teoo

ezist in Ho or Hy (according with n being ewen or odd respectively) and the

convergence to the lmit vectors, denoted respectively by ‘II°“i{:" is foster
than any power in s for 5 — too respectively. '
#i) For iy .. s Y. fr @2 given above then _
( out in d)ogt in ) =4 ZH(U‘J lb ) . o (27)
Sty P g = Onk . fir Voo .
n 1 .

where the sum is over elements 7 of the permutetion group of {1,. o n}.. :

Remarks. Above, i is an immediate consequence of i. The proof of part i
will not be given here since, as in the relativistic case, it follows the ideas
of the proof of part #. Parts i and iii establish the existence of asympeotic
particle states and the statistics of the particles (bosonic in this case}. :

Definition 1" To smplify the notation we introduce the ordered sets ,:' T

'(P"l:;"1_#m“n+11--wg“2n} = {trm---st’lath---:tn) . ] {28)

(Elz‘. EET-TF AV P 15271) = (-"’Z'm e 12’11517' - -1£n) 2 B {29)

and write

- nil . . .
F ("” A1) “’(% wo | IL otadamrend a(-)aph)
=1
o , L (30)




‘Definition 2 We denote by o set of ell partitions of {z,,...,2,,} info
ordered pairs such thaet i
tE0 = i={(,é.-ﬂz.-..“),(ae?,z;n+,),---‘(.z.;n,z.-,n)} (31)

- with iz €4{1,...,n} and inys € {n,..., 20} for alla, 1 Ca < n.

Proof of Theorem 1: One starts with the following result on clustering
properties of F{z,z',¢,#'). The proof is given in the next subsection.

Theorem 2 For F(g,z',t,¢') as above there are, for each ¢ € IV, posttive
constanis c;'q, 1<a<n o that

' =1, 14+ g
iF(;l_?, zt, tl) - G(i» z',t, t’)F = Z Ca.q_"g_-"'lL"

. (32
a=1 (1 + D{ﬂ(z))(q_l)u ( )
with
n ) 2n—i i )
Gla,& t,¥) = (® Teos(z'Mow,r [T o (Tin-s) ®T-“°"3(£°)¢‘°)
a=1 b= o=t
' (33)
for
L.:=1% @71, g<asgn, (34)

where |1t} = masty; i — pi[ and where

Die) = Dy, -, 22) = min { Dz, ... 24,), DOz, . +Z20)}
(35)

e -al), ()

with @ @
2) 5\ = ;
DiNz) = DYz, .- 20) 1= u,be{].l?..]:&], it

and

D) = D ey 220) = min {mmin {1z, ~ 2af}, i {1, - 24}
: | (37)

*

Replacing (32) into (22) and using that Tf, [T, (Y., vy,,) = 0,
since the 17 independ on s, we get

< eonst, Zu: Z Z jdtl---dt,.dt'lv--dt’“.

Kkl 2 ot

d
T ¥ ta(8)

n n n-1
x T ARG )| TT A2 £0] 3 (1 + 1)*(1 + DP(z)y-e-e (35
=1 i=1 a=1 . .

and from this the proof of Theorem 1 is completed by making use of the
decay properties of the functions f4*)(z,#) (Proposition 1) and the fact that
they represent a set of wave functions with non-overlapping velocities, in
complete analogy with the relativistic case (see 3,79 =

2.1 Proof of Theorem 2.

The first step to the proof of Theorem 2 is to approximate g(T)T* by
polynomials on the transfer matrix, following ideas of [3,9]. This is possible
since g(T)T™, in conttast to T, is norm continnous in T Using Chebishev
polynomials for the approximation we write for peER, B

g(T)T* = EM (i) 4 R (p), - (39)
where
N N i
EM(u) = 37 a7 = 3 b (w)To(2T < 1) (40)
m=f n=0

is the approximating polynomial of degree N and the rest RV Y s) is given
by

BN = [ RO WE, with RV x) = 3 b(wTa(@A — 1),
(1] axN
(a1)
Above T,(.), n € N, are Chebishev polynomials T,(z} := cos(n arccos z),
z€[-1,1] and

() = 72~ b20) [ gl(cosa)fjctismmmarinegy  (49)
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Relation (42) comes from the fact that Chebishev polynomials form a com-
plete orthogonal basis in L¥([-1,1], (1 — z?)"H2dz) (see e.g. [10]) and the
second equality in (40) is the defining relation of the alM’s in térms of the
b,'s (see also the Appendix}. The two following Lemmas hold:

Lemma 1 For the al™) s given in (40) there are funclions Ala) > 0.and
C(a) so that for « 20

N
() = 3 lalMHp)le™" (43)

n=0 .
has the bound yn(p) € C{ade®™W unjformly in p € R, for el N € IV.
We can choose A{er} = 2argsinh{e™>/?) and C(a) = 2(eAl)) (et — 1)

Lemma 2 For R™M(A, u), N > 1, p € R defined in (41) there is for cach
q € IV o positive constant Cy so thai |’R,(N)()\,,u)‘ < CN~EB(1 + ||

The proofs are given in the Appendix, see also [9,3]. Replacing (39} into
(30) we get F(z,2',%,t) = Felz, £\, ¢} + Fplz,z',t,), where

Fola )= S a0t @
for |
e i ooz SYERYSIN S
and

FH(-I—v ﬁ: t, tr) =

0’3(2”¢2n}¢5,.+1,-'-.£g,.) s

(46)

2n—1
5 (@, ,,,,, . [H o) Os (s — isn)
ac{l,...2n-1} )

e=1

(N} : ,
Ou.ply) = { g(.w)g,)) iJfr Z ; g (47)

11

for any B C {1,...,2n — 1}. The terms in the sum in'(46) are called rest
terms since they contain at least one factor R*)(y) in the scalar product.
The right hand side of (44) will be called Euclidean term and will be object
of an detailed analysis in the next sections.

The proof of Theorem 2 follows after the two following Lemmas:

Lemma 3 For each ¢ € IV there are positive constanis ¢, so that

n—1 1 gz . R
a2 20 3 e [T (48)

Lemma 4 The approzimeation of Fg(z,z',t,t") by Glz, 2, 1,1} 15 governed
by the following estimate: .

Rl [
—aD® 14+ Jiz]))*
|Fe(z,2',0) — Ola, &, 1)) < b Vo0 1+ Ta,, [(—N@— ]

: (49}
E, A, & end the c,,’s being positive constants (A = 2(2Zn — 1) argsinh(1)).

a=1

The proof of Lemma 4 is much maore invelving and shall be the subject
of the next section.
Proof of Lemma 3: We majorize the sum over the rest terms by

| RR™ (e - #m)ll] [H B s — #m)ll] (50)
BC(l,...,2n—1} eB be Be

B8

where B¢ = {1,...,2n — 1}\B. Using the simple bound BN =-

lg(TyT% — R¥(@)] < 1+ ||B™) ()]} we majorize (50) by

T (@Eo IL FR™ g pragn)]
13

S (2211—1 _ 1) 2 H (1 + lf-‘ﬂ - .HG+1|)q S. Ecc.q [(1 + ”t")qa]

-1 -1
Bc(1,..2n-1} a€B e N(a—e
E#8

(51)

a=la.
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Ca, being positive constants, where in the first inequality above we made
use of Lemma 2

To complete the proof of the Thecrem 2 take N = [5 (1 + D?)(;))] for
¢ sufficiently small (0 < ¢ < af/A), where [.] is the lowest integer function.
Then (32) follows stra:ght forward from (48) and (49) for new constants
¢ . u

&g

3 Proof of the Lemma 4.
The following Theorem is the technically central result of this work.

Theorem 3 For g and h sufficiently small one has the following Buclidean
clustering property: ’

1z, {n;}) - J(z. 2, {n;})] < ke==P@), (52)
where N
Ham {ni) = 11 (ol bz, THo3(2,)bg, ) (53)
with- nbacl
Eg)= ) {54)
b=n—a+1

for some k, @ > 0 (depending on 1, B; and B, ).

The proof is given in the next section. A stronger decay than that
implied by (52) can be obtained with more work but (52) is enough for
our purposes. Defining

2n—1

H{z, o' t,t) = z IT e (s ~ pasa )z, {n}) (35

eaflizn—1=0 a=l

and using the result of Theorem 3 and (44} we get
fFE(is 1’1 t? tl) - H(gi: 1’, t: tr)l

i) e (z);
<k E H o (1 — pon)| €755 @D < keAN-2BTW, (56)

frmfzn—1=0 a=i

13

where the last inequality follows from Lemma 1, taking A = (2n — 1)A(0).
The proof of Lemma 4 is then completed with the following Lemma, wl:uch
together with (56) implies {49):

Lemma 5

(2,2, 1,¢) = Glar 1) <“§ ” [%] 57)

Proof of Lemma 5. We start from the identity:

Iz, fni}) = (® ot e, QT céaa(mc)qsgc) e
) a=1 . b=1 Fl
Now we write

QT = H(ﬁ—c)"‘ H(T —a) Tt = ﬁ: (Tl )" (59)

b=1

where T, is defined in Theorem 2. Hence, in analogy with (39) one has

2n—1
Z H G(N}(F'c #a+l)®Tﬁ(b} =
N, 820—1=0 a=1 b=l
n--1 .
11 Z:oa( Mpta— .uu+1)( |a- a|) H {g(Tln—al)( [n_u‘) #{ta—pay '—le},

(60)
R™ pepresenting the rest terms. Expandmg the product in the right hand
side of (60) one gets 1227 9(Tjn-ai) ( “—al)l(#a wart) plus terms containing
at least one factor R\WY), which are bounded as (48) since [|g(T.)}T7#|| < 1.
Finally note that

2ﬁ1 (']’In_al)i(h_“hﬂ) — éT( :r:—ﬂl t(n,—u,“)) éf(tlb_ia). (61)
a=1 =1 b=1

This proofs Lemma 5
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4 Proof of Theorem 3. The Euclidean Clus-
tering.

The first step is to express I(z, {n;}) in terms of cluster expansions (see

[1]). There are two cases to consider: n = even and n = odd.

4,0,1 The case n = even.

According to [1] {see the proof of its Theorem 6.4} the vector states - S
and ¢, can be strongly approximated by

Zn 17125

_ i T b1, ltip (o Liz,md DU (62)
(§t € Hg is the vacuum vector) and

gLt im0 Lt cam) (63)

respectively, with p, g € IV, where, as in {1], rs(B) = [hen 13(B), for a set

of bonds B € Z¢, and where Ly, .n} and Linya,..an} C Z° are sets of time-

ZETO bOIIdS With aL(ll...,n} = {zly .- 1‘§n} and aL{rH-l..--,?n} = {gn-t—h reey 1211}'
TFhen I(z, {r;}) may be expressed as

(ewlralBar... ) [T oa(2)T™] oo 22} iel (Dt 20) )2

lim

pae [oip(ra( Lt DU (7o Lntr,...zm DR
= lim (xxcea) (xoze) ™ ran) 2, N (29

where

KM = {(_"ps L{l.-mﬂ})} U [q T(E‘)(_pv .i na)] U

£= a=l
n =1 n—1 In~1
[' U T{z,)(z ., g+ E nu)i\ U{(q + 3 nay Liana,, 'zn})} (65)
j=n+1 a=1 a=1 a=1

and

LiP? = {(_Ps L{l.....ﬂ})} u; [g T‘ﬂ}{—p,p)] U {(P’ L{l'""“})} (66)

15

and

b3 )
L= {('—q! Lintt,... %}}} U [ U T(g‘)(—Q'v ‘I)] U{(Py L{n+t...'..zn})}
t=n41
(67}

where {(~p, L{1,..n})} is the set of bonds Ly;, ..} placed on the Euclidean-
time hyperplane at time —p and T a, 8} is the temporal line joining the
points (a,z) and (5 2} (for @ < b). The right hand side of (64} is given in
terms of the cluster expansion by

. hM exp {1/2 Z CF‘,LF (agplq! M+ agm,,,‘ anM = aE_,,p — (IE_M.)} ,
MeConn{Krv) T & o _
(68)

where 4 is the reflection on the (22 = 0)-hyperplane (see [1]), from which
the limit p, g — oo may be taken directly and is given by oo

> AMexp {1/2ZCF#F (ﬂ[f}, » + Ghi, ong — O, — GEQ)} - (69)
MeConn(K). - r R

where

K= lim K™ end Li= pl_;_’r& L7, i=1,2, - (70)

Py =00

with

. -5 . 2n . ) .
S n=UM,, L= U My, Mp=T®(—00,00)

=1 i=n+41

Note that 9K = {z;,...,25,} C Z9, with -

-1
=1z, Z L
=

so C'onn(K)"depends only on {z,...,%2.}.

4.0.2 The caée n'= odd.

In this case, according with [1] (see the proof of its Theorem 6.4); we can _
approximate strongly ¢, ..., and ¢, .. by S

,,,,,, - Eipirrdyg .
(L, ))e laa(rs(Ld el ™ (73}
: 16




L ig(Ta(Lgupn,..2m3))00 lota (el Ly 2wl (74)

respectively, with p, ¢ € IV, BL%imn} ={z1,. 12, } AQ and BL%“_'_L___‘ZR} =

{za:i-li"'?i‘lﬂ}aﬂ‘ ,
As in the previous.case we express the scalar products in terms of cluster
expansions and after taking the limits p, ¢ — co we write I(z, {n;}) as

5 e {12 T (koo o= by, —oby.) e}
MeConn{K} r
‘ (75)

where LQ'.,' = L.‘ A Mg..

ﬁéﬂnition 3 The seis Conn(R) occurring in (68} and (75) can be de-
composed into the disfoint union of three sefs: Conn(K)=Vo4+ V! 4+ V?,
where

V“-——-—{M

M € Conn(K);, M = | M;, M; ~ M;, i # 3, sothat for

=1

all i, 1 i< n: OM; = {z,, 2,} for some z,;, 2, € {=,..., 2.},

a; #F bn with z,; € {z1s... 1 &a} and I, € {g/,... $§’n}}: (76}

M € Conn(K), M = | | M, M ~ M;, i # j, sothat for

i=1

V1={M

all i, 1 <i<n: IM; = {z,, a,] for some z,,, 2z, € {z,. verZambs

ai # by, but with {2,z ) C {21, .., 2.} or {2,;,2,,} C {&1,- --,z’,.}}

(77)
and
I
V2={_M M e Conn(k), M= M, Mi~ M, i 4}, f<n
=1
‘and {OM;| > 2 for some i, 1<i< f}. (78)
17

Definition 4 To simplify (69) and (75} define

T - r r r : - :
M O, Mt g, om — Gp, — ap,, n = even, 19)
AT, M,n):= F r S R R Py n=odd {
O, Mt o, omr ~ Ay, — Gpy, JOpy, T = odd.

and fér luter purposes, for M; C M ¢ V*°

AT, M;, 1) = {a%l 4, + 5z, e, — S — 1] o (80)

T

with the simplifying notation ag for GFM: and with

=M, UM, (81)
and
a;—1 b,‘—], .
K} = T%(~00, 3 n)UT®( 3 m, o0), (82)
. =1 =1 -

where OM; = {%a;, 25, } with Z; €z, 2%} zZn; € {21y.. .z}
We have the following result, which holds for both 1 even or odd:
Proposition 2 There are constants k, &, w > 0 s0 that

SkeP@ (g3

> Wexp {1/2 A, )

Mev?

and

< Ko P Mama) (34

3 hMexp'{1/2 ZcfprA(P, M, n)}
T

Mev2

where D (zy,..., 21,) is the length of the smallest "minimal tree” of bonds
Joining four elements of {z1,..., 20, } C ZHL,

Proof. The proof uses standard techniques of cluster expansions, by
showing with the use of {12) that both for (83) and for (84) one has
| ersT A(T, M, 1) < A|M|, for a constant A(g,h). For (83) we observe
that the left hand side decays exponentially with

o {u'be{f?ﬁ}.n;ea {lze —al, | PO R L - zdl}} - &)

18




which has D( )(zl, -+ Zqn) 88 ; lower bound M
Let us now concentrate on the sum over M € V°. We have to establish
the exponential decay of the difference

T (i () = % hMe»cp{uzzl;cmfA(r,M,n)}

MeV®
=TI (os(zi )bz, TH03(2i0a)0ss,, ) (86)
i€ a=] .
with ) .
ta4n—1
N(i,a):= Y nj (87)
F=ia

Theorem 4 There are posilive constents k ond a such that

7] < ke arniza), (88)

Proof: Each M & V° is composed by a disjoint union U=, M;. We write

T= Y RME(M,n)+ R(z,..., %) (89)
MeV?

. where -

E(M,n) = exp {uzzwu(r M, n)}—exp {Z I/ZZcrprA(F M;, 1)}

i=1
(90}
with _
Rz, yzm) = (-1} 3 (Hh"‘°) exp{zuzzcmu(r M,,x)}
i€e MEM; \e=l (91)

where, for ¢ € o,

a=l

M= {M\ M=\ M, with 8M,={z,%m.}1Se<n,

- 19

with M, + M; for some (a.b), a# b}. (92)
In analogy wil’fh Propoéition 2, R(#,..., %) has the bound
Rz, 2an)| S eoPOlesmmiand (93)

for constants k and . Due to this fact we consider oniy the sum over
M € V%in (89). First define

O(M,n) = 1/2 Y crp® A(T, M, n), . (94)
r
where _ )
AT, M,n) == A(T, M,n) — [Z AT, M_,-,l)]. (95)-
2 B

The follow:'ing question. has to be considered: what is, for each M € V“,_a
sufficient geometrical condition on T' for A(T, M, n) # 07 Write

Za,

AT, M;,1) = ag}, M; T agsj., o, — %, — “;}, ) (96)

where OM; = {2.;,2,}, 8% := K} A M,_. Then the clusters T of interest .
1 £ i) 1 ¥ Za; .

of two types:

a) I' is formed by polymers whick wind around only one of the sets.

S;UM;, sey SaUM,, (eventually with T £ M, }, so that

% 28y

agsz‘ oM, = agz' M = a'-;_a =a =1, Vk#a 97y

b) T wiolates condition a}, what meana thet T winds eround at least two’ B
sets S;UM;, say S.UM, and S5;UUMy, c#d. Bye geometncal reasoning’ -

thia 'smpltes that

[ M| + 1My + 1/2]0| = D(‘*)(aMcUaMd). {98) :

It is easy to check that &) implies A(T, M,n} = 0. So.the clusters T -

contributing to (94) satisfy (98). By (13) this implies the following bound:”
O(M,n)| <

20




kexp{m(M) [2 min (D(“)(aMcUaMd)—IMCI—IMaI)]}

lll) U s s

<hexp {2 (J4) D0, -]} )
sinee ||| < [|gell, minar pcnr DH(OM, UOMy) > DW 2, ..., 2,) and
[M} > |M,| 4+ |Mg|. Above k is a positive consfant. Let us return to (90).

Proposition 3 For a, b € E one has je® — &b} < 81/4]p — g1/l max(ab)l,

Proof. First, for £ > 0 one has {1 — e~} < §Y4z!/4, To see this note
that l-e® <z So(l—e ™) =1—-2"+e% g 2(1 — e~} < 2e.
Now (1 — %) < 222, Therefore (1 —e =P < 21—~} < 2/31/% So
ie - ebl — emn.x:(n b)(l -|b--u|) < 81/451, - all/éelmx[a B g

Taking a = 1/2 Sy crsPA(T, Myn), b = 1/2 0, T eosP AT, Mj, 1)
with a—& = (M, n) and using the fact that both |a| and |b| have 4| M|+ B
as upper bound, where A and B are positive and independent of M, we
conclude from Proposition 3 and (99) that

e, < kexp {41011+ 1 () [ D00, ,Zzn)—iME]} (100)

for some constant k. Therefore

o ( Ll \ POt Bt )™
Sk (!I#cll) Nt (npcn) ’
- (101)

Y rMIZ(M,n)

MeV®

Aceording with {1], ||g]| = max(g, &} and one has
hllp)l="/? = hmin(g~"/?, h71/%) < KM, (102)

In (102) one sees the need for the exponent 1/4 in Proposition 3. Hence by
choosing # small enough the sum in (101) becomes uniformiy bounded on
{#1y.+., 22} and we conclude

D) (2y,..,220)/2 |
3 WMIE(M, ) < ¥ (illlﬂ%llzi) : ’ "

MeVo

21

which together with (93) proofs Theorem 4 B
Now we complete the proof of Theorem 3. Joining estimates (83), (84)
and (88) we establish that

Iz ) = 3211 (os(zi)bs,, T¥6oy(z, )‘;”z.-.,w)l < ke~ P50,

i€0 o=l
) (104)
since D;gz)(gl, vy Z2a) < DW(zy, ... 25,). From the cluster expansions, or
equivalently from the existence of & mass gap, one has

5 I (st s, T Foa i) = 1T (oal b, Tas(z0)ss,)

i€o a=1

< kM e—aD?)(i}, ’ (105)
which finally proofs Theorem 3 & -

5 Appendix

Here we present the proofs of Lemmas 1 and 2.
Proof of Lemma 1. According with (40) we have

ai")t) = (nl)™ E b (2) [ o (2z—1)” ~ (106)
We use the fact that T;,(22 —1) = Tom(2'/?), which follows from the identity

Tu(Tu(z)) = Tum(z) and from Ty{z) = 2z° — 1. Applying the explicit
polynomial form of T,(z) (see [10])

T,(z) = Wz]( )q"u( )(_1)%"-%, (107)
we get |
o0 = (-1 3 bt £ () (L) am
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So we have- .
N N m ' N
wysSem e 5 () (L0, ) = K0,
oo = - B (109)
where .
pm = e'“mge“*g( 2’: ) ( . ) (110)

The right hand side equals

1/2 t’i(us-,"“"’2 /T FeaPm 4 (e? -1+ e‘“)z’“} = cosh(2mb) < elIm,

C (111)
for b ;= argsinh(e~%?) and A(e) = Zargsinh(e*/?). Since [bn(t)] <2
using (111} we get easily . . _

Afe) _ 5
(t) < (72:2—)—1) Aia (112
edla) —

" Proof of Lemma 2. Using |To(z)| < 1, ¥z € [-1,1], we have

[R©08)] < T hatel (113)

Taking (42); using the identity
i = (21'”)-9%&%“,- ¥n21,¢geN, (114
5]

integrating by parts and using smoothness of g(.) it is possible, for each g €
N, to find a constant C,, depending on the function g{.) but independent
of n, so that |b(p} € Cyn~%{(1 + jul)® holds 2. The Lemma follows from
(113)=m : :

Acknowledgment. I am indebted to Klous Fredenliagen for the suggestion
of this work and for veluable hints and discussions.

{Jsing stationary phase methods a sharper estimate for lbn(ps)] can be found: which is
nevertheless nos to much useful for our purposes and more difficuit to handle with.
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