UNIVERSIDADE DE SAD PAULO

INSTITUTO' DE FiSICA
CAIXA POSTAL 20516
01498 - SAG PAULO - SP
BRASIL

PUBLICAGOES

IFUSP/P-861 A5

FESNE
;;’:‘?' f; SERVICO bE

SEMI-INCLUSIVE RAPIDITY 'DIS.-TRI'BUTIONS AND A
CRITICAL ANALYSIS OF THE CONCEPT OF
PARTITION TEMPERATURE

Yogiro Hama . o
Insituto de Fisica, Universidade de Sio Paulo

'Sao Paulo, Brasil

Michael Pliimer

Department of Physics, Univer'sity of Marburg
Marburg, Federal Republic of Germany

Agosto/1990




Semi-Inclusive Rapidity Distributions and a. Critical
Analysis of the Concept of Partition Temperature

Yogiro Hama

Instituto de Fisice
Universidade de Sio Paulo
Sdo Paulo, Brasil

and
Michael Pliimer

Degpartment of Physics
University of Marburg
Marburg, Federal Republic of Germany

Abstract

An analytical computation has been performmed of the partition temperature of a n-
particle system of total invariant mass M with a transverse-rmomentum cutoff. The result
has been used to compare with the previously obtained fitted values at 1/5=540 GeV, which
show a complete disagreement with the now available ones, calculated by starting from the
definition. The effect of the center-of-mass motion of the systém on the pseudo-rapidity
distributions is also discussed, ' '

I. INTRODUCTION

. Several yéa.rs ago, Chou, Yang and Yen have proposed to describe a high-energy
hadron-hadron collision at a given energy as an incoherent super;;osition of collisions with
different partition temperatures®). The model is as follows. Consider, for instance, pp colli-
sion at a sufficiently high incident energy /5 and events with n (non-leading) forward-going
particles. The total center-of-mass energy of this n-particle system W = h/s, is a.ssu:ﬁed
to be stochastically distributed among n particles with some conveniently parametrized
transverse-momentum cutoff factor g(pr). In other words, the exclusive probability dis-
tribution for non-leading particles in cne hemisphere is described by a ﬁicrocananica.l
ensemble, i.e.,

_ &5
Probability = H T;g(ij)é (Z E;— h\/E) s (1.
7 . ¢ T
where all the quantities are given in the center—of-m_#s frame.
In this case, the single-particle distribution turns out to be given by the canonical
ensemble -.

. dip E.
Probability = a—pg(pg-) exp(—=), (1.2)
E T, ,

where o is a normalization constant and the parameter T, the so called partition temper-
ature, is evidently a uniquely defined function of W and n, once g(pr) is chosen?,

At this point, the authors of Ref. 1) perform a fit of semi-inclusive psendorapidity-
distribution data® in 540-GeV pp collisions, by using {1.2) where an empirically determined
faf:tor 9(pr) is replaced. All the experimental points for ngps > 10 are surprisingly well
reproduced in the entire 5 range whe:re the distributions have been measured and they
conclude that {1.2), and consequently aiso (1.1), is in excellent agreement with Iexperimegt-.
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‘Another report has been given!) where, with an additional assumption that the inelasticity
h is a function of the impact parameter b, fairly good results have been obtained also at
different energies of pp collider.

However, notwithstanding a good fit of the data, we think we need something more
before concluding that {1.1) and (1.2} are really in good agreement with experiq:ent, since
those authc.)rs have not shown ﬁhe precise relationship among T, Wand n that we have
mentioned above, The 1.na.in purpos.e of the present paper is thus to obtain this rela.tioushi;;
and then, by using W and n determined experimentally, to (.:ompute Ty and compare with
the semi-inclusive (pseudol)'mpidity distribution data.

In what follows, starting from (1.1) we derive in the next section the single-particle

' momentum distribution (1.2) and thereby the functional form of T,{W,n). A comparison
with data is carried out in Sec. .III, where; ﬁrstly.r we consider the CYY analysis?) and then
an independent work by Takagi and Tsukamoto), .where the implicitly implied forward-
b.a.ckwa.rd. symmetry by Ref. 1) has been removed bu'.c. two uncorrelated leading particles

are now assumed. Conclusions are drawn in Sec. IV,

IL. DERIVATION OF THE SEMLINCLUSIVE MOMENTUM DISTRIBU-

TION

Consider a system of » particles, having a total invariant mass M = VW2 - P wihere
(W, P) is the energy-momentum four-vector of the system. For simplicity, we assume all
the pa.rticlés in the system to be pions of mass m and neglect the statistics. As far as the
single-particle distribution is concerned, we believe that thisis a reasoné,ble approximation.
Div_ide the phase space into small bo:.ces with volumes AV, AV%, ...  AVy. We shall
start from a discrete phase space and obtain the continuum limit by letting AV: — ¢ and
N - oo. The probability of finding n, particles in AV, (£ =1,2,..., N) is written
S N N Lo
P({ne}) = mqi“ gy n.zm's(W—tg n,,E,)s(PL_; ngpLg)ﬁz(PT—; nere),
: B i @y
where {n¢} stands for any set {ns,...,nn} and the probability that a produced particle

be found in AVy can be written in terms of the probability density f(y,pr) as

AVi—0

o = flye, Pre)AVe = fy,prydydpr, . (23) ;_
with the normalization o
[rasryayam =1 e

Here, y is the rapidity of the particle.

The single-particle momentum distribution is, then, written in this discrete version as

2 {E} neP({nt})

n ry

<ng >={ —— AV, et = — 24

e (dydﬁ'r Ve Fre k>ﬂ‘w§ﬁ E p({"i}) B ( }
: m} :




In the continuum limit, A and B are given (see Appendix A) by

eo+ton €1 +ico : B 7 ’
' —n s = Ain—1
CA= =" f(y, Fr)dy dF; ] ds f dt / dz7[F(s,t, )]
A {%)J(y_pr),y pr [ g R 25
€g—icO €1 —1 . N B
x exp[(W — /57 +m? chys — (Pp — \[3f +m® sh)t - iFr —p7) - 91
and
-eu+ioo s;+ioo.” o
= —-—]--— ds / dt [leT[F(S., t, )] exp [WS—PLt—i(PT—f!‘T)-uT] s (26)
(2= J _
toico e —io
where we have introduced = definition’
F(s,t,d1) = f dydpr f(y, fr) e VFr eyt @7

‘To avoid unessential complexity, let us forget-in this paper the Fr conservation, since
as well known < pr > is small compared with < pg >, which will be assured by g(pr} of
{1.1) and defined in (2.11) below. Then, F(s,t,ir) — F(s,t} in (2.7) and &7 integrations

are suppressed in (2.5) and (2.6). So, (2,4) reduces to
. Z 5 2.8
<nx >xnfly, Pr)dydpr o _ (2.8}

with
g Fico €1+ioe )
C= ] ds / dt [F(s,t, )" texp [(W ~\/Pf +m? chyls — (Pr—+/BfE + m? sh y)t]

T Eg— RO € — 00 (2.9)

and
egtioo €1 +ioc

D_—; f ds'/‘ dt[F(s,t,}]"exp[Ws—PLt] . : (2.10)

€p—FO0 €1 500
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In order to proceed with the computation of the semi-inclusive distribution < .z >,

we parametrize the probability density f(y, pr).(cf (2.1,2.2}) as. |

Fly, Br) = aeBVEFm? chyo—rfFftm? T (2.11)

with

[[samavase=1. (2.12)

where y is measured with respect to the rest frame of M (y = ypp - ¥V, ¥ = rapidity of

This ansatz is more general than the one utifized in Ref. 1} insofar as it includes
the case of a longitudinal momentum dependence. That is to say, for 4 > 0 i£ yields
an approximate Gaussian in rapidity, which is what one gets for f*the inelusive particle
distribution in Landan’s hydrodynamical model®. The pure (longitudinal-) pha,se--space
ansatz which appears in (1.1) is recovered in the limit of # — 0. We emphasize th;; due
to the constraint of energy conservation, tﬁe resulting semi-inclusive distribution {2.4) will
be independent of §, as can readily be seen by substitﬁting {2.11) into (2.1), (2.4)

Another minor difference between our ansatz and that of Ref. 1) is that here, g(pp)
is an exponegtial not in pr but in transverse energy W ) .which is better suited for
fitting the data.

Let us now compute F(s, t) by replacing in (2.7) f(y, Fr) parametrizéd as (2.11). We
have . -

o0

Foy=a [ dy [dpfexs]—ty + (843 chy - tshy) pEem] . (213
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whére the fr integration can easily be done and gives
o0

m 1 7
F(s"’=2"“_f dy{'r+(ﬂ+_s)chy—t'shy ¥ {v+(a+s)chy—tshy}2] @14)

x-exp['— m{y+{F+s)chy - tshy}]
" The last integral will be evaluated in Appendix B and reads

F(s,8) ~ drax ('?" + le)e—wm, (m\/(B ) - 12) , (2.15)

in the lirﬁit of small argument of the Bessel function.

By introducing this F(s, ) into (2.9) and (2.10), we have as will be shown in Appendix

C . r—1 =3
Ca _2r%(n ~ 1)(n — 2)(4ra)™? ( ' ) (ln )
B M7 _ (2.16)
' x e~ HW—\/FEFmE chy)—(n—t}my
and’ .
) - e n n—2
p o 2rnn=1)(ra) Mi)(‘*m) ?:4 + %) (In%) =AW —nmy (2.17)
" where . 2
M7= (W P+ m? chy) (P[, —+/ph +mish y)
' (2.18)
2 pr+m?
2 {2
=M [1 - TJ_ pr+m2ch(y —-Y) + e ]

is the squared mass of the remaining system after the subtraction of the single particle
that is being observe&;.

We are now ready to calculate <ng>by mtroducmg C and D given above into (2.8).
Fxrsl: let us apprmumate

(o4 < - L=y

M

x (mg)"”’exp[_ S\r;l;%—) /P +m? chly — Y)]

where we have assumed
Voh+mich(y~-¥Y)€« M <M . : (2.20}

(2.19)

Then,

dn_ o De™ T
W an(2 4 )

R (221
(n-3) 2 :
Xexp[_{M—ln%“—_ﬂZ VPr +mich(y - Y)
This expression is identical to (1.2), provided
MlnM arge n << E >} M ’
= > 4 (2.22)
{(n-3)-2n¥ _.‘“d_ln

Here, however, E is the particle energy i.n the rest frame of A .. The last éerm of the
denominator of (2.22) is usually a small number, so in' the most of the:cases it may be
neglected in the lowest order approximation.

To complete the derivation, we have che;:ked the large-n approximation which, starting .
from (2.8,11,16 and 17), has lead to the.exponential form. (2.21) and verified that,.in the
entire range of multiplicity and 0 < 7 2 y < 5 where data exist, the error is less than 5%.
Moreover, the asymptotic form of the one-dimensional phase space as argued by Chao”’ is

correctly reproduced by our method.




III. COMPARISON WITH DATA

Let us now compare the lresult obtained in the preceding section with the data. _We
shall first examine the C’S‘."Y analysis, main reéults of which are summarized in Table T
(colummns 2 — 4). In that analysis only que; hemisphere has been considered with the
exclusive probability given by (1.1). This is équivalent to taking

- M=W=2h/s and
(3.1)
F=0

in our notation. So, with an additional assumption of n = 3n../2, T, is readily obtained
by introducing the experimental parameters of Ref. 1) in (2.22). The. results are shown
in- the last column of Table I, where a huge discrepancy with the fitted values is evident.
Thus, going back to the question we raised in the introduction, we are forced to conclude
that although nice fits htwe_ been obtained with (1.2), the parameter T, thus determined
kes noi.;hing to de with the partition temperature. Pseudorapidity distributions with the
correct partition temperatures, within the physical hypothesis of symmetrical multiplicity
distributions are too low and too bread to reproduce the data.

One may think at this point that the phase space calculation is nonsense and the con-
cept of partition temperature is completely meaningless when treating hadronic systems.
H'owever, one may also be a little less categorical and try to see whether it can be used
meaningfully, once some precaution is taken. It is clear from the forward-backward asym-
metry obsetved in the multiplicity distributic‘)n,aj that event-by-event fluctuation is not
at all negligible when computing the energy partition among the n central particles or, in
other words, the hypothesis erﬁi)bc[ied by (3.1} is valid only for (semni-)inclusive distribution

8.

but too strong for applying an energy partition on it as given by (171). Evidently, if one
takes the center-of-mass motion of the n-particle system into account without changing
the event multiplicity., particles will appear more concentrated, i. ¢., with smaller Tj,.

In Ref. 5), such a calculation has been aone under a simplified assumption of a constant
mp = \/m and with two uncorrelated leading particles with a flat z-distribution,
which is the standard picture of the hadronic multipa.rtic.le production. As can be seen
in their comparison (Fig. 4 of that paper), the agreeme;nt is still not sa.tisfactory.. The
difficulties arise especially in the low multiplicity data (n.s < 20), where the maximum
in the.large-q values cannot be reproduced, but also in higher multiplicity data where the
overall width seems to be systematically wider than the Iexperimenta.l trends.

In a previous work,?} we have used a fragmentation model and obtained a quite good
description of the semi-inclusive pseudorapidity distributions in the [ow and intermediate
multiplicity region (nep < 35). In that model, one or both of the incident particles were

excited into high-temperature states, with a subsequent expansion and decay according

to a one-dimensional hydrodynarmical model .8} If we apply the phase-space calculation or

equivalently the partition temperature coneept to such objects, the results are probably
not far from the earlier ones. The distinct ingredient here as compared to Refs.1) and
5) is the account of the so cailed "‘diﬁmcti;}e” component which is usuall_w;' assumed fo
be excluded from the “non-diﬂ’m.cﬁve” data. However, as the mass of such a# excited-
object grows large enough, it becomes hard to recognize this kind of event as “diffractive”,
even though the forward-backward asymmetry still remains. Thus, the combination of
large fluctuation in the forward-backward ﬁultiplicity distributions and the semi-inclisive
pseudo-rapidity spectra with large-|n] pe;'iks seems to indicate that incident-particle frag-

mentation as described above plays an important.1éle in multiparticle production.
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IV, CONCLUSIONS

Sta.rting from the transverse-momentum-cut phase space {1.1), we have derived in
this paper the single-particle momentum speetra which, as expected, turned out to be
an exponential in particle energy. The inverse of the coefficient in the exponent is to be
identified with the previously introduced partition temperature.

A comparison of this result with the experimentally fitted values showed that care
must be exercised when (1.2) is used to determine the partition temperature. The event-
by-évent fluctuation in forward-backward multiplicity distributions, which in peneral show
large asymmetry, is one of the fundamental features of multiparticle production- and eannot
. be neglected.

An inclusion of the fluctuation mentioned above through uncorrelated leading particles
is not enough to correctly reproduce the semi-inclusive data. We find that a possible way
to giving a better account of the existing data. is tﬁe consideration of particle fragmentation
process which clearly contributes to large fluctuation and gives the momentum distribution
a more aéym.fnetrical form. Whether this mechanism is important or not may be decided
experimentally through a study of ps_eudorapidity distributions with fixed mutiplicities

res and fixed forward-backward multiplicity ratios R = ny/ng.
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APPENDIX A

In this .appendi)':, we shall give a.deca.iled derivation of (2.5} and (2.6, which have
appeared in Sec. IL. ‘

First, following Giffon, Hama and Predazzi (GHP):%11), let us rewrite (2.1) by replac-
ing the energy-momentum-conservation 6 functions by Fourier-Laplace representations and

also the multiplicity-fixing Kronecker 8 by its Fourier representation:

P({ne}) =

. N . N

al e"+'°°d (W= meE)e K _pio Y neprot
d=1 =

(27r}3 g f s e f die '

Ep—Eioo € — oo

x .
~i(Pr =% nefre)ir 2 —i{n— E'ﬂe)" g ny
xfdﬁ"r'e t=t /d’ve ( ’) ..(qN ) ,
. n

ny!
0

(A1)

where €y > ¢ in order to ensure the convergence of the integral (2.7).

Then, the numerator 4 of {2.4) can easily be handled and written

. cotioo €1tico i
= (;:)5 f ds dt [dﬁT/dv eW—Ea)sg—(Pr—pri)t
£g—ico £ —ioo ¢ . (A 9)

N oo U -
. - ; ~(Ers—pret)+ifre- ir+ivine
X e—‘(ﬁr—ﬁn)-ure-«:(n'—l)v (gre )
| w]l > —— -

£=1 ny=0

In the limit of AV; — 0 and N — oo, this may be rewritten, on accouns of (2.2) and

By =Dy +m® chye , pre=+/Bf +m?shy . {4.3)

ept o pfioo

=%f(y,'ﬁf}dydﬁ / ds fdtfduT/dv

£q—ioc er—1io0
X exp [(W— VP +m? chy)s — (Pr— /5 +m? shy)t — i(Pr — fr) - iy — i(n — 1)u]
x exp[ f dy dpr f(y, Br) g_m(uhv"lshy)Hir-ir-{-iu} |
' (44)
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Recalling that . -
iy

. s e
eple] =3
e=¢

the integration in v may easily be effected, giving {2.5).of Sec. II

The denominator B of (2.4) is coﬁlputed in a simijlar way, resulting in (2.6).
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APPENDIX B

(A4.5)

In this appendix, we shall evaiuate the y-intepral in (2.14).

By making a change of parameters

{ﬁ+s=rrch{, (=BT -E,

— Lt (B.1)
= a= th ™t e
t=nsh(, _ =t Fis
and of the integration variable _
y=z+4 , (B.2)
we have o .
: oco—ifm¢ A C T :
m 1 '
F(s,t) = 2me f d-x['y-i-'nch:c.+ (7+qch.x)2]:exp[wm('y_-(—_r;ci_lr)}_ . (B.3) .
’ —oo—iIm¢

This integral is convergent, because >0 and Res > Ret: It is.not-difficult to con-

vince ourselves that.the integration path may: be deformed to--o6. — oo, without changing

the integral. We have

- .
g-—:; = —2rame”™7 j exp [ —imn ch':rJ dr'= —drame "V Kj(mn):,
. —_—
where the initial condition for F is F "=5° 0. Thus,
o e .
F(s,6) = drae f se Y Ky(nz)dz -
7 .

Now, as will become clear later when computing C and Dof

(B4)

| ) (B.5)

(2.9) and (2.10), the

precise behavior of F(s, t) is required when |g| is small. Since Ky(n2) is logarithmic in this

limit, a convenient approximation would be to put it out of the integration sigﬁ. So,

. .
F(s,t) ~ 411'0:[% + 17].«-.—7"nr<c.(mq) )

Observe that, if min| were large, we would obtain

e~ (rtmm

F(s, ) ~ 7
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(B.6)

(B.7).




APPENDIX C

Let us compute I} defined by (2.10), with F(s, !} obtained in the preceding Appendix.

The evalnation of C is éntirely similar, 30:we shall omit it here. .

Define- L

U W=MdY., M>0
- ' s (C.1)

. P, =MshY .
Then, D may be rewsitten - - ) T
. S a+ioo .
y g m 1 " —Rm : E) T

D =~ (4ra) (— + —2) e nmY / {Ko(mm)|"ndn -

T - e o (C.2)

x [ exp[— MBchY + Mch (¢ —Y)]de
Cx i .
where ¢ is a small positive constant and integration paths Cy are as shown in Fig. 1. The

integral in { has been computed previously (see Appendix C of Ref. 11)) and reads
. - ; . .. L - L 1
j; oxp [~ MBRY + M ch (¢ — V)| & = 2 MK [1y(Mo) 4= Ko(Mn)] . (C.3)
& :

The:last term in (C.3) may be dropped béca.use," when integrated over 5, it does not

give any contribution. Thiis;
‘ L A" atico .
D o 2mi (4me)” (T—:—+7—2) M8 dly_n_"? / [Ko(mn)]nIB(M"?) ndn . (C.4)

. Since M >> m, the integrand above is rab_id._ly dominated by Iy(Mrn) when. |n| — oo,

so as stated below (B.5) only the domjné._nt behavior of Ky for my — 0 fs needed to

_eveluate this integral. . This has already: beeﬂ,_-d?gfj&by'(}_HRm} (see Appendix C therein) .

and in leading order: - _
: 2xin(n — D{dra)™ m 1 )" MN\P? —ﬁvwnm-, :
Do ———w'—"m 7 + ;5 : (]11; e Tl . {C.5)
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TABLE I. Comparison of the partition térﬁperature T, as given by (2.22) with the

experimentally fitted one (fourth colum:i). The data marked with * have been taken from

Ref. 1).
Energy fraction Qur results

Rch,obs Peh,cal * in forward central T * T,

region, h * (GeV) {GeV)
>T71 99.4 0.451 ‘ 4.38 29.9
51-70 73.3 0.419 - 7 6.23 39.0
41-50 59.0 0.332 6.80 42.2
31-40 44.2 . 0.316 | 8.8¢ 32.5
21-30 33.0 0.308 13.8 76.2
11-20 21.2 0.257 23.8 127
<16 10.7 ‘ 0.197 183 1116
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Figure Caption

h Fig. 1: Inliegz-atiﬂn paths C4 which appéar in (C.2) of Appendix C
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If Imy >0

Pmp @

w,-argly) |

=T4+arg (y)

If Imy<0 -4
_ _W/z-.{tlrg(yl_] .

0

/zlorg )]
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