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-INTRODUCTION TO THE THEORY OF ELECTRON
STATES IN SEMICONDUCTORS

Marilia Junqueira Caldas
Instituto de Fisica, Universidade de Sao Paulo
C.P. 20516, 01498 Sao Paulo, S.P., Brazil

These lectures were given at the 4% Brazilian School of Semiconductor Physics, and
were directed at an audience of graduate studems some Just starting research work, others
almost at the end of doctorate programs most of them involved with experimental
resea.rch. I planned to present the theory side of research in semiconductors at an
introductory level, preparing for the specialized lectures they would hear during the
following week of the School. As such, I started from the Hartree—Fock and Local—Density
approximations and worked through some of the basic descriptions of bulk crystaliine
semiconductors: [ then gave a very brief view of the theory of defeéts in semiconductors.
wn‘.h emphasis on the mnerprenauon of theoretlcal results, and on the compara.blhty with

experxment

2

[ INTRODUCTION

We are interested in describing the electron states in a semiconductor, which
amounts to describing the behavior of ~ 102 electzons each in the field of the other plus

all the atomic nuclei, if no other external field is included. As usual, the stationary wave

function ¥ {{%;}), where %= (f.é) accounts for space and spin coordinates, is. to be

obtained from a hamiltonian in [ —E] ¥ ({I)‘ti}} =0 at temperature T =0. For such a
huge number of particles no useful information could be gained from writing T out
explicity, and it Is in fact impossible to do that. Our task of describing the electron states
is, however, feasible if (i) we adopt the independent pariicle or mean—Field approximation.
in which one electron moves in the average effective pouent'iai of ail the others (depaztures
from mean—field considered for special cases only); (ii} we assume that she latsice io.ns are
rigidly fixed at equilibrium positions in which (iii) the extérnal poteﬁuiai on the electrons
due to the nuclei is periodic. ' o

We write the penodlc;ty COtidlt]Onb (ii} a.nd {iii} in terms of purmtlve lat.glce Vectors.
,(v=123) a ' '

VesH(E 4§ ) = vesi() ' (L1)

Adopting the independent particle model (i} each particle is described by = single—ba.rticle
state uy(R) associated with a single-particle energy ;. These energies will be grouped
around certain values according to the character of u;(%): there will be deeply bound éore
states highly localized around the nuciei. and the valence eiectrons with ionization energies
cloger to zero, say centered around 5 1o 10 eV. We will focus on these valence elecurons; as
they interact throughout the solid, the degeneracy of the single particle energies in tie free
atoms will be lifted and (due to the enormous number of interacting particles) the eIIEEgIES
wﬂl be distributed in a quasi—continuous fashion in some energy range (fig. 1) The

electlons will "occupy" these states with a lower—to—higher ordering. This is a reasonable




picture of any arrangement of a great number of atoms: the special characteristic (I-1) of
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Figure I— Schematic representation of the energy distribution of single—particle states in a
semiconductor a) single—particle energies in the isolated atoms A and B b} compound AB,
showing the formation of regions quasi—continuously filled accessible states and forbidden
regions—gaps: also usual band picture of compound AB, showing the distribution of
accessible states for each k—vector in the Brillouin Zone along some chosen directions.
Note that the extremely localized "core states” do not show energy—dependence with k.

crystalline solids is reflected on the single—particle states wuy(%) in the form of Bloch's

theorem

+

T (t8 =u (F+75,,8=exp (it }u(t) IR (1-2)

or, for every state that satisfies the equation of motion there is a vector X  such tha,t
translation by fy is equivalent to straightforward multiplication by exp {—iR-EU} ;

In writing (I-1) and {I-2) we are assurning either an infinite solid or, as we do here,
periodic boundary conditions imposed on a finite crystal with a very large number
N, = N, N, N3 of unit cells of volume Q= El-{fgxfg), each containing N, atoms and

N, valence electrons. Thus, the number of valence electrons in the crystal is large but

v
finite N =N, N;. Each lattice jon can be reached from some fixed origin in the central

unit cell by translation through a vector R=t+d ,
t= n,z; + nQEZ + nsfa - (1-3)

where the n, are integers o, = 1,2,...NV, and & is a vector locating the ior from an
{equivalent) origin in the unit cell. The reciprocal lattice is then defined. in terms of

primitive vectors
By = 07 2m (tyxbg) 5 By = 07 27 (Epxt) By = Ir(bexty) - ()

Equation (I-2) is a statement about the symmetry of the system, and of state u; in
particular. According to these translation synumetry requirements the valence states u;(%)
only interact within restricted groups, which may be classified in terms of the k—vectors:

only interact states i,i' for which k=k+2@=1 n,8,). For each of these sets we
) 4

choose a representative vector with the smallest possible norm ]fc|3, and thus define a
Wigner—Seitz cell in reciprocal space — the first Brillouin Zone (BZ) - con_tajniﬁg exactly

o
N, vectors. It is then useful to present the single—particle energy spectrum in k—space so




that we obtain an “exploded view" as shown schematically in fig. 1b along certain
directions in the BZ: for each reduced k we depict the energies ; for the interacting set
of u;'s . The electrons will occupy the lower N states, so that for each k the lower N v
states will occupied. The energy distribution turns out so form quasi—continuous functions
of k , termed energy bands, and the label i m&-_v he properly exchanged by (n,ﬁ).

. Again, these are properties of any crystalline solid. The characteristic feature of
semiconduetors is that the number of elecirons per cell is even N, = 2N}, and the band
structure results in such & way that N, bands of each spin are completely occupied or
filled, and all higher-lying states are empty at T = 0 in the ground state. Furthermore,
there is an energy gap between occupied (valence) and empty states which is however not
too large, so thai interaction with, e.g., a photon in the visible range may excite an
electron from the highest valence band to an empty state (where it may respond to an
external applied electric field).

Theée properties, or more propérly the properties of impurities in such materials,
changed human daily-life in the fast decades. Semiconductors were and are extensively
studied, both from the experimensal and theoretical poines of view, and to present an
unbiased survey of the theory of electron states in semiconductors is today a formidable
task What I w1li present is a brlef and biased survey of the theory: [ will discuss some
chosen band—structure calculatlon methocls based on the Hartree—Fock and Density
Funetional formalisms; and some elecironic structure technigues used in the study of defect
states. Relativistic and spin—orbit effects will not I)_e treated. Some problems of current
interést will be mentioned, but the discussions will be restricted to phenomena in bulk
crystatline materials: I w1lE leave out entirely amorphous and alloy semlconductors, surface
phenomena, and the new superlattice materials (which are discussed already m the other
iectures in this school). _

I will furtﬁer restrict the discussion to the tetrahedral crvstals Si and GaAs, the two

mest important semiconducting materials today. These two materials crystallize in the

diamond and zinc—blende structures, respectively. There are two atoms and 2N, =8
electrons_per unit cell, coming from the s and p valence orbitals of the isolated atoms. It
is an open structure, shown schematically in Fig. 2, each atom surrounded tetrabedrally by
four neighbors. The lattice is convenieatly described in terms of two interiwined fee

sublattices, one displaced from the other by é along the cube diagonai. The unit cell

contains two atoms, one at 5=0 and the other at &= [4 i iJ , if a is the lattice

constant of one fee sublattice.

Figure 2— Schematic representation of the
structure of tetrahedral semiconductors. For
heteropoiar compounds such as GaAs, there is a
cationic and an anionic sublattice. For homopolar
compounds such as Si, bot]i lattices  are .
equivalent.

The space group of the diamond structure is Of , with the 24 operai;ions of fl;he
point group T, (for rotations around axes through 5 0) plus 24 more operations
associated to the ﬁon—primitive translations § to the second atom in ghe cell, reflecting
the inversion symmetry about the rﬁidpoint between an atom and any of its four 'ﬁeighbors.
In the zinc—blende lattice the two atoms in the cell are nos equiva.lent,. and the space group
s T4 with just the 24 operations of the T, group. -

The special high—symmetry f\--points in the BZ are indicated in Fig. 3. Sta.rtihg

with s and p—type orbitals, wave—functions transforming according to k=0 ﬁla.y be

s—type singly degenerate with bonding or antibonding character (I'} or T} , respectively, in

Of: I in T3}; or p—type triply degenerate also with bonding and antibonding character -
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(.I‘és.and [ in Of: ) in T). For k along (111) to the L point the degeneracies are
simiiar for diamond and zinc—blende structures: single (L, and L3 ; L) or double (£} ; Ly).
For k along (100} at the zone edge. X--point, the mentioned inversion symmetry in o7
leads to double degeneracy of all energy levels (X, , sp—type, and X, . p—type); while for
T2 wehave both single (X,,X; , sp—type} and douhle degeneracy (Xy , p—typel.

The zinc—blende structure is characseristic also of the other III-V compounds, AlAs
and GaP for instance, and of [I-VI semiconductors such ag CdTe and ZnSe. Interesting
properties are obtained by alloying within one or both sublattices, Ga,. Al As or

[m1__‘1(}ax:\sl_yP'y . Very useful heterossructures are tailored from GaAs/Gap. ALAs.
Semimagnetic semiconductors Cd,. Mo Te, Zn,_ Mn,Se ave other examples of tetrahedral
compounds. And aiso in amorphous semiconductors the shortrange tetrahedral ordering is
maintained to a high 'degrée. As such. the discussions ineluded here, even if restricted to Si

and GaAs, are televant Lo most interesting problems ir semiconductor physics.

Figure 3— Representation of the Brillouin Zone of
tetrahedral semiconductors, showing the usually

adopted notations for some high—symmetey points

-

and directions.

18 CRYSTALLINE SEMICONDUCTORS
IL1. The Hartree—Fock Appmximation
L .The- independent particle model can best be represented by the Hartree—TFock

1)

theory. We-write the generai hamiltonian for a N—electron system as

N N
T = 2 BT+ Y vty ' (1E-1)
1 iz} .

for a given fixed configuration of nuclei. The one—electron term is

SO O T A R
A

with A running through the nuclet (or ion cores); and v(7;,7) is the Coulomb interaction

v(t,t) = —I?e_ . o : (TT-3)
-1
1

"We then imeorporate symmetey . requirements adopting a product wave [unction in '

the form of a.Slater determinant
DD = PGS, -ty = 0T e {u ()} L ()

and minimize the total energy with respect to variations in the u;'s, subject to

orthogona.lit'y .cor_nstra.ints. We thus obzain the Hartree—TFock single_pé,rticle equations:
fug(t) = (h+ V) u(d) = 50 - . o (II-5)

The potential is given by a sum of Hartree (VH) ai.ld'e}':cliange. '(V,{) terms

VHF = VH -I-Vx :




V) = f aty v (8,15) ()

(11-6)
Vet = - [ vt s P
where Py, is the exch.ange operator with respect to %%, and
N .
At = Y ) i) (0-7)
1

where _-.the’. n; are either.1 or zero.depending whether u; is occupied or not {occupation
numbers):..- . '

We note- the nonlocality in the é:;change term; and the need for seifconsistency in
éolving (I1-5) since-the- uy's are involved in the definition of the effective hamiitonian or
Fock operator f. '

The sums tun over all particles N = 2N, N, where N_ is the number of cells in the

‘crystal. We now bring in the fact that translation of al! electronic coordinates by an

allowed vector leaves the system imvariant in the cryssailine case: if we write the

N—electron operator

i) =, v ey

with, -
YL T, &)
(1-9)

-+

t = @ty + Ayl + aghg

we-have [r (E),’i!] = 0. For the Hartree—Fock wave function this results in

10

P W, (R, o k) = exp {iE-E} ) - fj_':'(lﬁéib)_.'f'

where k = (k +k; + ... + ko)

first Brillouin _Zone?’}. Since from (1-2) and (1)

is the sum of all individual labels f{l- reduced .1;_6 the’

P+, %+ = a ) - (-11)
we obtain that tr(f),f} = 0 also. Periodicity will allow us to solve a similar set of
single—particle equations (II-5} for each k—point in the BZ (as we will emphasize the next
section), and for a semiconductor exactly 2N, states per ]-f:—point will be occupied at
T=0. '

It is usual at this point to substitute the label i for a single—particle state by (n,ﬁ'),
where n is the "band mumber", that is, n orders the states at i according to energy and

symmetry. However, the procedure described in this section is very general and as'_it will

.be referred to several times in these lectures, we keep the single label.

We may interpret the eigenvalue €; as the negative of the "ionization energy" for
an electron in the state u;, as may be seen if we combine the expressions for the total

energies of two systems, with N and N —1 electirons. For the total energy we have

BN) = ) n Udil wi) [-he - Y 2, vty | ui(fcl)} |
i ‘ A o

T
D —

n;m [ f dt; dt, ui(R,) u(%y) V(Ety) ui(Ry) ()

[
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—’J‘ dt, dt, 0%y 0HiRy) vty (k) uiy)

. _
+3 2 Z, v (F ) . | (I1-12a)
A#B '

and :we introduce a more compact notation

B(N) = Z“i hii+§~2 m g [0 v 1)~ GlvI)] + Vg - (1112b)

i 1,
Now for the single—particle energy €; we obtain

s = by + Y npl(i€]viiQ) - (it]v|a)] (11-13)
7

which leads to

EYN)-E(N-lipyy;=0)=¢5; , (II-14)

if we assume that the same set of (%) obtained for the N—electron system describes the
systern with ome electron missing from state 1. That is, if we do not take into
consideration orbital relaxation effects. In (II-14) E%(N) is the variational ground state
total energy for the N—electron system and, as such, minimum respective to u;; and
E{N'} is obtained with the u;'s taken from the N—electron variational set, with different
occupation numbers. This interpretation of & s known as the Koo;)mansg)
approximation and should work best for extended one—particle states (such as Bloch

states). As a natural extension, the eigenvalue difference

—z. ~ E (N;nj = O'Hi = !.) - EO(N) (11—15)

could be taken as the excitation enefgy frorn the ground state to anof.her N—electron

configuration with one electron taken from state .j and placed at state 1 (formeriy
unoccupied). Care must be taken, however. since even if if we calculated E(N)

selfconsistently, the variational procedureris only guaranteed to furnish the best u;'s for

the ground state of the system in any given symmetry. As such, eigemvalues of virtual

(unoccupied) states have no clear interpretation. '

The Hatree—Fock approximation is the most important step in the direction of
obtaining the electronic structure of a N—eleciron system. It suffers, however, of serious
problems in that it cannot, by construction. treat a cor-reiated N—electron system. If we
resort t0 some product definition of ¥ ({%;}) as in (I-6), we may say that it is not
realistic to describe_eveﬁ the ground state of the system with a single Slater determinant.
For finite systems the inclusion of correlation effects may in principle be achieved through
a superimposed variational procedure in the space of determinantal functions lIlI ) known
as cbnﬂg'urapion interaction {CI). . '

We express the wave function foragiven T asa combination
b = Z Ap Y | Y | 1 257
I i .

where the -¥,'s are built by excifations from the ground state HF wave fgnétion- Vi (n
the spirit of (IT-15) but including multiple excitations). These ¥, are then written in
terms of the (orthogonal) variational set of uy's by proper “"switching" of occupation
numbers. The correlated ground state is obtained through minimization of the energy
<d |t} P> wi.th respect to variation in AF[ , which then furnishes, also,.the energy and
wave functions f_or_excited states.

For an infinite system this scheme i3 not applicable, and the problem arises of how
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10 represent the excitation of a single particle in the Bloch approximation. - Hence, excited
states cannot be properly treated in the HF-imit; ground state properties should,
whenever correlation effécts are not 0o important, be reasonably well reproduced.

We will return to these probleins later in the chapter, 1 want to stress, however,
that in the semiconductor. physics we are interested in we will mostly be concerned with
excitations, usually called quasi—particles: holes and electrons {where "electron" is to be
taken as an electron in a given conduction or defect state), excitons, phonons. We may
therefore expect the HF treatment to fail somewhere along the route: in fact, whenever
correlation effects cannot be neglected.

Another point we must discuss is the l:r'ea.t,ment of spin effects. As derived above

from (-1} to (T11-11), the procedure is called unrestricted HF and can become very

-complicated. The case of closed—shell systems, such as ideal crystalline semiconductors

with compietely occupied valence bands and empty conduction bands, poses no difficulties
if we neglect relativistic effects. For open shells, if the overali symmetry is A, , the usual
procedure is known as “spin polarization”: we use a different set of space orbitals for each
spin3), solving as it were two %—N—elect.ron problems with only parallel spins involved [As a

consequence the resulting wave fumction is not any longer a pure—spin state, due to

- non—orchogonality of orbitals]. If the symmetry is lower, however, several Slater

determinants would liave to be considered on equal footihg‘, which may cause severe
difficulties as we can have space—symmetries broken.
A very much used procedure, which is sometimes called “mean-field averaging”, is

to treat open shells (either spin or space) as if they were closed, with fractional occupa,tion

" numbers: the charge of the open—shell orbitals is equally distributed among up— and

.down—spin orbitals, or among partners of a space—group representation, thus turning a

low—symmetry problem into A,—symmetric.

14

IL.2. The LCAO or Tight—Biding Formuiation of Hartree-—Fock and Furgher
Approximations,

The HF equations as described in the preceding section have to be solved in a
self—consistent way. We must spécify a reasonable set of wu;'s as input, solve the
determinantal equations to obtain the <;'s and new u;'s, and so forth. The absence of
the central symmetry characteristic of atomic systems causes a seriou‘s, complication.
However, 2 natural assuption (first introduced in this context by Bloch4)) is that the
constistutent atoms bring their identities with them to the moiecule or solid. Thus, a good.
description of a molecular orbital u; , extending in principle over the whole system, could
be obtained5) from & suitable linear combination of atomic orbitals ¢ M centered over the

particular atomic sites (LCAQ): - -

Wi = Ye o0, (m-17)
I

The set {qb#} includes a complete (ahd usually orthonormal) set of atomic

orbitals for each latiice atom.  This first approximation leads to a Fock—operator matrix.in

terms of the atomic orbital basis: ’

fm/ = hﬂf/+ 2 Pys [(,uv|v|,\ar} -%(yz\[v[ua)] {11—18)
Ao -

where the bond—order or density matrix P Ao 18 given by

P,\cr - Z_Hici,\ Yig ) ) (Hflg)

i-
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Variation of u;'s is achieved through variation of the coefficients Gy SO that

equations {I1--5) are translated into the Hartree—Fock—Roothaan {HFR}) equat.ionss)

Z { E.Lw -t S.u!/] S 0 (0-20)
it

which are subject to the normalization conditions

Z ey, = ! : (11-21)
kA

where ) is the overlap integral between orbitals gz and A.
The problem is simplified first by recognizing that the functions uy(®) = u (%)
must be invariant against decomposition into Bloch projections: if we build the operators
P, = L 2 exp {ik-t} T(-t) | (11-22)
k N. %

t

where N, is the number of cells in the crystal, we must have P, u (Fy=u , (&),
’ k nk nk

Operating on (F—17) we note that
Z 11-23
.. @) ; e P, 9] | (11-23)

where the subset { P, cp# } is complete relative to the subspace ki [ ¢,u ] is complete.
k

This- procedure corresponds to block—diagonalization of the energy and overlap matrices F

. and S according to the k—star representation of the translation symmetry group of the

16

crystal. Each set { P, Q)FL. } is orthdgonai and 1'1011—i'nter'lacting through F to the others,
' k . :

so that we end up as needed, with a set of eciuat.ions (1117} to (11-20} for each k.

Further block—diagonalization of the métzices within each k-star may follow from
the use of symmetry—a.da.pted combination functions according to the crystallographic
point group.of the crystal. o _ .

Another necessary simplification is the tmnca,ticn.of the'c'omp'lete i.nﬁnite b;éis._ éet.

Formally, this may be accompiished as followsg): we separete from the set {¢} an inner,

finite set { "} so that the quantities are written as

Cin
Cout

Fin,in Fin,out. Sin,in Sin,ou.t . . ’
[f,u,/\] = Fout..in Fous, out : [S;&}\] = Sout.in Sout.out ¢ =

(H-24)

where the blocks {in,in} are of finite dimensions. -Now (IE-20), in-matrix notation, is-

.separated in

Fiu.in Cin + Fin,out'Cout-. - Sin,in- Cin-—_ _‘

Fout,in Cin + Fnu!:,oul:, Couf._ = e Sc'mt.,oun Cuut !

if we approximate the overlap §'°*% = §°*M'® = o _ ‘Solving for C°** and reinserting, we’
- - %, §
obtain the renormalized expression

giningin _ _gningin (1—26)
with |

Fin'in - -Fin‘in + Fin,out I:E Sou[:,out. _ Four,,oui; ]'l Foui;,i.n (11;2?) .




i
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which allows us to solve a finite determinantal equation for each group representation, with
the second term in {II-27) as a perturbation to be gauged and truncated.

If the procedure were Carried out in ab inition form, with no further approximations,
it would still become unmanageable for rather modest systems. We recall that the
resolution of (Il—20) implies by (II-18)} the computation of multicentered integrals
(e} v| Ao}, the number of whick grows roughly with the fourth power of the basis size.
Some immediate remedies are easily seen, still an ab initio standard, such ag the truncation
of the basis set at some reasonable convergence—tested size, and the use of analytical
functions for the atomic basis, e.g. Sla,ter—type—o'rbitals or suitably contracted
Ga.ussia.n—type—orbitajé. 7 ﬁowever, we recall that even if thé effort is stretched to some
mythical limit, there will stifl be errors in the final results due to the neglect of correlation:
to eliminate these errors we have to move out of HF mean—field theory {through, e.g.,
inclusion of configuration interaction) which would quite obviously further complicate the
problént. )

_A whole family of techniques — the NDO techniques - were born from the view that

' the operator in (TE-18) could be simplified and results improved at the same time, through

convenient semiempirical parametrization of the matrix elemetss).

Althought these methods were devised for the study of motecules. they .have heen
applied in semiconductor physics (mostly for the study od deep-level defects) hence I will
briefly describe the spirit‘of.the approximations.

. ~ The first step is to treat the real overlap between diferent orbitals z and v as if it

were equal to zero (neglect of differential overlap - NDO):
ok )
cpﬁ(ﬁ) @y(i) di = JIW . (11-28)

and thus eliminate the compusation of three— and four—center integrals, and many of the

one— and two—center integrals. Remaining integrals are then parametrized under strice

rules: (i) parameters have to be associated to individual atomic species, and be
transferrable from one system to another: and (i) results should be invariant under
rotation of the atomic basis.

Furthermore, atomic basis sizes are usually reduced to the miniroum pessible to
accomodate the existing electrons (plus degeneracies, e.g., two s and six p orbitals for
the valence shell of 5i,Ga or As, with inner electrons included in the core).

Different techniques aim at describing diffevent properties of the systems. The first
scheme to be establisked, CNDOTa} (complete NDO), eliminated by II-28 all exchange

integrals and is not well suited to treat open—shell systems. INDOTb)

(intermediate NDO)
brought back into the calculations exchange integrals for same—center orbitals, and is
directed at electronic structure results. MNDOTC) {modified NDO) alters the way some
matrix elements are alculated and aims at obtaining stable geometries and vibrational
properties.

All these techniques have in common the use of the NDO aplﬁroxjma.ticni to some-
degree. Matrix elements are parametrized iﬁ terms of the atomic species, through

properties of free atoms such ag electron affinity and ultra—violet spectrum. The quantity

that depends on fitting to resuits for molecular systems js the bonding parameter §: all

NDO techniques bring back the real calculated overiap integral Sﬁy—ultimately responsible

for bonding - to parametrize the one—electron hamiltonian between orbitals g and A

centered on different atoms A and B respectively:
h#/\ = ?(ﬁA,ﬁB) S0 - - (O-29)

The fit is usually carried out with reference o several differens systems and already
within the CI variational formulation (so as to avoid including correlation effects twice).
Results for Si were obtained through MNDOb) and CNDOQJ, this fatter in a. large

unit cell approach. Until very recentlymj no parameters were available for Ga or As, so
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there are no caleulations of band structure for Gads.

As said above, the NDO techniques are mostly used for molecular systems. The
problem of solving multicenter integrals is however of so severe order that some
approximation is needed. The most familiar form in band—structure calcufation is know as
the empirical tight—binding {TB) method. The TB method is matnly used for obtaining

the curves ¢ , along symmetry lines in the Brillouin zone through interpolation between
nk

high—symetry'points, where more sophisticated techniques are usedu}. Non—empirical
versions of TB are not usually carried out within Hartree—Fock formalisim, and will not be
discussed in this section.

The differential overlap.problem is formally circunvented in the TB method by
transforming form the {e;ﬁ ] set to a set of orthogonalized atomic orbitals { %}

through, e.g., & Lowdin tra.nsfonnation3’u)

1 .
v, = 35, 0, (11-30)

Bloch projections are then formed from this set, and a general element of the Fock
matrix in the subspace ks written (if we recall that the vectors t ~conneet lattice

sites.I):
MO Y e [ik-[ ] _Rx] ]f v, [:*c—B.[]f v, [J*c—RJ]dfc (11-31)
if RL are the. position vectors of the lattice sites, and [i - f{L] = {1’ — ﬁL,E]; we take

ﬁ.'[ to be one of the sites in the central unit ceil. The usual difficulties are met in a full

calculation of {([1-31). For instance, each wu is a combination of '¢V's, the Fock operator

le itself depehdém; dnr the 's, and we will finally arrive at four center integrals. However,
each term in the sum (II-31) can be formally assigned to a pair of orbitals centered at
given sites, and this convenient feature is the basis of the empirical TB scheme.

The following approximations are made; {i) The form (II-31) is normally used, but
the integrals are teplaced by parameters which are to be adjusted to resutts from more
accurate calculations (or experimental déta) for high—symmetry points in the BZ. (ii) To
guarantee that the number of parameters is compatible with the amount of data available,
integrals between orbitals cgntered at ﬁq and ﬁJ are calculated if |ﬁl - ft.Jf is smaller
than a prescribed value, and ail other integrals are set to zero {we then work within a
nearest—netghbor approximation, or we keep also the second—-nea.rest;neighbor.
interactions, and so forth).

Apart from (i), integrals equivalent by symmetry (such as those between s—type

orbitals on the central atom and its four nearest neighbors} are identified through the

symumetry operations of the point group of the crystal, T4 for tetrahedral semiconductors.

If we apply this scheme to the Si or GaAs case, including up to
second-neares't-neighbor integrals and Bloch projections of s and p types, there will
remain § independent matrix elements (II-31), which can be written in terms. of 13

independent integrals. These 13 parameters are then adjusted to known values of = , at
. nk

chosen k- points, e.g. k=0 Ty, k= g (100) (X), and k= g(lll) (L); the whole behavior

of £ , may then be obtained.

However, as said above, the use of the empirical TB method is tied to the existence

of more accurate Ca.iculations'for some'high—symmetry points.

IL3. The Local Density Approximation LDA
Most of the difficulties associated with the Hartree—Fock approach are introduced

by the non—local exchange term. In 1951 Sla,terp) proposed an approximation to the

P}
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one—particle equations (Ii-5) and (II-12) substituting the exchange potential by a local
termt. The local exchange is calculated as the statistical average of the HF exchange over
occupied states u;(#); this form is further approximated to the statistical exchange of an

uniform electron gas of density p(Z}):

] e (11-32)

Veg = — 3¢ [%? o)

for a closed—shell system. The local approximation was later discussed by Hohenberg and
Kohnl?’) who proved that the ground—state energy of a N—electron system is indeed a

unique functional of the density (), and laid the basis for Density Functional Theory

4). found that the

{DFT}. In particular, for the uniform electron gas Kohn and Sham'
' 15)

exchange term should be only % of Voo . This suggested the use of a term

2

VX o=« st , with the exchange coefficient o bounded §5 @<1. From then up to

this date several improved models have been proposed for the exchange—correlation

potential V and we will return £o this point later. For now we will assume that some

XCc-
form of Ve 8 given and discuss the implications of LDA.
We write as in Ref 14 the total energy for the ground state of the interacting

electron £as:

EOI(N) = Tt - Y, f o) v[f,f(l] dt + -
: J

(1-33)
- R %f p(ty) pl(ty) v(Fytyh dFy diy + By fa(?)]
in the stowly—varying—density _regime where
E o lo(?)] = f plE) £y o(2)] di - | ' (T1—34)
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in terms of the exchange—correfation energy per electron Eve _The one—particle e(iuétion

that determines p(*) is in turn given by

{—%V% ¥ [tk + f (1) (Rty) dty + Vi [o(2)] }-ai(m = sut)
J
(—35)
with

Vi O] = d{p(ty) ey ()]} /dn(t,) . (36)

Equation (II-35) is now a local equation for the wus that must be solved
self—consistensly since the effective hamiltonian dependé on p(1) through ng.-
We may now comment on some characteristic aspects of an actual LDA calculation.

Each equation (II-35) depends on all ='s in a non-linear way through Vye S0 the

determinantal equation must be solved through numerical iteration every self-consistent "

cycle, by supplying both & guess set of u;'s and of matching .£,'s ; a search for the zeroes
of the secular determinant then follows. When satisfactory sets of uy's and .&;'s are
found, they are used for building the potentials for the next cycle aﬁd so forth, Hence, as.a.
general rule, LDA calculations are [eﬁgtht.y. '

Aﬁother relevant feature of LD A is that since the effective hamiltonian depend;i on

the focal charge density, (fI—7) must be evaluased each cycle:

oce BZ

pix) = 3 X I (0] - mn

-
n k

(where the sum runs over occupied states only). This implies an extensive .sum or

integration over the Brillonin Zone. = Alternatively, she integration is substituted by a




sampling of the BZ at special points, followed by an averaging procedure. This sampling is
thus of fundamensal importance for the success of the calculation! The choice of points and
weighing procedure .ma,y be carried out taking into account the point—symmetry of the

16)

crystalline lattice™ and as a result only a small finite number of E—points need be

explicitly included in {II-T).

As a first example of band structure LDA calculations we show in Table T,

compared to experimental results, the results of Ciraci and Batra,ln for Si obtained
through the seli—consistent first—principles TB approach. The LCAQ equaticns (T1-20)
are fully soived, after redefining fw—'fiEA in (I1-31), with =§. The basis set
consists of 70 contracted Gaussian—type orbitals of £=0,1 and 2 character (3,p and

d—type) and up to Sth—neighbor interactions are included. It may be verified that relevant

enrgies such as the gap and valence—band—width, and some transitions (detected as

reflectance peaks) such as Ly — Ly are in very good agreement with experiment.

Table I — Energies (in eV) for some relevant electronic states or transitions in crystalline
silicon as calcuiated through different models, compared to experimental values.

. Ciraci and Stuckel and Zunger and
Experiment = Batra Euwema Cohen
Ref.17 Ref.18 Ref.19
Theoreticai e first—principles first— first—
Method tight—binding principles OPW principles
a=1 a=12/3 pseudo— -
potentials
Gap C1.14 1.2 . 1.10 <0.32 0.5
Valence band
width (12.4 = 0.6) 11.7 11.74 12.04 12.20
Direct gap .
(P35 T'ys) 3.45% 3.1 ©o275% . . 233 2.48
L - L;""d . 548 5.2 5.01 138 4:64

a) Ref.20  b) Ref.21  cjin this case, the value corresponds to gz —T'3.

We will discuss m the nekt section some other LDA results for the band structure of
Si (already included in Table I} and GaAs; before doing that, we will take a closer look at
LDA itself: [§ '.is based on the possibility of writing the total energy for the ground state of
a ma.ny—pa.fticle system in terms of a universal functional of the density, Fip{?}] . That is,
for an a.rbitrar-y'extemal potential v(1) the correct ground state energy is the minimum

value of

3
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Efp()] = j o(t) pit)dt + Flp(t)] : (11-37)

We may write the energy as a functional of the density since it can be proved13)

that v(¥) is a functional of p(¥) for the correct ground—state density. In (II37), F is

written from the hamiltonian ¥ =T + V + U with

T = %-%Ifhlﬁ'(f)ﬁtlf(f)df

<
il

o
Il

éf v (@) 0 (1) v(tuty) U (1) T (1) dEdE,

where \I!”l'(f},llr(‘f) are field operators for creation or anihilation of a particle at ¥ . The

general density at T is defined as
_ ] gty
a(t) = <N} f d T (R)E(R) N> (I1-39)
introducing the general N—particle state |{N> . The problem now is to find the functional
Elo(2)]

Flo®)] = <N|T+U|N> (11—46)

which "is still in a nom—ocal formulation. We may separate the problem in a known

Coulomb functional of the local deﬁsity

f ot () v(2) U (2)dE {11-38)

il = [ vituta ottty ataty + G 1o ()
and expand the unknown functional G [g] in higher—order denéity—macrices
Gl = GO p(2,to)] + G [l gl ,)] S (42)

and so forth. The need for approximations is clear, since G s still unknown. LDA

derives from the prOposalM) to write
Glg] = Tglol+ Eglol (—43)

where Ts[p] is a simplified kinetic energy functional valid for the gas of non—interacting
electrons. From this step on, equation (TI-35) is directly recovered, with the main result
that VXC is unknown but focal V‘C{p(f)] . Several functionals have been proposed and

1,22)

are in current use for V apart from the X @ potentials.

XCr

A very important feature inherent to LDA is that the eigenvalues =z,

; no longer

carry the physically appealing interpretation of negative ionization energies: it is easily

seen from H—33 to H—36 that
. = a EO N
5T oL i[ (N} - _ (T1—44)

The problem of how to obtain one—particle jonization and excitation energies has

. : . 2 . .
been object of several studies. Slater ) showed that. to a good approximation, the
difference in total LDA energies for two configurations of a N—electron system might be

given by:




(]
-1

E N:n;=0,n;=1}—-E

j (N) = g;(n; = 1/2) —g;{n; = 1/2) (11—45)

( ]
LDA LDA

where the difference in eigenvalues is to be extracted {rom a self-consissent calculation in &
transition—state of the system in which the eleceron is equally shared by the single—particle

states defining the excitation. The same argument holds for an ionization transition

G ] N_—_1- — — —
B0, (N)— B, (N —15m;=0) = g(a; =1/2) (1146}

The interpretasion of the curves e (calculated. of course, with filled bands) is
nk

then not so straightforward as in the HF formalism. It is expected, however, that the
extended band states will not be much affected By the "absence” of half an electron so that
a "LDA analogue of Koopmans result” might hopefully hold. For localized states the

sransition state construct should be used.

IL.4. The OPW and Pseudopotential Methods

In (II-1) we assume that the most natural expansion of the single particle states u;
wmﬁd be in terms of atomic orbit.als. In a periodic system, however, another choice seems
.a,lso natural, expansion in terms of periodic functions. The nearly—free—electron model
envolves from this idea: the movement of the valence elecirons in a solid shoud nos be
much different — apars from scattering events — from the movement of independent
elecirons in a box or in "periodic free space", provided the screened core potential is weak.

It would then seem that the expansion

() = 2 a Em—lﬂ exp(ik-1)] (I1-47)

T
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here 0 =N, is the volume of the ctystal, could be useful. We write the periodic
potential of the solid as a sum of atomic or core potentials, each already including some

form of local exchange term (unspecified for the moment)

NyNe

Vit) = ch(r—ﬁJ) - (11-48)
J

and substitute (II-47) and (I148) in ([1-35) to obtain the secular equations for the

coefficients and single—particie energies:

NN,
h2k? ] 1 2t
- —z; |a,d,, + a, exp{-i{k'-k)-R.} x
[-M-ei]a b QXL; pl-ifk )R}
k
(1149}
x [ dt exp{—ikk)- (1R )} V(+-R)) = 0
It may be recognized that the structure factor
N __ '
5, = %Z exp{-i(k—k)- R} o ©(U-50)

vanishes unless the differéuce Bk equals a lattice wavenumber 8 . as is to be expected,
and for an actual calculation we should only decide where to truncate (Ii-49) (in the spirit
of (I1I-27)). Tt turns out, however, that the convergence of (11-47) is extremely slow for
any real erystal, and this is due to the need of describing u(¥) for #=x f{J , the close

proximity of the atomic cores. The existence of the lower—energy core states, extremely

iy




localized in ¥, forces on the valence states very strong short—wavelength osciilations, that
is, strong components of large |§'—f<| in (1L-47). Estimates2) of the size of (11-49) for -
each & lie in the range of > [10° x 108] for Aluminium, and as such the method is not
useful at all. _ ‘

The difficulties of the plane—wave méﬂmd arise in the neighborhood of the core,
while iﬁ the other regioné (even in the <111> bond direction} the expansion (II-47) should
and does work quite well.

The orthogonalized—plane—wave (OPW) method is pa.rtly'based on the fact that the

'tight—biﬁding expansion (1I-23) works very well for cote states, for which there is virtually

1o differential overlap. We may write for ¢>lu the usual form (neglecting unspherical

deformations)

8,(1) =

nfm

(1) = ¥, (O.0)R_1) (@)

ﬁhere an(r) is the radial part of Dt > found through adopting some LDA potential,

and the cryssal core wave functions may be put in the form

NN,
W i) = [N, N2 ; exp {ik R} o, (0-R) . (52

The new basis for expansior is formed from OPWs: periodic functions ¢,(f) which
: k

already incorporate the oscillations in the core region, by requiring that they are

orthogonal to core states:

k oy nfm,k nfm,f{

OPWiay = Y2 expik:-1} - 2 b, (T-53)
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with the coefficients b, chosen from
nfm,k

j‘ dt Opw(r o= ' (11-54)
nfm,k

for every core state (n,f,m) of wave—vector & inthe crystal.

The specific foomm b, still depends on the choice of Rné,(?) , but the
ném,k .

dependence on the magnetic quantum number m can be made to vanish.

The OPW's are now used in {II-47), so that

a = Y, 0 s
nk - (nk)g k—%
g
and substitution in (T1-35) yields the analogue of (II—49)

It is to be expected that a few OPW's in expansion {II-35)} will be sufﬂmeut a.nd'
indeed the band structure of Si was obtained usmg of the order of 3.x 102 OPW's for each
k point by Stiickel and Euwemals), and |fc—§lMAx ~ 157 (a.u.) in {I1-55).

The authors use the self—consistent scheﬁe in their calculations (as all electronié
structure methods, the OPW may be used in a non—self—consistent semiempirical
version24)}. It is important to mention that the orthogonalization procedure (]I—54).is
repeated .for each interation in the self—consistency process, since it is atlowed that the core
states change with the valence—electron rearrangements. As such, the separation in
ﬁalence and core electrons in the SC OPW method is rather formal, and it is pbssible to

18)

perform "all-eiectron” OPW calculations We enter in Table I results for the same

* calculation using Slater or Kohn—Sham exchange potentials: is is worth noting the large

difference in the width of the gap, and the inversion of the order I« '}, obtained with




31

use of one or other exchaige potentials.

' Summarizing, the idea of the 'OPIW method is to choose an expansion for the single '
particle states that converges very rapidly, through taking explicity into account the
strength of the potential in the regions very close to the atomic cores. As a consequence,-

the solutions u , all properly exhibit the complicated oscillating behavior at ¥ ~ ftJ .
’ nk

The pseudopotential method on the other hand, is directed at finding an expansion
which also converges very rapidly, and still consists of smoth, well-behaved functions over
all space including the core regions.

The pseudopotential method is usuvally derived25) from {II-53) (we change
notations to '

Iném,J> <ném,J|k> (11-53")

|[OPW > = |k>—
: nfm,J

to simplify the writing). The expansion (II-55) is written as

.
Kk I3
-

w, = Y a, |OPW, k2> = (1-P) Y a, |kg> (I1-56)
Y, 10PWig )L, _
g g

where the operator P, projects the plane waves onto the core functions as in (I¥-53%), and

we interchange the sums in (nfm) and . The pseudofunction

) = Yo 0 enliin) ) (1-57)
k k.g

+
[

s smooth and well-behaved in all space. On the other hand, the operator P ouly "acts"

within spheres surrouding the atomic cores: cutside these regions the pseudofunction is

equal to the "true" wave function u,(?) . Inserting (II~56), in the form u, = (I—Pc)f,’)lzs ,
k k k

in (H—35) we obtain

— g

2 ' ] - .
["g_m V() | - [ L V(?J} Py = E(1-P)ufS  (11-58)

with V(1) accounting for all potential terms. If we may assume that

b2 .
[ - m vz + V(T) ¢nfm{f) = s[lfll} (!)nfm(f) (H_Sg)
we arrive at the pseudopotengia,l equation:
" h?, p
—3 P+ VI(te) } $5(1) =« (1) (T1-60)

with

VB = i+ Y [s—afl}ﬂl] Infm,J> <nfm,J| . (II-61)
afm,J

In this form the pseudopotential method has limited application, because (11-59) is
not valid in general [V(?) is not even spherical except in the free atom|. The overall
simplicity of (1160} has been interpreted, howeve.r. as a freedom i.n choosing | VPS(?) .
The empirical pseudopotential method in its several versions is based on this freedom:

yF s{i’) is chosen in the simplest form possible which produces: (i)z ,'s adjusted to

) nk
experimental values for some special points in the BZ, and (ii) smooth transition of the

wave function or its logarithimic derivative over the radius of influence of P,. These

empirical versions were very important in the systematic study - of several

W
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semicondijctors%), however I witl concentrate here on the derivation of the first—principles

method.

The basic assumptioulg} is that the all electron hamiltonian in (11—35)
h? v N v . .

where a°¥Y encompasses core and valence states, can be replaced by

g .
[—“mvz V) + VERe) } of = i (11-63)
where the pseudofunctions u?s only describe valence electrons and may be obtained from
the "true" set by a unitary tranformation:

o = Y eyuftt | (11-64)

]

The core pseudopotentiat V‘QS is to be obtained by requiring that A;=g; for all
valence states, maintaining for V(%) , the two—electron potential for valence electrons,
the same functional form as o V{(1}. This is just a rephrasing of Ti—60 and does not
simplify the problem unless we assume that once VES(T,E) is found for some simple
situation for a given atom, it may be transfered together with that atom to any other
complicated éitua,tion. That is, unless we assume that core states are not, affected by
-valence—electron rearranjements from one system to the other, e.g., As 3p states behave
thé same way in GaAs, AlAs or in the free As nentral atom. In this case, we are entitled

to calculate VES in the free atom, and insert it in a band-—structure problem: this core

34

potential is not altered by the self—consistent procedure {it is called a “"frozen" core).
However in the initial calculations for the atom the full requisites are satisfied.

We thus consider a pseusdoatom in such-a reference configuration (wsually the
ground state), with ~the valence electrons interacting throegh Coulomb - and

exchange—correlation terms and moving in the external field of the core

3

Z.e" s
Ve = — —— 4 VES(1) (I-65)
where 2, is the effective core charge. The total energy will be given b_y'(II—33) with p(?)
replaced by pPS{i‘}, obtained by substituting u?s[?) in (II-7') and summing only over

the valence electrons. The single—particle energies are obtained from (I—63), and in the

spherical symmetry of the free atom we write (II—64) as

.“E%m = chn'fun'é{ﬂ . . . | (I-66)

The searched solutions for equal all-electron and pseudo eigeﬁva.[ues are
PS4 5 _ +r _
VR4 = VAT V) - V[P w)) - (1-67)

where the difference in potential energies is caleulated numerically and

. ;‘E‘ €t [eug——snle}un.g(?).
Véf} = - . .
n

- (1—68)
C'nn a9 un'f{ I
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- Thé transformation (TI—66) is not unique and the choice of vES(2) s subject to
c ]

19)

"desirable" properties of u‘i’s(f) . For instance™ "/, it i3 understood that uPS(?) should be

nodeless: for the lowest valence state of each symmetry; that it should deviate as little as
possible from uy(?) in the bonding regions; or other alternative constraints> ).

I insert in Table I results for the band structure of Si obtained by Zunger and
Cohenlg} using the first~principles pseudopotential method. The exchange—correlation
treatment is somewhat different from statistical exchange.” The f—components of VI:S
were kept up to =2, and the plane—wave expansion requires ~ 3%10% terms. It is seen
that the direct gap transition is T'j; — I ; the indirect gap energy is only 0.5 eV, or .less
than haif the experimental value, '

I want to stress that the'basic characteristiés of valence band structure are very
straifar, as obtained by any of the methods discussed here. Since .LDA calculations must
provide p(f) , valence—charge contour diagrams can be compared to experimental X—tay
data: results compare very well for both empirical and first—principles pseudopdtentia,l

.19,26)

“calculations, for Si and GaAsgﬁ}. The main discrepancies between methods appear

(see Table 1) for virtual'states: the Ty —I')5 ordering, the energy gap values. The work of

18) that the choice of VXC may affect these

characteristics. In fact, it was realized that the "band—gap problem" was closely related to

Stuckel and Euwema emphasizes

corfelation effects.

As geen in the last section, the eigenvalues of the single—particle equations in DFT
" indeed do not correspond to ionization energies, and the transition state construct is onljz
an approximation. However, it was not clear until recently if the failure of LDA
calculations with respect to virtual states was to be entirely ascribed to DFT, or if most of
the problem came from the local approximation. To gauge the different effects it is

necessary to move out of LDA and DFT, which task was undertaken by sevral
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wcn:kers%’29 ) .

found in DFT2_9) .

IL.5. Structural Properties

We know that the total energy for. the electronic ground state should be in principle
obtainable within DFT. The main goal is to obtain sufficienily accurate numbers -for
cohesive energies, lattice constamts, or to predict stable structures and structural
transitions. We are dealing with huyge numbers, and it is reasonable t0>deﬁne the total
energy per atom, or pér unit cell in a periodic arrangement.

The computation of the total energy is carried out in different ways for different
methods. T will only discuss the pseudopotential method, and will follow closely the work
of Thm et a[go) in deriving the equations.

The calculation is feasible mainly because of the frozen—core approximation implicit
in pseudopotentials: the core electrons simul(l not have a direct influence on cohesive
energies or structural stability; the indirect influence, through core—orthogonalization of
valence states, is aecounted for reasonably well by the pseudopotential. Apart from that,
translational symmetry is again used to simplify the calculations, carried out in reciprocal
space. |

The authors write the LD total energy (11-33) for the pseuquua,ut:ities.and include

core—core repulsions in:

B¢ = T[pP5()] + z VPSR )+ 4 f 232} 751, Vit T,) df di
. - 7 ;

(11—69)

+ g™ + 3 Y, 7, vk
1,]

It now seems that the greater part of the LDA errors are already to be
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where - : _ o
2 § )
TSy = ~ 0 2 f i )P oS tyat . (u-70)
i
VSR ) = z f B RS R ) Pouli(r)ar (11—71)

i, é"

" Eguation 1169 is simplifiéd, once we know the band structure of the solid, to the

following expression (here explicit use- is made of the X ” approximation where
; _'3 N
¢ =1 Vxoh
=Y et f P50t APS(ty) w(t,1,y) didt, +
- -
(I-72)

3 Vel At + 3 Y 7, v R
' B

© Use is then made of the translational invariance by transforming (¥--66) to k—space.

For this purpose, a plane—wave expansion for uf;s is assumed, and we arrive at:

-+

B = Y -0 {% 2 Va® s @ +1 Y, V@ e
g g :

i

(11-73)

43Nz, v Ry
r,J

. There are some mathematical problems in computing E, from this equasion since,

for instance, the Coulomb component

38

4r e? p(g)
Vg = = (T—74)
7

diverges for 2=0, and the same happens to the corresponding term for the
pseudopotential, which is not seen explicitly in II-67 but is implicit in p(g) and in the

eigenvalues. The core repulsion enérgy is also divergent as known. After some lengthy

algebra, the final result is put in the lform

EY (per atom} = N'::N'; Z Eiﬁ% Wi\ V,(2) pPS(g)

(11-75)

Q

[

H P3S :
LN Y Vio® o) + @, + 1
s 4 |

where Tp 8 the Ewald construction and the constant o, is calculated as a functional of
the pseudopotential. It is to be understood that the g=0 componeﬁr._"’ of the
electron—core repulsion is excluded from the calculations in I1-69, and the compensating

terms o7, + 7p are added after selfconsistency is atsained for p,= .
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Table IF — Pseudopoiential zesuits for structural properties of solids.

Material ‘Lattice Bulk
Constans A Modulus
Yin & Cohen 5.451 0.98
Sit . ' (Mbar)
Experiment 5.429 0.99 (77K)
0.4% 1%
AsP Froyen & Cohen 5.57 72.5
GaAs ¥ ' (GPa)
Experiment 5.653 4.8
—1.5% —3.1%
a) Ref 31 ' " b)Ref.32

Several impresssive resuits were obtained using this formalism, coutpled to one or
other first—principies pseudopotential form and local exchange functional. For instance,
Yin and Cohengl) study several lattice structures for Si: the diamond structure is seen to
offér the minimum energy over most of the usual pressure range, and the "hexagonal
diamond" structure, (equivalent of Wurtzite structure for heteropolar compounds) is never
the ground state. The open strectures are much higher in energy. In a similar study by
Froyen and Cohengz) for GaAs, the zinc—blende structure was also found to be stable.

In Table Il we compile the values found in both references for bulk meduli and
lattice constants, compared to experimental values (corrected for zero temperature when
needed).

The agreement is really impressive. It coorborates the statement that ground state

electronic properties are obtainable. to ligh accuracy. {rom the DIT or even the LDA,

L. POINT DEFECTS IN SEMICONDUCTORS
II.1. Shallow—Level Impurities

The possibility of introducing selected defects or impurities in semiconductors is
what gives the materials their interesting technological properties. This is so because very
small concentrations of certain so—called shallow—level impurities, while introducing
virtually no alteration in the band structure of the compound. may drastically increase the
conductivity (e.g. from ~ 4x10° to 100 cm™® for P in Si). On the other hand, even

smaller coneentrations of deep-level defects can just as drastically reduce the conductivity.

. The vast amount of experimental work dedicated to this field is thus justified. For the

theoretical physicist the study of defects in semiconductors is very attractive since due to
the complexity of the problem progress must rely o models and approximations. It offers
as such an excellent opportunity to gain insight on Nature>3). Here I will focus on a few
aspects of the problem only, and very superficially.

A first approach to the problem of impurities may be to consider the scheme of

'ﬁg.3, and imagine what would happen if we replaced a single atom A out of the compound

AB by an impurity atom C. Suppose C carries just one more valence electron than
A, NL=N, .+_1, a8 would be the case for P in Si (Nv.: 4, N, = 5) or Si in the Ga site in
Gads (N, = .3.,N“, = 4).. Al the rest being the samé, it would seem that the spectrum of
the compound (ﬁg.lb) would not be altered and the extra electron would be accomodated
in the first cohduction state. We recall then that the core of the impurity is not the same
as that of the replaced host atom, ha,\-fing different effective charge, and we expect the

attractive potential to be a little stronger at the impurity site than at any other A site.

Translational symmetry i3 broken, the "Bloch picture” is no longer valid. However, since

the atorns are "similar”, it is resonable to asssume that the defect potential AV(E) is

weak, i.e. the difference between the external potential felt by a valence (conduct.ibn}

electron in the system with and without the defect

o
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AV(E) = V{t}— Vo(2) ER (TT-1)

is Jong—ranged but never too-iarge. In this case, a small binding would lower the impurity

level in the gap, very close to the band extremum and associated to a state very similar to

‘the band state it “derives” from. The extra electron would be easily ionizable to the

conduciion band, hence the denomination "shallow" donor impurities. The same argument
would apply to an acceptor impurity with N, =N, —1 such as Al-in Si, only then a
"hole" would be "eﬁxitted" 10 the valence band with excitatien of a valence—band electron
into the impurity gap state. .

If, on the other hand, we simply removed an atom from the lattice, thus creating a
vacancy, or replaced a lattice atom by an impurity with very different electronic
properties. we would impose a severe disturbance on the immediate environment of the
defect. There will be broken bonds, weakened or strenghtened bonds, new bonds or alien
states: it is to be expected that the defect potential will be much stronger. Ft usually
results for such defects that levels are introduced much closer to midgap: deep levels.
These states can act as traps, ca,pnﬁring' carriers, or recombination centers ”killing” two
carriers, an electron an.d a hole.

Shailow—level impurities and deep—level defects behave indded very differently and
have to be studied through different models.

For shallow--level impurities it is convenient to separate the complete hamiltonian
with the help of (III-1) as

¥ = T4 AV(T) (111-2)

where %° describes the perfect lattice, and to express the impurity states w;(?) in terms

of the eigenvaliues of #°

42
u(t) = » Clu, " -3
k 2 nk nk o ( )
n,k
which leads to )
(g, ~ Ei) cl, + C;'k' <nl*c|AV.En‘l*('>_,= 0 (1114}

where |nk>=nu , =1 ,]k>, @ , having full latiice periodicity.
nk nk nk )

The defect potential is then approxiamted to

2

AV(r) = — & (111-5)

T

@

o

with the impurity at 7 =0, and ¢, the static dieletric constant of the host. To justify
{I0—5) it is assumed that the spatial extent of u;(¥} is so large that we may neglect the
details of AV(Y) over an unit cell, and that u,(¥) only shows sufficient amplitude far
way from the impurity (in the central cell details of AV cannot be neglected).

It can be seen from (III-4) that as AV tended to zero. the eingenenergies and

- eigenstates e;,uy{t}  would tend to band structure results and the extra garrier (e.g.

alectron in GaAs:SiG a hole in Si:Al} would oecupy the state at the band extremum. A
weak but finite AV will present a binding strength and a gap state will appear. We expect
nonetheless the strongest contributions in (I11-3) to come from the states at the extremum
k=2. Specié.lizing for the case of a non—degenerate extremun at. 8 = 0 we may neglect

terms with n'#n, and concentrate on k~8 to replace = , in (III-4) by the effective
nk

12534} form s0 that we obtain {with the hand effective mass m™)

mass (EM) functiona,
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I>=0. (H1-6)

212 : i - 2z
N I M S
2m MR

k

The Fourier transform of {T1i-6) through Fi(r) = 2 Ci|§> is
. ’ k

-

k
hik? & i g o
[_2m* Tt Fr) = & F(r) (=7}
which has the hydrogenic solutions
et L .
g = ————— =, ]=L2.. (II1-8)
Pooe e h? m*

We may then write the impurity wavefunction (TII-3} to a first approximation as a

fuliy periodic function modulated by a hydrogenic solution

uy(t) = i (#)FD (Il1-9)
nd

and the states are accordingly labeiled 15.28.2p -..

The EM approcak works very weli for shallow—levei impurities, if we make further
central—eell correct,ionsBs) to accouns fot the chemical identity of the impurity {i.e., P or
As in Si do not present jdentical impurity states). For stronger, localized potentials

AV(?) it fails completely, and other methods have 1o be used.
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IIL.2. Deep—Level Defects

A defect which causes a strong perturbation in the cryscal wilt also impose a similar
perturbation on the electronic structure, so there will appear deep midgap levels, or
strongly localized states within the conduction or valence bands (resonances). Since the
impurity states are guite localized in ?, e'}_cpansion (IT1-3) is not very useful: we would need
k—vectors from all of t.he BZ.

The study of such systems is thus more complicated than that of perfect solids, since
we do not have translational symmetry, we have to worry about localization effects {e.g.,
many—electron interactions), and so forth. On the other hand it is more complicated than
the study of molecules, because we must relate results to the band structure of the host.

A defect system is characterized if we know most of the following properties:
1) Chemical identity {(e.g. a vacancy, or a 3d metal impurity) 2) Structure in the latiice (is
the impurity substitutional, or interstitial; does it distort the lattice nearby?), formation
energies and reaction kinetics {does such an impurity sit substitutionally or does it"prefer"
to form a pair interstitial+vacaney?) 3) Carrier capture and emission properties (is the
defect a donor or acceptor? how many levels are there in the gap? how long is the lifetime
of an ionized state?) 4) Migration paths, diffusion dynamics (is the impurity a fast diffuser,
is it affected by the pfesence of other defects, or of free carriers?).

. The theoretical study usually begins by the choice of a microscopic medel (1) for
which we obtain the electronic structure (3} in one or more lattice enviroments {2). This
procedure is carried out within mean—field theory and then, if it is necessary,
many—electron effects are estimated or calculated.

The rmain assumption for all mean—field approaches is that we can define a region of
the crystat surrcunding the defect — a "cluster" of atoms — which is relevant. Qutside this

region the defect potential is supposed to vanish:

AV() = 0, || =R, (110}

@

L5
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[for ionized systems the Coulomb tail has to be included, but separately]. It is also
understood that the calculations have to be carried through to self—consistency, since
charge relaxatlon in the cluster :egzon is very strong. '

Qut-of t.}:us common basis we can distinguish three approaches

a¥y The large unit cell or supercell approach: Once the cluster is chosen it is

repeated'in sbace to form a crystal with the defects periodically arranged. This procedure

. may entaii a full band structure cakculation%) for the "defect crystal”, or just & molecular

calculation for é. “eyelic cluster”, or we may use expansion (II-3) if we choose carefully the
superceil symmetry37). The advantages of this approach are that there are no “surfaces"

hetween. the cluster and the rest of the crystal, which could introduce spurious states.
37a)

38,39) 1o

However, the periodic array of defects may induce spurious defect interactions
b) The embedded cluster or Green's function method: In this case
formalism is written in terms of the Green's function

=% G (Fte) = 52 ~1) : (IH11)

which can be ex_presset_i for the pure crystal as

i) = ¥ k> <ol (1112
: ' nﬁ nk

For the crystal with the defect, adopting (II-3) for the 1mpm1tv wave functions we
ma,y wntegs}

G-G® =G° AV-[AV-AV.G°-AV].AV. GO (101-13)

which vanishes outside R_. Inside R, the impurity states are expanded in an atomic

basis set {(b“} as in (II-17), and we express the matrix G° as
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2 < nk> <nk A>

ak i

The poles of G yield the energies of the bound states and the effects on the charge

density are found through

Ap(t) = —%Im[zf <p|Gle + i) — G¥e + ig)[A> | . (LLI-15)

We are then in principle working with the complete system. There might be serious

problems for highly localized defect states37b)

Lattice distortions are also difficult to include.

* ¢) The isolated or molecular cluster model: The relevant cluster is studie_d.as_a.-

(HI-14)

, since (III—3) has to hold over all space. l

complete unit, disconnected from the crystal, through rea[—sbace techuiqués based on -

(0-17). The crystalli.ne bonding is simulated either by saturating the broken bonds at the
surface of the cluster by terminator atoms or by other suitable boundary condjtio.ns‘m)
depending on the technique used for solving (II—20) or (I[-35).

Here again we treat isolated c_lefects, and we may even treat ionized -ceriteis.

dm‘41} and the model has enough

Different lattice configurations can be casily investigate
flexibility to treat complex défects42). The ﬁ.néteuess of the cluster may however induce an
artificial localization of defect levéls; also there is no longer a clear definition of band edges..

Once a mean—field calculation for some conﬁgu.rau.ion of a given center is completed,
we obtain the-charge density and eigenvalues for a particular charge state (usually neutral
relative to the lattice). If the center i3 magnetically active the wave—function amplitudes
may already be compared to magnetic resonance data (if many—hody effects are not

important, and if we are not working with pseudo—charge-densities).
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The depth of levels in the gap corresponds to the energy needed for the defect to
capture or emit a carrier, that is. to change charge state, or be ionized. Within the same
charge state sometimes there may be excited electronic states of the defect. We have to
remember that within LDA excitation energies or ionization energies to one of the bands
have always to be obtained through the transition state construct. The mean—field
energies still cannot be compared to experiment, unless many—body effects are of negligible
order. After inclusion of many—body corrections43) we may compare results for the energy
levels with non—equilibrium experimental data. e.z. photoconductivity. or other optical
absorption technigues. .

If we want to study equilibrium phenomena we still have to include44} interaction
with the Fermi reservoir. of available carriers: in a real semiconductor there will always be
a fair amount of different defects, and the stability of a given charge state for a particular
center will be dictated by the relative proportions of these defects. This is shown
schematically in Fig.4: in part a are displayed energy differences which give
non—equilibrium acceptor {0/—} and donor {+/0) energies relative to the valence band. In
part b are total energies for the sarﬁe centers, but now coupled to the Fermi reservoir. As
the Fermi ecnergy pp moves t0 higher values the electron—poor charge states are
destabilized and electron—tich situations are favored. The width in energy for whick a
given charge state is stable is the Mott—Hubbard energy U for that charge state. It may
happen, although it seldom occurs, that an intermediate state is not stable (it is only seen

44)

in non—equilibrium experiments). These are negative-1i systems and the situation is as

in parts 11 or III of Fig.4.
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Figure 4— Schiematic representation of impurity energy levels in the gap of a semiconductor
a) Isolated system [defect + pure crystal] b) System coupled to Fermi reservoir. E__

B

mark valence and conduction band edges; (0/—} denotes acceptor energies, (+/0) donor
energies; pp is the Fermi energy.

Of much interest in recent years are problems of stability of defecss_w‘-%‘”ﬂ’éa}

which are usually related to lattice distortions. Theoretical models a,re_theﬁ éoﬂstautly
being suggestedéﬁ), improved and modifted, so that, as in experimeﬁta.l physics, we have
specific models for different defect centers. We must, though, always take into account the
approximationé involved in a model when comparing results with experiment. The ideal
situation is when several different approaches are used for the same center. We may obtain
similar results47), or results may look controversial for a time: in either casé we get closer

to understanding the behavior of these complicated systems.
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